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Abstract
Abstract Meaning Representation (AMR) is a semantic graph framework which inadequately represent a number of important
semantic features including number, (in)definiteness, quantifiers, and intensional contexts. Several proposals have been
made to improve the representational adequacy of AMR by enriching its graph structure. However, these modifications are
rarely added to existing AMR corpora due to the labor costs associated with manual annotation. In this paper, we develop
an automated annotation tool which algorithmically enriches AMR graphs to better represent number, (in)definite articles,
quantificational determiners, and intensional arguments. We compare our automatically produced annotations to gold-standard
manual annotations and show that our automatic annotator achieves impressive results. All code for this paper, including our
automatic annotation tool, is publicly available at https://github.com/emorynlp/EnrichedAMR/
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1. Introduction
Abstract Meaning Representation (AMR) is a seman-
tic graph framework that represents natural language
sentences in directed, acyclic graphs (Banarescu et al.,
2013). Nodes represent concepts, and labeled edges rep-
resent relations between concepts (1-b). AMRs are most
commonly written in PENMAN format (Matthiessen
and Bateman, 1991), as shown in (1-c).

(1) a. The boy wants the girl to believe him.

b. want-01

boy
believe-01

girl

ARG0

ARG1

ARG0

ARG1

c. (w/want-01
:ARG0(b/boy)
:ARG1(b2/believe-01

:ARG0(g/girl)
:ARG1b))

The primary function of AMR is to capture argument
structure. Features of the graph need not be anchored to
grammatical features of the natural language sentence.
This has the advantage of allowing succinct representa-
tion of non-compositional aspects of meaning. A major
disadvantage, however, is that it can give rise to inter-
annotator disagreement (Bender et al., 2015), as well as
making the task of parsing harder (Buys and Blunsom,
2017; Lin and Xue, 2019; Oepen et al., 2019; Oepen
et al., 2020). Moreover, evidence show that more ex-
plicit grammatical information might improve AMR
parsing performance. For example, bridging the gap
between natural language and AMR, via preprocess-

ing with an Elementary Dependency Structures (EDS)
(Oepen and Lønning, 2006) parser, has been shown to
improve AMR parsing results (Shou and Lin, 2021).
In addition to being abstract, AMR is under-specified
with respect to a number of important semantic fea-
tures. A consequence of this design choice is that AMR
introduces ambiguity which is absent from the source
sentence. For instance, the graph depicted in (1-b)/(1-c)
is also the representation for (i) ‘a boy wanted girls
to have believed him’, (ii) ‘the boys will want a girl
to believe them’, etc. This radical under-specification
can be problematic for NLU tasks beyond identifying
argument structure.
In this paper, we report results from our Automatic (en-
riched) AMR Annotator, A3. In section 2, we provide
a background on existing approaches to improving the
expressive capacity and representational adequacy of
AMR. In section 3, we outline the proposed enrichments
to be made by A3. In section 4, we describe how the
automatic annotator enriches existing graph structures,
starting with the base cases before discussing more chal-
lenging constructions which arise as a result of AMR’s
abstraction from grammatical form. In section 5 we re-
port two annotation experiments. In the first experiment,
we calculate Inter-Annotator Agreement (IAA) scores
for gold-standard manual annotations, demonstrating
the reliability of the enrichment scheme. In the second,
we compare the output of A3 to manually produced an-
notations. Section 6 provides a comprehensive analysis
of error types produced by A3. Finally, in section 7,
we discuss implications of the present approach on data
production, before concluding in section 8.

2. Related Work
There has been a concerted effort towards improving the
representational adequacy of AMR, as well as its recent

https://github.com/emorynlp/EnrichedAMR/
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Translation Richer Graph Structure
Artzi et al. (2015) (coreference) Bonial et al. (2018) (comparatives)
Bos (2016) (quantifier scope) Donatelli et al. (2018) (tense and aspect)
Stabler (2017) (number, determiners) Donatelli et al. (2019) (tense and aspect)
Lai et al. (2020) (quantifier scope) Pustejovsky et al. (2019) (quantifier scope)
Williamson et al. (2021) (Intensionality) Bonial et al. (2020) (speech acts)

Bos (2020) (quantifier scope)
Van Gysel et al. (2021) (quantifier scope)

Table 1: Approaches to improving the representational adequacy of AMR

offspring, Uniform Meaning Representation (UMR)
(Van Gysel et al., 2021). This strand of research en-
deavors to improve the expressive power of AMR either
in terms of enriching its graphical structure (Bonial et
al., 2018; Donatelli et al., 2018; Donatelli et al., 2019;
Pustejovsky et al., 2019; Bonial et al., 2020; Bos, 2020;
Van Gysel et al., 2021) or by adding information during
a subsequent translation step into a logical form (LF) in
first-order logic or lambda-calculus (Artzi et al., 2015;
Bos, 2016; Stabler, 2017; Lai et al., 2020; Williamson
et al., 2021). Table 1 lists the phenomena addressed in
these representative works.
Both of these approaches have their own merits. On the
one hand, developing a richer graph structure allows us
to directly represent meaning in the AMRs. However,
revision of existing resources, such as the AMR 3.0 cor-
pus (Knight et al., 2020), is costly and time-consuming.
Moreover, unless the resulting graph structure can be
mapped to a coherent model theoretical semantics, the
enriched graph will not be any more representationally
adequate than the original structure. On the other hand,
making use of a translation function with minimal revi-
sion to the graphical structure allows us to work with
existing corpora after translation into symbolic logical.
However, we would ultimately like to work with AMR
graphs directly, avoiding the need for translation into
a logical language such as lambda calculus which can
often be cumbersome for the purposes of computation.
For these reasons, we take enriching the graph structure
to be the ultimate goal, with the caveat that the graphs
should have a model-theoretic semantic interpretation
with as few ad-hoc interpretation rules as possible.
Despite various theoretical works on enriching AMR’s
graphical structure, there are no large-scale annotated
corpora which implement these design features. The
gold standard AMR 3.0 corpus (Knight et al., 2020)
remains the major resource for parser training and eval-
uation. Considering the size of the AMR 3.0 corpus
and the extensive cost for manual annotation, there is a
clear need for efficient automatic annotation methods to
augment the pre-existing data. The challenge, therefore,
is to design graph structure which is not only suitably
expressive but also tractable for automatic annotation.
While some previous work has focused on classifying
AMR labels for natural language sentences (Chen et
al., 2021), there has been no attempt to systematically
add these labels to the graph structure. Enriching AMR

graphs requires additional steps in mapping the semantic
features from sentence tokens to the abstract (or un-
anchored) graphs. The methodology of this paper is
inspired by Chen et al. (2021), who introduce a rule-
based classifier for labeling aspect based on the UMR
guidelines. The classifier uses part-of-speech (POS)
tagging and lexical frames such VerbNet (Kipper et al.,
2002; Kipper, 2005). It takes a sentence and returns a
list of events labeled with aspectual information. Like
Chen et al. (2021), we develop a rule-based classifier.
However, our classifier performs the additional step of
fitting the labels onto the corresponding AMR graph.
In this paper, we focus on the representation of gram-
matical number (singular/plural), (in)definite articles,
quantifiers, and intensional arguments, all of which can
provide important quantificational and referential cues
for semantic scope, coreference resolution, and natural
language inference tasks.

3. Enriched Graph Structure
In this section, we outline the enriched graph structure
adopted in the present study. Here, we describe simple
cases for each feature, reserving discussion of excep-
tional cases for section 4.5.

3.1. Representation of Number
In many cases, number marking adds important infor-
mation because it is the only indicator of quantity. Even
for noun phrases with a quantificational determiner, plu-
rality is often informative. For example, the two cases
in (2) can be differentiated only if plurality is marked.

(2) a. Some boys painted the wall.
b. Some boy painted the wall.

As such, plurality should ideally be represented in AMR
to avoid the introduction of unwanted ambiguity. Sta-
bler (2017) represents both plural and singular nouns
by appending a marker to the corresponding concept
matching the noun’s grammatical number, as in (3).

(3) a. The boy wants to go to the museums.
b. (w/want-01

:ARG0(b/boy.sg)
:ARG1(g/go-01

:ARG0b
:ARG1(m/museum.pl)))
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However, this exact implementation is potentially prob-
lematic for a few reasons. Firstly, it is redundant to
annotate both singular and plural explicitly. Instead,
we can leave singular as the unmarked form, marking
only plurals. Secondly, it is not uncommon for plural
nouns to be represented by a predicate sense (e.g., ‘the
attempts’ ⇒ attempt-01.pl). However, most eval-
uation and processing scripts will be unable to process
this notation since they rely on regex patterns to detect
predicate senses.
We propose instead to add number as an additional at-
tribute introduced by a :number role. We also do not
abbreviate the marking, to better exploit the familiarity
of AMR parsers built on pre-trained language models
with natural language descriptions such as plural as
opposed to the abbreviated .sg and .pl.

(4) Enriched AMR: Number
a. The boy wants to go to the museums.
b. (w/want-01

:ARG0(b/boy)
:ARG1(g/go-01

:ARG0b
:ARG1(m/museum

:number plural)))

This representation is also able to represent dual num-
ber marking, present in languages such as Slovene and
Hebrew, with an additional attribute dual.

3.2. Representation of Definiteness
Definite and indefinite articles convey information
which is useful for coreference resolution. While in-
definite articles occasionally express quantity informa-
tion (e.g., ‘They could buy everyone a house’), definite
and indefinite articles are typically referential. To avoid
confounding the role of articles and quantificational de-
terminers, we introduce a new :definite role with
the attribute + for definite and - for indefinite articles,
as in (5).

(5) Enriched AMR: Articles
a. The boy gave a girl some cookies.
b. (g/give-01

:ARG0(b/boy
:definite+)

:ARG1(c/cookie
:quant(s/some
:number plural))

:ARG2(g/girl
:definite-))

3.3. Representation of Quantifiers
The majority of work on quantifiers in AMR treats them
as constants as opposed to concepts (Bos, 2016; Stabler,
2017; Lai et al., 2020; Williamson et al., 2021). As
such, we aim to replace quantificational arguments of a
:quant role with a quantificational constant. It is also
common in existing corpora to see quantifiers annotated

using the :mod role, in which case we replace it with
:quant to maintain consistency, as in (6).

(6) Enriched AMR: Quantifiers I
a. Every dog
b. (d/dog

:mod(e/every))
c. (d/dog

:quant every)

Unlike Bos (2016) and (Lai et al., 2020), we do not
conflate universal quantifiers such as every, all, and
each, as these may vary in distributivity. Information
which could be useful for downstream NLI tasks.
Next, AMR represents generalized quantifiers such as
someone, somebody, something, everyone, everybody,
everything, no one, nobody, and nothing as atomic con-
cepts (7-b). However, this representation obscures the
quantificational force of these noun phrases, so we de-
compose them as in (7-c).

(7) Enriched AMR: Quantifiers II
a. Everyone
b. (e/everyone)
c. (p/person

:quant every)

We do not take a stance on whether or how to represent
quantifier scope in the AMR graph structure. Unlike
with the previous semantic features, if AMRs are left
underspecified for scope, no information is lost since the
corresponding natural language sentence is also scopally
ambiguous. Provided there is some independent mecha-
nism of scope taking, AMR can remain underspecified
for scope as in Minimal Recursion Semantics Copestake
et al. (2005), Hole Semantics Blackburn and Bos (2005),
or Glue Semantics Asudeh and Crouch (2002), without
loss of information. The scope of quantifier phrases
could either be represented in an additional scope node
layer (Pustejovsky et al., 2019; Van Gysel et al., 2021)
or could be generated deterministically and filtered (Sta-
bler, 2017). This could be done either manually or by
training a parser on a large scope-disambiguated corpus.
Unfortunately, the several existing scope-disambiguated
corpora are either too small in size for robust machine
learning and are not representative of complex scope
interactions (Higgins and Sadock, 2003; Andrew and
MacCartney, 2004; Srinivasan and Yates, 2009; Man-
shadi et al., 2011), or are not yet publicly available
(Bunt, 2020). In anticipation of developments on this
front, our changes to the representation of quantifier
phrases remains flexible.

3.4. Representation of Intensionality
Finally, Crouch and Kalouli (2018) note that AMR is
unable to represent non-veridical environments. For
example, the following AMR will give rise to the infer-
ences that there is a girl, and that she is sick.

(8) a. The boy believes a girl is sick.



163

b. (b/believe-01
:ARG0(b2/boy)
:ARG1(s/sick-05

:ARG1(g/girl)))

However, these inferences are not valid given the inten-
sional nature of the attitude verb ‘believe’. To remedy
this, Williamson et al. (2021) propose the addition of a
:content role which is interpreted as an intensional
operator responsible for representing the scope of modal
predicates such as attitude verbs.

(9) J(x/P:contentA)K =
λw.∃x. P (x) ∧ content(x)(λw′. JAK(w′)))

We adopt Williamson et al. (2021)’s proposal to replace
numbered arguments with the :content role where
appropriate.

(10) Enriched AMR: Intensionality
a. The boy believes a girl is sick.
b. (b/believe-01

:ARG0(b2/boy)
:content(s/sick-05

:ARG1(g/girl)))

Following the scheme just described, the sentence in
(11-a) is represented as in (11-b).

(11) Enriched AMR
a. A boy believes that the girls gave everyone

some cookies.
b. (b/believe-01

:ARG0(b2/boy
:definite-)

:content(g/give-01
:ARG1(g2/girl

:definite+)
:ARG1(c/cookie

:quant some
:number plural)

:ARG2(p/person
:quant every)))

4. The Automatic Annotator
Our automatic annotator, A3 uses a combination of cues
from the natural language sentence as well as its AMR
in order to classify and map the target labels to the
graph using the PENMAN parser (Goodman, 2020).1

In sections 4.1-4.4, we describe the simpler cases of
classification and mapping, before describing some of
the numerous challenges in section 4.5.

4.1. Annotating Number
A3 searches for tokens identified by the Stanford
CoreNLP parser2 (Manning et al., 2014) as having the
plural noun part-of-speech (POS) tag. The plural noun
is then mapped to the corresponding alignment in the

1https://github.com/goodmami/penman
2https://github.com/stanfordnlp/CoreNLP

AMR graph and the plural number attribute is ap-
pended to the triple. However, several abstract structures
of AMR require special treatment. These are discussed
in section 4.5.

4.2. Annotating Definiteness
Articles are identified through using a POS tag match.
A string match for definite (‘the’) and indefinite (‘a/an’)
articles is then used for tokens that are classified with a
DET tag. A3 then locates the span of head noun using
the Stanford CoreNLP constituency parser (Manning
et al., 2014) which was chosen due to it’s performance,
after experimenting with different constituency parsers
including ELIT (He et al., 2021) and the Berkely Neural
Parser (Kitaev and Klein, 2018). Finally, an appropriate
:definite attribute is attached to the concept corre-
sponding to the span of the head noun.

4.3. Annotating Quantifiers
The conversion for quantifiers utilize cues from the
AMR graph alone and contains two steps. First, we
identify quantifier concepts which are arguments of ei-
ther a :quant or :mod role, before converting the
quantificational concept to a constant. The second step
decomposes generalized quantifiers by separating the
concept and quantifier through a string match. The in-
stance assignment for the original generalized quantifier
is modified to the corresponding concept and the quan-
tifier is attached to it as the attribute of the :quant
role.

4.4. Annotating Intensionality
A3 identifies intensionality through relevant lists of
verbs and constituency structures. In most cases, appro-
priate uses of the :content role are identified using
the MegaVeridicality dataset (White et al., 2018). Finite
clauses are identified using MegaVeridicality version 1
(White and Rawlins, 2018), and non-finite clauses using
version 2 (White et al., 2018). A3 loops through the
lemmatized tokens and searches for lemmas that are in
the MegaVeridicality dataset. We compared the NLTK
(Bird and Loper, 2004) and LemmInflect3 lemmatizer
and found that LemmInflect performs better. An inten-
sional context is identified by checking if the matched
verb is followed by a sentential complement, signified
by a corresponding verb phrase constituent containing
an SBAR or S label.
For speech verbs such as ‘say’ or ‘report’, the sentence
structure is not correctly identified by the parser when
the complement clause has been fronted (e.g. ‘The stock
price doubled yesterday, as reported by the newspaper’),
which is not uncommon in the dataset, especially since
AMR is sourced from news and broadcast data. To deal
with these cases, A3 instead looks for sentences where
the verb is not followed by a noun phrase and annotates
the object argument with a :content role.

3https://github.com/bjascob/LemmInflect

https://github.com/goodmami/penman
https://github.com/stanfordnlp/CoreNLP
https://github.com/bjascob/LemmInflect
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4.5. Mapping Difficulties
Here, we list some non-canonical cases of each phe-
nomena which are handled by A3, but which require
additional mapping instructions. We reserve discussion
of cases which are not presently handled by our annota-
tor to section 6.

4.5.1. Relational and Agentive/Patient Nouns
When enriching AMR with grammatical number and
(in)definiteness, there are numerous non-trivial mapping
problems posed by AMR’s abstraction away from sur-
face form. Most notably, AMR opts to express concepts
using disambiguated predicate senses from PropBank
(Kingsbury and Palmer, 2002) wherever possible. For
instance, AMR uses a person concept to represent
agentive nouns (12) and patient nouns (13).

(12) a. Teacher
b. (p/person

:ARG0-of(t/teach-01))

(13) a. Employee
b. (p/person

:ARG1-of(e/employ-01))

Other deverbal nouns may be represented through the
use of an implicit thing argument.

(14) a. An apology
b. (t/thing

:ARG3-of(a/apologize-01))

Finally, AMR represents relational nouns using spe-
cialized concepts such as have-rel-role-91 or
have-org-role-91.

(15) a. My uncles
b. (p/person

:ARG0-of(h/have-rel-role-91
:ARG1(u/uncle)
:ARG2(i/i)))

These design choices create obvious problems for a
naive mapping from grammatical features onto graph
structure. In each case, we want to mark the root
node of each of these (sub)-trees with a plural at-
tribute, :definite +/- attribute, or :quant con-
stant. However, the concept which most transparently
corresponds to the surface string is not the root, for ex-
ample uncle in (15-b). To solve this, A3 tracks back
through the directed edges of the sub-graph to find the
root node, before marking it with the relevant attribute.

4.5.2. Name, Date, and Quantity Entities
We also observe exceptions for plural and definite mark-
ings for name and date-entity concepts, as well as
X-quantity concepts. The X-quantity concept
is typically introduced as a :unit and explicit quantity
information is provided in the form of a real number.
Similarly, for the case of name and date-entity
concepts, the addition of a :definite or :number
attribute is redundant.

(16) a. Five dollars
b. (m/monetary-quantity

:quant5
:unit(d/dollar))

4.5.3. Intensional Transitive Verbs
In addition to attitude predicates present in the
MegaVeridicality dataset, A3 is designed to map the
numbered arguments of several Intensional Transitive
Verbs (ITVs) to a :content role. ITVs are verbs that
combine with a nominal direct object, but which do not
permit an inference to the existence of the direct object
in the world of evaluation (Schwarz, 2020). This can be
seen in the following examples, which are semantically
coherent despite the non-existence of unicorns in the
actual world.

(17) I {wanted/expected/desired/looked for} a unicorn.

Since object arguments of ITVs are intensional regard-
less of whether their complement is a noun phrase or a
sentential complement, A3 converts the object argument
of these predicates to a :content role. This mapping
is defined for a non-exhaustive dictionary of the most
common intensional transitive verbs (e.g. ‘want’) and
their intensional numbered argument as defined in their
PropBank argument structure (Palmer et al., 2004).

4.5.4. Other Intensional Operators
Besides attitude predicates and ITVs, A3 is designed to
handle modal auxiliaries, modal verbs, and intensional
raising predicates. Consequently, A3 uniformly con-
verts specific numbered arguments of modal predicate
senses onto a :content role. These are summarized
in Table 2.

Lexical item Predicate Sense Argument
need need-01 :ARG1
can, might, could possible-01 :ARG1
must (deontic) obligate-01 :ARG2
must (epistemic) infer-01 :ARG1
can capable-01 :ARG2
seem seem-01 :ARG1
allow allow-01 :ARG1
permit permit-01 :ARG1
should recommend-01 :ARG14

Table 2: Numbered arguments of modal concepts which
are converted to :content.

5. Annotation Experiments
In this section, we report the methodology and results
of two annotation experiments. In the first experiment,
we measure Inter-Annotator Agreement (IAA) on the

4A3 converts :ARG1 of recommend-01 to :content
specifically when aligned with ‘should’, as this role may
also used for non-intensional arguments of ‘recommend’ e.g.,

‘I recommend this drink’.
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enrichment guidelines by doubly annotating 66 PEN-
MAN graphs selected from the AMR 3.0 corpus. In the
second experiment, we singly annotate an additional 60
graphs and compare the 126 manually annotated graphs
to the output of our automatic annotation tool.

5.1. Method
To build our dataset, we first select up to 8 PENMAN
graphs from each of the 12 datasets making up the (un-
split) AMR 3.0 corpus (excluding the guidelines). To
ensure that the graphs contain relevant features, we re-
strict our dataset to graphs associated with a sentence
of good-length (between 30 and 40 tokens), totalling
96 AMR graphs. We then select 30 additional graphs,
from the same corpus (including the guidelines), which
contain the relevant quantificational determiners or gen-
eralized quantifiers.
For the first experiment, we manually enrich 56 graphs
from the good-length dataset and 10 graphs from the
quantifier dataset for grammatical number, (in)definite
articles, quantifiers, and the :content role. We com-
pare IAA between the gold standard annotation by cal-
culating F1 scores for the features of interest.
For the second experiment, we singly annotate the re-
maining 60 graphs and adjudicate among the doubly an-
notated graphs, creating a dataset of 126 gold-standard
human annotations. We then processes the same 126
graphs using A3 and we compare the output with our
gold-standard annotations.
All annotations were carried out by the first and second
authors using StreamSide5 an open-source annotation
tool for producing graph-based meaning representations
(Choi and Williamson, 2021).

5.2. Manual Annotation Results
In the first experiment, two experienced annotators dou-
bly annotate 56 graphs from our good-length dataset and
a further 10 graphs from our quantifier dataset. The stan-
dard agreement metric for AMR graphs is the Smatch
score of Cai and Knight (2013). However, this metric
compares similarity between entire graphs. Calculat-
ing this score on our enriched graphs will give inflated
scores due to the underlying similarity of the graphs
used as the foundation for our annotations. Conse-
quently, we present specific F1 scores calculated for
each of the relevant features covered by the guidelines.
Table 3 presents the F1 scores and the statistics for the
66 double annotations. This dataset contains around 1.7
grammatical number and article each per graph and one
quantifier and intensional role per 2-3 graphs. The F1
scores range from 90.05 for (in)definite articles to 97.35
for the marking of plurals, demonstrating the robustness
of our annotation guidelines for human annotation. The
IAA for intensionality is surprisingly high (91.43) given
the increased difficulty associated with correctly identi-
fying intensional contexts. Unlike with number, articles,
and quantifiers, there are a wide range of lexical items

5https://github.com/emorynlp/StreamSide

responsible for introducing a :content argument, as
attitude predicates are a relatively open-class.

Task F1 Count Per-Annotation
Number 97.35 114 1.73
Articles 90.05 113 1.71
Quantifiers 95.45 20 0.30
Intensionality 91.43 53 0.80
All 93.52 300 4.55

Table 3: Inter-annotator agreement and count of enrich-
ment types in the 66 doubly annotated AMR graphs.

5.3. Automatic Annotation Results
In the second experiment, we compare the output of the
automatic annotator, A3, to 126 singly annotated gold-
standard annotations. Average count per annotation
for each feature is provided in Table 4. The frequent
occurrence of these semantic features highlight the need
for representing them in meaning representations.

Task Count Per-Annotation
Number (Plural) 173 1.37
Articles 214 1.70
Quantifiers 41 0.33
Intensionality 102 0.81
All 530 4.21

Table 4: Count of enrichment types in the 126 gold-
standard annotations.

Table 5 presents the precision, recall, and F1 scores for
the automatic annotator.

Task FP FN Precision Recall F1
Number 14 17 91.76 90.17 90.96
Articles 8 34 95.72 84.04 89.50
Quantifiers 2 2 96.00 96.00 96.00
Intensionality 15 24 84.54 77.36 80.79
All 39 77 92.26 85.79 88.91

Table 5: The performance of A3 on 126 gold standard
AMR graphs.

For the 173 plurals identified in the gold annotations,
A3 failed to identify 17 of them. It also labeled 14 extra
cases with plural that are not marked in the gold annota-
tions, yielding an F1 of 90.96. The sources of error orig-
inated mostly from incorrect alignment information and
the parser’s failure to identify the correct POS tags (see
Table 6 in section 6). The F1 score for articles is 89.50,
with high precision (95.72) and lower recall (84.04). A3

failed to attach 34 out of the 214 (in)definite articles
to the AMR graph and inserted 8 additional articles.
Potential causes for the false negatives include failure
to identify the correct head noun, incorrect alignment
of the head noun, missing alignment of the head noun
that disables attachment of articles, as well as incorrect
article location due to mapping problems mentioned in

https://github.com/emorynlp/StreamSide
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section 4.5. The performance for quantifiers is the best
among the features and scores highly for both precision
and recall. Finally, A3 achieves an F1 score of 80.79
for intensionality. While this score is lower than that of
the other features, it is nonetheless quite high consider-
ing the degree of complexity of this classification task.
Overall, the results demonstrate the efficacy of A3 in
enriching AMR graphs for the targeted features.

6. Analysis of Errors
In this section, we report on the errors made by A3.
These limitations stem from a number of issues. Among
them are: imperfect annotation or alignment, limita-
tions of the parsers, abstractness of the AMR graph,
non-canonical or ungrammatical syntax, discrepancies
between annotator judgements and the verb list, and
inadequacies of certain PropBank argument structures.
A percentage of error types made by A3 is provided in
Table 6, with specific examples provided in the text.
Limitations of the POS tagger caused A3 to occasion-
ally fail to label irregular plurals. For example, the
tool correctly marks person for plural when aligned
with people, but it fails to mark phenomenon for plu-
ral when aligned with phenomena. Moreover, math-
ematics is marked as plural by the automatic anno-
tator even though it is associated with the concept
mathematics. Lastly, the POS tagger fails to iden-
tify the head noun in ‘the welfare rolls’ since ‘rolls’ is
treated as a verb instead of a plural noun.
The constituency parser struggles with dialogue when
it features an interruption with a filler word, such as

‘umm’ or ‘err’, producing a disjoint constituency tree.
It may also struggle to correctly resolve syntactically
ambiguous sentences. Lastly, there are a number of
ungrammatical sentences in the dataset (e.g., ‘For the
time before everything is officially opened, opened, all ,
no cars can enter unless they have special permission’)
which lead to parsing errors.
The abstract and un-anchored nature of AMR can some-
times present difficulties for A3 to map tokens to the
corresponding concepts in the graph. For instance, ‘ac-
cording to’ is represented with the predicate say-01
in AMR due to their similarity in meaning, though the
token ‘say’ does not appear anywhere in the sentence.
Another example occurs with the noun phrase ‘two men,
deadly enemies to each other’ which is represented
with two separate man concepts and thus should not
be marked as plural in the graph.
Another source of error is discrepancies between the
MegaVeridicality dataset and human annotator judg-
ments about whether to mark an argument as intensional.
For instance, the MegaVereridicality dataset contains
some aspectual verbs which are not intensional such as

‘continue’.
Finally, certain ITVs have overloaded predicate senses
in PropBank. For example, the ITV ‘look for’ has an
intensional object position which is annotated as :ARG1
of look-01. However, the same numbered argument is

used to annotate the non-intensional object argument of
‘look at’, as shown in the description tag of its PropBank
argument structure (18).

(18) look.01
<role descr="thing looked at
or for or on" f="gol" n="1">

7. Discussion
While the agreement scores of A3 are impressive, there
is nonetheless a gap in quality between the annotation
tool’s output and our manual annotations. Nevertheless,
we expect this gap to inevitably shrink with the devel-
opment of better parsers, and several of the remaining
problems can be solved through the production of hand-
written mapping dictionaries, similar to the ones we
created for modal auxiliaries and common ITVs but at a
larger scale.
Given its baseline performance A3 can already be used
to enrich a large number of graphs, which can then
be quality checked by trained human annotators. This
semi-automated approach affords a means of producing
gold-standard meaning representations at a rate which
far surpasses creating manual annotations from scratch
(Oepen and Lønning, 2006; Abzianidze et al., 2017;
Abzianidze and Bos, 2019).

8. Conclusion
Recent work on improving the representational ade-
quacy of AMR has focused on enriching its graph struc-
ture. In this paper, we presented an automatic AMR
annotation tool, A3, designed to enrich AMR graphs to
better represent a number of important semantic features
including number, (in)indefiniteness, quantificational
determiners, and intensional arguments. This task in-
volves correctly identifying an appropriate label, before
mapping it onto an existing AMR graph. This task is
often non-trivial due to the abstract, or un-anchored,
nature of AMR graphs. Our tool thus utilizes a number
of cues provided by several state of the art parsers.
To demonstrate the effectiveness of the enrichment
scheme as well as that of A3, we presented two an-
notation experiments. The first involves manually pro-
ducing doubly annotated graphs which are enriched for
the semantic features mentioned above. IAA was calcu-
lated for specific labels, showing a high rate of agree-
ment. Secondly, we compared the output of A3 to gold-
standard manual annotations. The F1 scores of the au-
tomatic annotator are close to that of human annotators
except when identifying intensional arguments which is
by far the hardest classification task. It is our hope that
the present paper encourages further efforts to automati-
cally augment existing AMR corpora, with the aim of
producing large corpora of representationally adequate
Abstract Meaning Representations. All code for this
paper is publicly available on our repository at https:
//github.com/emorynlp/EnrichedAMR/.

https://github.com/emorynlp/EnrichedAMR/
https://github.com/emorynlp/EnrichedAMR/
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Source of Error Plural Article Quantifier Intensionality
Incorrect or missing alignment 32.26% 19.05% 2.56%
POS tagger fails to identify correct tag 48.39% 16.67%
Constituency parser error 50.00% 33.33%
Ambiguous/ungrammatical syntax 25.00%
Abstractness of AMR graph 19.35% 14.28% 75.00% 30.77%
Verb list discrepancies 23.08%
Overloaded predicate sense for ITV 10.26%
Total 100% 100% 100% 100%

Table 6: Percentages of error types made by A3
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