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Abstract

The contextualized embeddings obtained from
neural networks pre-trained as Language Mod-
els (LM) or Masked Language Models (MLM)
are not well suitable for solving the Lexical
Semantic Change Detection (LSCD) task be-
cause they are more sensitive to changes in
word forms rather than word meaning, a prop-
erty previously known as the word form bias or
orthographic bias (Laicher et al., 2021). Unlike
many other NLP tasks, it is also not obvious
how to fine-tune such models for LSCD. In
order to conclude if there are any differences
between senses of a particular word in two cor-
pora, a human annotator or a system shall ana-
lyze many examples containing this word from
both corpora. This makes annotation of LSCD
datasets very labour-consuming. The existing
LSCD datasets contain up to 100 words that
are labeled according to their semantic change,
which is hardly enough for fine-tuning.

To solve these problems we fine-tune the XLM-
R MLM (Conneau et al., 2020) as part of
a gloss-based WSD system on a large WSD
dataset in English. Then we employ zero-shot
cross-lingual transferability of XLM-R to build
the contextualized embeddings for examples in
Spanish. In order to obtain the graded change
score for each word, we calculate the average
distance between our improved contextualized
embeddings of its old and new occurrences. For
the binary change detection subtask, we apply
thresholding to the same scores.

Our solution has shown the best results among
all other participants in all subtasks except for
the optional sense gain detection subtask.

1 Introduction

LSCDiscovery (D. Zamora-Reina et al., 2022) is a
shared task on Lexical Semantic Change Detection
(LSCD) in Spanish. In general, LSCD is the task of
automatically analyzing differences between word
senses in two corpora. In the shared task, these
two corpora represent two time periods (1810-1906

and 1994-2020), and the participants are asked to
analyze changes in the meaning of words over time,
or diachronic change.

There are two main subtasks in the shared task:
graded change and binary change detection. In the
first subtask, the participants are asked to rank a
list of words according to the magnitude of change
in the relative frequencies of their senses (mea-
sured by the Jensen–Shannon distance between the
probability distributions over senses automatically
inferred by the organizers from the pairwise human
annotations). In the second subtask, for each given
word the systems should detect if the sets of its
senses appearing in the old and the new corpus are
different, i.e. if any new senses have appeared or
any old senses are not in use anymore.

Despite the success of recurrent and
Transformer-based neural networks pre-trained as
language models (LM) or masked language models
(MLM) on large corpora in a wide variety of NLP
tasks, they cannot be applied to the LSCD task in
a standard way. Most datasets used to fine-tune
such models for different NLP tasks contain
tens or hundreds of thousands examples, each of
these examples is a text fragment not longer than
several hundred words that contain all information
required to make a correct prediction. In LSCD
one example is a word, however, inspecting many
occurrences of this word in both old and new
corpora is required to draw correct conclusions
about changes of its meaning. This requires a
model that can extract information from many
word occurrences and somehow aggregate it to
produce the final prediction. Also, this makes
creating labeled datasets for the task extremely
labour-consuming, resulting in typical datasets
containing less than 100 labeled words per
language (Schlechtweg et al., 2021; Kutuzov and
Pivovarova, 2021), which is hardly enough for
fine-tuning.

Alternatively, in Laicher et al. (2021) the con-

198



<s> Linux machine ··· <s> A computer ···

<s> A vehicle ···

<s> A person ···

Context Encoder (XLM-R) Gloss Encoder (XLM-R)

D
ot product

Softm
ax

CE

0

0

1

Figure 1: The multilingual gloss-based WSD model based on the BEM architecture.

textualized embeddings calculated by a pre-trained
MLM without any fine-tuning were applied to solve
the LSCD task. They found that the largest signal
in these embeddings corresponds to the grammat-
ical form, not to the meaning of words. This is
known as the grammatical or orthographic bias of
the contextualized embeddings and prohibits their
direct application to the LSCD task.

The main idea behind our solution is that fine-
tuning on some task that requires understanding
word senses and at the same time ignoring word
forms shall help to get rid of grammatical bias in
the contextualized embeddings. A suitable task
shall also have a large dataset for fine-tuning. In
our solution of the LSCD task, we fine-tune a pre-
trained MLM as part of a gloss-based WSD system,
i.e. a system that can select the most appropriate
gloss for a given word in a given context. Our
WSD system is based on the architecture proposed
in Blevins and Zettlemoyer (2020), however, we
replace English BERT with multilingual XLM-R to
make our system multilingual. We train the system
on English WSD data only, then apply it to the texts
in Spanish exploiting zero-shot cross-lingual trans-
ferability of XLM-R to obtain the contextualized
embeddings for Spanish words.

Despite not using any labeled data in Spanish,
the described method of fine-tuning XLM-R re-
sults in such contextualized embeddings that are
directly applicable for lexical semantic change de-
tection in Spanish. Our solution based on these
contextualized embeddings has achieved the best
results among all other participants in both main
subtasks, and also in all optional subtasks except

for the sense gain detection.1

2 Background

Our solution is inspired by the BEM (Bi-Encoder
Model) system developed by Blevins and Zettle-
moyer (2020) to solve the Word Sense Disambigua-
tion (WSD) task in English. While WSD is es-
sentially a classification task requiring to annotate
each occurrence of polysemous words with one of
their senses described in WordNet (Miller, 1995)
or other sense inventory, a huge number of senses
in WordNet (more than 100K) and zero or very
few examples for most senses and words in the la-
beled training sets make standard classification ap-
proaches not applicable. Instead of treating senses
as atomic classes, in BEM they are represented
with their glosses from WordNet. Two encoders
are introduced: the gloss encoder to build embed-
dings for glosses, and the context encoder to build
contextualized embeddings for word occurrences.
These encoders are trained jointly such that for
each word occurrence among all glosses of this
word a gloss describing its meaning in the given
context can be selected by the similarity between
the corresponding contextualized embedding and
the gloss embeddings.

The original BEM system employs English
BERT (Devlin et al., 2019) as both gloss and con-
text encoders. The system is trained on the En-
glish WSD dataset SemCor (Miller et al., 1994).
We replace English BERT with multilingual XLM-
R (Conneau et al., 2020). XLM-RoBERTa (XLM-
R for short) is basically the multilingual version

1Reproduction code: https://github.com/
myrachins/LSCDiscovery
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Figure 2: Employing the context encoder for distance estimation.

of RoBERTa (Liu et al., 2019), and RoBERTa is
BERT (Devlin et al., 2019) with several improve-
ments in the training procedure. All of these mod-
els essentially train the encoder of the Transformer-
based machine translation system (Vaswani et al.,
2017) with Masked Language Modeling (MLM)
objective, i.e. to restore some words in a text frag-
ment from nearby words (see Devlin et al. (2019)
for technical details). In contrast to BERT and
RoBERTa pre-trained on English texts only, XLM-
R is pre-trained on 2.5TB of texts in 100 languages.
Surprisingly, this allows not only processing texts
in all of these languages but also demonstrates zero-
shot cross-lingual transferability, meaning that af-
ter fine-tuning XLM-R to solve some classification
task on English texts only, it often can solve the
same task for texts in other languages reasonably
well (Conneau et al., 2020).

Our approach to the LSCD task was initially de-
veloped during our participation in the RuShiftEval-
2021 shared task on LSCD for the Russian lan-
guage (Kutuzov and Pivovarova, 2021) and de-
scribed in Rachinskiy and Arefyev (2021b). How-
ever, in RuShiftEval-2021 only a graded change de-
tection task was proposed and the only metric was
Spearman’s correlation with the gold COMPARE
score, which is the average similarity between word
occurrences in two corpora (Schlechtweg et al.,
2018). The LSCDiscovery shared task in Spanish
offers a more thorough comparison of competing
approaches by introducing both the graded change
and the binary change detection subtasks. It also
replaces the gold COMPARE scores with the gold
Jensen-Shannon distance between the sense distri-
butions inferred by the organizers, though calcu-
lating the gold COMPARE scores as an additional
metric as well. Also in RuShiftEval-2021 our best
solution was a linear regression model that used
different distances between the contextualized em-
beddings as features and was trained on additional

labeled data in Russian. This resulted in consistent
but not very large improvement compared to simply
using the raw distance between the contextualized
embeddings. Thus, for the LSCDiscovery task, we
decided to use the simpler solution that also does
not require any labeled data in Spanish.

3 System overview

The architecture of our gloss-based WSD system is
shown in figure 1. The architecture and the training
procedure are borrowed from Blevins and Zettle-
moyer (2020), except for the English BERT re-
placed with multilingual XLM-R in both context
and gloss encoders. As usual for XLM-R, the input
texts are surrounded by the special tokens <s> and
</s>. To obtain the contextualized embedding
for a word in context, the outputs at the positions
of the target word are taken from the last layer of
the context encoder. If the target word was split
into subwords by the XLM-R tokenizer, then mean
pooling is applied to the corresponding outputs. For
each sense of the target word described in Word-
Net, the corresponding gloss is encoded by taking
the output from the last layer of the gloss encoder
at the position of the special <s> token.2 The dot
product between the contextualized embedding of
the target word and the gloss embeddings for each
of its senses is calculated, then the softmax func-
tion is applied to obtain the probability distribution
over word senses.

The whole system is trained by minimizing the
cross-entropy loss between the predicted distribu-
tion over senses and the correct sense. Follow-
ing Blevins and Zettlemoyer (2020), we trained the

2This is the standard way of obtaining an embedding for
the whole input sequence from MLM models, which is also
used in the original BEM model. Some reasonable alternatives
are averaging the outputs at all positions, or prepending the
target word to each gloss and averaging the outputs at the
positions of subwords of the target word. In any case, we
believe that fine-tuning is important for obtaining good gloss
embeddings.
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system on English SemCor (Miller et al., 1994),
which is a large dataset consisting of more than
200K sense-annotated word occurrences. The
glosses were taken from WordNet 3.0 (Miller,
1995). The SemEval-2007 (Pradhan et al., 2007)
WSD dataset served as the development set to
choose the final checkpoint. The large version
of XLM-R was employed for both encoders. We
trained the system for 10 epochs, which took 3 days
on two V100 GPUs. The XLM-R model fine-tuned
as the context encoder of this WSD system is called
the Gloss Language Model (GLM) below to distin-
guish it from the standard XLM-R pre-trained with
the MLM objective only.

After the WSD system is trained, in order to
estimate the similarity in meaning between two
occurrences of the same word, we normalize their
contextualized embeddings (divide them by their
L1-norm) and calculate the Manhattan distance as
shown in figure 2.

3.1 Graded subtasks
For all graded change subtasks, given each target
word the score is calculated by the following algo-
rithm.

1. Retrieve all occurrences of the target word in
any of its forms from both corpora provided.
We employed the same Spanish lemmatizer
that was used by the task organizers. Then
sample up to 100 pairs of sentences with the
first sentence from the old corpus and the sec-
ond from the new one.3

2. For each pair of sentences, calculate the L1-
distance (the Manhattan distance) between the
normalized embeddings of two occurrences of
the target word. In order to normalize the em-
beddings, we divide them by their L1-norm.
This choice is motivated by the previous ex-
periments (Rachinskiy and Arefyev, 2021a,b).

3. Calculate the average of the distances from the
previous step. This is known as the Average
Pairwise Distance (APD) (Giulianelli et al.,
2020).

The APD scores calculated by the last step of
this algorithm seem to be a reasonable approxima-
tion of the gold COMPARE scores because they

3In (Arefyev et al., 2021) it was observed that taking
more than 100 pairs does not significantly improve the re-
sults, though this was observed for a different model.

both represent the average similarity between word
occurrences taken from two different corpora. But
they are likely sub-optimal as an approximation
of the gold JSD scores. In the future work, it is
worth developing some alternatives to specifically
approximate JSD.

The most computationally expensive part of
this algorithm is calculating embeddings for about
778K word occurrences (4385 target words, 88.68
pairs of occurrences per word on average) This
took about 6 GPU-hours on a V100 GPU. Comput-
ing distances and final scores takes an insignificant
proportion of the whole time.

3.2 Binary subtasks
To obtain binary change predictions, we apply
thresholding to our graded change predictions. Dur-
ing the competition, we experimented with two
thresholding strategies. First, based on the obser-
vation that 9 out of 20 words (45%) in the devel-
opment set belong to the negative class, we set the
threshold equal to the 45-th percentile of APDs for
the 60 hidden words revealed after the first subtask
(Thres. revealed). This results in the same pro-
portions of predicted classes in the test set as the
proportions of true classes in the development set.

Alternatively, we calculated the 55-th4 percentile
of APDs for all 4385 target words in the test set
from the first subtask (Thres. all). The same binary
predictions were submitted for all binary subtasks,
which is likely suboptimal and is the subject for
improvement in the future.

4 Results

Tables 1, 2 show our results compared to the base-
lines and to the best results of other participants.
In the graded subtasks our solution achieves the
best results among all participants. In the post-
evaluation experiments, we compared the fine-
tuned XLM-R model (GLM) with the original
one (MLM). Evidently, fine-tuning XLM-R on the
WSD task gives a huge boost in performance. Our
APD scores have a much higher Spearman’s corre-
lation with the gold COMPARE scores than with
the gold JSD scores, which supports our hypothesis
that simple averaging of the distances between the
contextualized embeddings is more suitable as an
approximation of the COMPARE metric.

4This should have been the 45-th percentile, but we made
a mistake and calculated the 55-th percentile instead. In the
post-evaluation period, we fixed this error (Thres. all, fixed
method in Table 2).
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Model JSD COMPARE
our submissions

GLM norm L1 .735 (1) .842 (1)
top3 other teams for each metric

UsrD7 .702 (2) .829 (2)
aishein .553 (3) .558 (4)
akutuzov .508 (5) .459 (5)

lscdiscovery baselines
baseline1 .543 (4) .561 (3)
baseline2 .092 (8) .088 (6)

our post-evaluation experiments
MLM norm L1 .505 (5*) .511 (4*)

Table 1: Results for the graded subtasks, Spearman’s
correlation with the gold JSD and COMPARE scores.
* denotes the ranks that we would have had if we had
submitted only this result.

Model bin. change sense gain sense loss
our submissions

Thres. all .716 (1) .491 (3) .688 (1)
Thres. revealed .656 (4*) .510 (3*) .621 (1*)

top3 other teams for each metric
dteodore .709 (2) .000 (8) .000 (6)
rombek .687 (3) .490 (4) .593 (3)
kudisov .658 (4) .520 (2) .600 (2)
UsrD7 .655 (5) .591 (1) .582 (4)

lscdiscovery baselines
baseline1 .537 (9) - -
baseline2 .222 (10) .211 (7) .000 (6)

our post-evaluation experiments
Thres. all, fixed .722 (1*) .483 (4*) .667 (1*)

Table 2: Results for binary subtasks, F1-scores. * de-
notes the ranks that we would have had if we had sub-
mitted only this result.

For the binary change detection and the sense
loss detection subtasks our solution also outper-
forms all other participants. However, for the
sense gain detection subtask our solution shows
F1-scores of 0.483-0.510, which is about 10 points
of F1-score worse than the best result in the compe-
tition. Notice that we did not specifically address
the optional sense loss and sense gain detection
subtasks, instead, we reused the predictions from
the main binary change detection subtask.

5 Conclusion

In this paper, we presented a solution for both
Graded and Binary Change Detection. Our solu-
tion achieves the best results among all participants
in both graded change detection subtasks, as well
as two out of three binary change detection sub-
tasks. The key component of our solution which
is shown to be very important is fine-tuning of a
masked language model as part of a gloss-based
WSD system.
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