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Abstract
We describe our two systems for the shared
task on Lexical Semantic Change Discovery
in Spanish. For binary change detection, we
frame the task as a word sense disambiguation
(WSD) problem. We derive sense frequency
distributions for target words in both old and
modern corpora. We assume that the word se-
mantics have changed if a sense is observed
in only one of the two corpora, or the relative
change for any sense exceeds a tuned thresh-
old. For graded change discovery, we follow
the design of CIRCE (Pömsl and Lyapin, 2020)
by combining both static and contextual em-
beddings. For contextual embeddings, we use
XLM-RoBERTa instead of BERT, and train the
model to predict a masked token instead of the
time period. Our language-independent meth-
ods achieve results that are close to the best-
performing systems in the shared task.

1 Introduction

Lexical semantic change discovery is a task with
growing interest and applications in various areas,
such as natural language processing and lexicogra-
phy (Schlechtweg et al., 2020). The shared task on
semantic change discovery and detection in Span-
ish (LSCDiscovery) consists of two phases: 1)
graded change discovery, and 2) binary change
detection (Zamora-Reina et al., 2022). We adopt
different approaches for both phases.

The two sub-tasks consider different aspects of
lexical semantic change (LSC). The definition for
graded change discovery follows Kurtyigit et al.
(2021): given a diachronic corpus pair C1 and
C2, rank the intersection of their (content-word)
vocabularies according to their degree of change
between C1 and C2. For binary LSC detection, the
definition is the same as used in the SemEval-2020
Task 1: Unsupervised Lexical Semantic Change
Detection (Schlechtweg et al., 2020): given a tar-
get word *w* and two sets of its usages U1 and U2,
decide whether *w* lost or gained senses from U1

Figure 1: Lexical semantic change detection via WSD.

to U2, or not. The direction of change is not impor-
tant in either task. The inputs to the tasks consist
of a list of target words and a pair of corpora from
different time periods, annotated for the semantic
relationship between word usages. The gold labels
on a set of target words are inferred from sense
frequency distributions derived by clustering the
manual annotations (Zamora-Reina et al., 2022).
The output in phase 1 is a list of the target words
ranked by the amount of change. The output in
phase 2 is a list of binary change detection labels
per word.

For graded change discovery, our approach is
similar to CIRCE (Pömsl and Lyapin, 2020), the
top performing system in the SemEval 2020 task
for graded change. We use embeddings and Eu-
clidean distance to obtain rankings. However, we
obtain contextual embeddings from token predic-
tion instead of time period prediction. In addition,
we use XLM-RoBERTa instead of BERT, because
it performs well across a variety of tasks in Spanish
(Conneau et al., 2020), and models based on this ar-
chitecture produce effective contextual embeddings
(Ethayarajh, 2019).
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For binary change detection, we propose a novel
approach based on framing LSC discovery as word
sense disambiguation (WSD) problem, which is
the task of determining the meaning of words in
context given a sense inventory (Navigli, 2009).
Using a recently-proposed WSD system, AMuSE
(Orlando et al., 2021), we identify the sense of each
target word in context to determine if senses were
lost or gained over time. Following the theory of
Hauer and Kondrak (2020), we posit that wordnet-
type sense inventories match the intuitions of the
annotators of the shared task data. Our approach
has the advantage of being interpretable, provid-
ing interesting insights into the nature of lexical
semantic change by identifying specific senses that
appear or disappear in texts over time.

Our systems are highly competitive. For phase
1, our system achieves 0.5731 correlation between
the ranked words and ground truth on the test set,
which would put it in third place, based on our own
evaluation performed after the submission deadline.
For phase 2, our system obtains F-score of 88% on
the development set, and 71% on the evaluation
set, which ranks it as second according to the main
metric.

2 Related Work

In the SemEval 2020 task for graded change dis-
covery, the CIRCE system performed the best
(Schlechtweg et al., 2020). The system ensem-
bles static and contextual embeddings. Static em-
beddings with Skip-Gram with Negative Sampling
(Mikolov et al., 2013) are obtained for each corpus.
These embeddings are then aligned using Orthogo-
nal Procrustes analysis (Schönemann, 1966), and
the Euclidean distance is found between aligned
embeddings. Contextual embeddings from the
masked language model BERT (Devlin et al., 2019)
are used to classify the time period of sentences, as
time specific features are useful to learn. Then, em-
beddings are extracted from the last hidden layer
for each target word. To obtain a distance, the Eu-
clidean distance is computed pairwise between the
embeddings from the two corpora and the distances
are averaged. The target words are then ranked for
both types of embeddings. Finally, the rankings are
combined by a weighted average to obtain the final
ranking.

We modify the CIRCE approach for our graded
change discovery system by using XLM-RoBERTa
(Conneau et al., 2020) to obtain contextual embed-

dings. XLM-RoBERTa is a multilingual masked
language model. It uses the same bidirectional
transformer architecture as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), and has
the same number of layers and size of layers as
RoBERTa. However, compared to BERT and
RoBERTa it has a larger vocabulary of 250,000
tokens, and employs the SentencePiece tokenizer
(Kudo and Richardson, 2018). Additionally, it is
trained on 100 languages, instead of just English
(Conneau et al., 2020).

Systems for binary change detection commonly
use embeddings for semantic representations, with
type embeddings often outperforming token em-
beddings (Schlechtweg et al., 2020). Some ap-
proaches ensemble models (Martinc et al., 2020;
Pömsl and Lyapin, 2020) or use a topic model
(Sarsfield and Tayyar Madabushi, 2020). Nulty
and Lillis (2020) detect change by considering the
relationship between nodes in a semantic network
graph. Orthogonal Procrustes analysis (Schöne-
mann, 1966) and vector initialization (Kim et al.,
2014) are techniques that can be used to align the
semantic representations. As a distance metric be-
tween embeddings, cosine and Euclidean distance
are commonly used.

Our approach based on applying WSD for binary
change detection is novel. A previous work has per-
formed word epoch disambiguation for determin-
ing changes in word usages overtime, but this task
predicts the time period (epoch) for instances (Mi-
halcea and Nastase, 2012). Some previous work
considers changes of senses overtime; however,
rather than WSD, they apply sense induction (Mi-
tra et al., 2014; Tahmasebi and Risse, 2017), topic
modelling (Lau et al., 2012), or Bayesian models
(Frermann and Lapata, 2016).

3 Methods

In this section, we describe our methods separately
for each of the two phases. Our code is available
for public use.1

3.1 Phase 1: Graded Change

We follow the approach implemented in CIRCE
(Pömsl and Lyapin, 2020), which has been shown
to perform well across a number of languages. We
use both static and contextual embeddings because
a combination of rankings from both embeddings

1https://github.com/sazzy4o/
ualberta-lscdiscovery
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outperforms the ranking from either. We rank target
words based on the distance between embeddings
of both corpora.

To obtain static embedding rankings, we use the
same methods as CIRCE for the following 3 steps.
First, we train static embeddings using Skip-Gram
with Negative Sampling (Mikolov et al., 2013) for
the lemmatized version of each corpus, and align
embeddings from both corpora. Second, we obtain
the Euclidean distance between the aligned embed-
dings. Finally, we rank the target words by the
Euclidean distance.

The contextual embeddings used in CIRCE per-
form poorly compared to the static embeddings.
We posit that this is because the time period pre-
diction task is not well aligned with predicting the
meaning of words. To address this, we first train a
XLM-RoBERTa (Conneau et al., 2020) model to
predict randomly masked words in the combined
corpus from both time periods. Second, we mask
out each instance of a target word, and use our
trained model to predict the masked word. From
this prediction, we extract the embedding from the
features corresponding to the masked token in the
last hidden layer outputs of the model. Third, we
compute the pairwise Euclidean distance between
each pair of target word instances from different
time periods. Finally, we rank the target words by
the mean distance for each target word.

We follow a similar procedure to CIRCE to ob-
tain the final ranking by ordering the target words
by a weighted combination of the static and contex-
tual rankings. However, instead of calculating the
weighting based on the accuracy of our contextual
model, we tune the weighting to maximize Spear-
man’s rank-order correlation on the development
set.

This approach is quite computationally expen-
sive since it requires training the XLM-RoBERTa
model. The model takes approximately 3-4 hours
using an NVIDIA GeForce RTX 3090 to train. Ad-
ditionally, it takes approximately 45 minutes to
obtain the embeddings for the 60 target words in
the test set. The static embeddings are significantly
faster to obtain, taking only 3 minutes with an Intel
Xeon W-2255 CPU.

3.2 Phase 2: Binary Change

We approach binary semantic change detection as
WSD. We implement our approach using AMuSE,
a user-friendly end-to-end neural WSD system of

Orlando et al. (2021), which incorporates the pre-
processing steps of tokenization, lemmatization,
and parts of speech (POS) tagging. AMuSE is
trained on manual annotations involving English
WordNet senses, but thanks to its use of the multi-
lingual XLM-RoBERTa embeddings, it is also ap-
plicable to other languages that are represented in
BabelNet. According to the Universality Principle
of Hauer and Kondrak (2020), there is a one-to-one
correspondence between concepts in different lan-
guages. We apply AMuSE via the REST API2 to
all sentences that contain the target words.

We depict our process in Figure 1. For each
word, we compute its sense frequency distributions
in both the old and modern corpora based on the
output of the WSD system. If a sense is found in
the modern corpus but is missing in the old cor-
pus (or vice versa), a change is deemed to have
occurred (label 1). Otherwise, a word has the same
set of senses identified in both the old and modern
corpus. For each sense, we compute the relative
probability change (pr) as the ratio between the
absolute probability difference, and the larger of
the two probabilities (Formula 1). The probability
of a sense for a target word from the new and old
corpora is denoted as p1 and p2, respectively.

pr =
|p1 − p2|

max(p1, p2)
(1)

The resulting value is compared to a threshold,
which we tune on the development data by maxi-
mizing F-score. A relative change greater than the
threshold (set at 0.65) for any of the word senses
indicates that a change occurred for the given word
(label 1). Otherwise, we conclude that there is no
change (label 0).

The definition of binary change detection sug-
gests that it may be sufficient to determine if the set
of senses for a target word remains the same from
the old to the modern corpus. We implemented this
approach after the submission deadline, and ob-
tained 78% F-score on the development set, which
is below the F-score of 88% obtained with our prin-
cipal method described above.

Additionally, we computed two other metrics for
phase 2 after the submission deadline: sense gain
and sense loss detection. First, the same method-
ology is applied for detecting change, as sense
gain/loss is only applicable when there is change.

2https://nlp.uniroma1.it/amuse-wsd/
api-documentation
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If change is due to the threshold, we compare if
the old or modern probability is greater for sense
loss/gain. In scenarios where a sense was missing
in either the old sense set or the new sense set, we
use the direction of change to detect sense gain/loss.
Otherwise, if none of the above scenarios apply, we
conclude that there is no sense gain/loss. A lemma
can be labelled as having both sense gain and loss.
Our approach allows for this by calculating the la-
bels separately, and searching through the senses
for a word until gain/loss is detected before assign-
ing the no change label.

We consider our approach for phase 2 as
lightweight. Although AMuSE uses XLM-
RoBERTa embeddings, we did not have to train
them. Approaches that rely on contextual embed-
dings, such as BERT, may be computationally too
expensive to run on all instances (Kurtyigit et al.,
2021). Given a few hundred sentences per target
word in either corpus, we can run AMuSE on all
instances, rather than just a sample. We did not use
GPU, and simply ran the script on an Intel Xeon
CPU E5-2650 v4. The run time for WSD was ap-
proximately a few hours for the development set
(20 words) and close to a day for the evaluation set
(60 words). WSD results were only computed once
and then stored.

Further, we highlight how our approaches for
both phases are multilingual. Static embeddings
can be trained on the given corpora, and XLM-
RoBERTa is multilingual by nature. In phase 2,
the AMuSE WSD system allows for state-of-the-
art neural WSD in 40 languages. This demon-
strates that challenges described by Tahmasebi et al.
(2021), such as having a translated corpus to train
WSD systems, may not always be the case.

4 Evaluation

We test our methods on the development set, and re-
port the results on the evaluation set. Some results
were obtained after the submission deadline.

4.1 Phase 1: Graded Change

We use the tokenized and lemmatized versions of
the corpora provided in the competition to obtain
contextual and static embeddings, respectively. We
use CIRCE’s implementation3 for static embed-
dings, as well as for combining the predictions
between models. We use the implementation of

3https://github.com/mpoemsl/circe

Dev Eval
P R F1 P R F1

Change 79 100 88 55 100 71
Sense Gain 71 100 83 33 93 49
Sense Loss 30 100 46 50 92 65

Table 1: Results for the binary change tasks (in %) on
the development and evaluation sets.

XLM-RoBERTa from the Hugging Face transform-
ers library (Wolf et al., 2020)4 for contextual em-
beddings. We initialize the weights of the model to
the xlm-roberta-large available with the transform-
ers library.5

For evaluation, we use Spearman’s rank-order
correlation coefficient (Bolboaca and Jäntschi,
2006) between our ranking and the provided gold
ranking. After tuning weights on the development
set, the results of our system are 0.8375 and 0.5731
on the development and evaluation set, respectively.
Our results are much better than CIRCE, which
achieves a correlation of only 0.1894 averaged over
three runs on the evaluation set. Only two submis-
sions to the shared task achieved a higher correla-
tion on the evaluation set.

After analysing the rankings in the development
set, we find that aguantar and descendiente are
incorrectly ranked by 7 and 8 positions respectively.
Both of these words have a relatively low frequency
in the modern corpus. In addition, descendiente
occurs in the old corpus both as a noun and as a
verb. All of the other words are within 6 positions
of their correct rank with the majority being 2 or
fewer positions from their correct rankings.

4.2 Phase 2: Binary Change

The results of our method are shown in Table 1.
According to the official results, the F-score of
71% on the evaluation set, which is the main metric
for binary change detection, ranks our system as
second in the competition. It is interesting to note
that our approach obtains 100% recall, whereas the
baseline provided by the organizers obtains 100%
precision on the development set, so whenever the
two models agree, their classification is correct. For
the optional tasks of sense gain/loss detection, we
calculated our results after the official submission
deadline. At the time of writing, our results for

4https://huggingface.co/docs/
transformers/model_doc/xlm-roberta

5https://huggingface.co/
xlm-roberta-large
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sense gain and loss detection would place third and
second, respectively.

According to our error analysis on the devel-
opment set, our system disagrees with the gold
annotation by identifying semantic change in the
following three words: descendiente, músculo, and
reforma. In each of these cases, new senses were
found by AMuSE in the modern corpus; in addition,
two senses appear to have been lost for reforma.
Some instances could be interpreted as genuine lost
senses. For example, one of the senses of the noun
reforma, defined in WordNet 3.0 (Miller, 1995)
as “rescuing from error and returning to a rightful
course” occurs in the old corpus in the following
context: no puedo enseñar a las niñas más que dos
cosas: la reforma de letra y la fábula mitológica.
This suggests that WSD could be an effective ap-
proach for identifying changes in sense inventories.

Further inspection reveals that some instances of
a spurious new sense identification may have been
caused by incorrect POS tags assigned by AMuSE.
The gold annotations seem to consistently assign
a single POS tag to each target word. We experi-
mented with a modified approach to binary change
detection, which only considers the occurrences
in which the assigned POS tag matches the most
likely tag for a given lemma in BabelNet (Navigli
and Ponzetto, 2010), but the results were slightly
lower than for our main method.

5 Conclusion

We presented systems for both graded and binary
change discovery in the context of the shared task
on Lexical Semantic Change Discovery in Span-
ish. For the former, we proposed a system based
on CIRCE, with the modification of tuning the
weights between the static and contextual embed-
dings, and training the model to predict a masked
token rather than the time period. For the latter, we
demonstrated that a WSD system can be effective
in detecting word meaning changes. Future work
could include combining rankings from more than
two different models for graded LSC discovery. We
would also like to investigate if either of our two
methods could be applied to the other of the two
subtasks.
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