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Abstract

We introduce a new bi-dimensional classifica-
tion scheme for political bias. In particular, we
collaborate with political scientists and iden-
tify two important aspects: cultural and socio-
economic positions. Using a dataset of tweets
by German politicians, we show that the new
scheme draws more distinctive boundaries that
are easier to model for machine learning clas-
sifiers (F1 scores: 0.92 and 0.86), compared
to one-dimensional approaches. We investi-
gate the validity by applying the new classi-
fiers to the whole dataset, including previously
unseen data from other parties. Additional ex-
periments highlight the importance of dataset
size and balance, as well as the superior per-
formance of transformer language models as
opposed to older methods. Finally, an exten-
sive error analysis confirms our hypothesis that
lexical overlap, in combination with high atten-
tion values, is a reliable empirical predictor of
misclassification for political bias.

1 Introduction

Political radicalization is linked to a society’s sense
of insecurity (Bartoszewicz, 2016). Such a feel-
ing may arise especially in times of crisis, such
as financial crashes, large migration movements,
or pandemics. In this setting, citizens’ trust in a
country’s government or into the political system
more generally can decline quickly (Easton, 1975;
Dostal, 2015), leading to further radicalization.

The effects of such a development are visible
not only in terms of elections (Funke et al., 2016;
Recuero et al., 2020) and media coverage (Bender
et al., 2021), but also in general public political
discourse and corresponding language use: Politi-
cally biased texts tend to exhibit a wording that is
different from their neutral counterparts (Krestel
et al., 2012; Fairbanks et al., 2018). At times, this
lexical deviation is hard to detect because the texts

are positioned in seemingly neutral environments
like technological or scientific sections of a news-
paper (Kang and Yang, 2022). Furthermore, there
are additional factors beyond wording: The filter-
ing and selection of information to be presented
in a given spot is a bias in its own right, but can
directly affect or reflect political discourse: Pre-
senting quotes by famous hyperpartisan politicians
often serves as a subtle disguise for an author’s own
political motives (Fan et al., 2019). Besides, the
media coverage of political parties or crime-related
ethnical aspects is indicative of the current govern-
ment, the popularity of specific parties (Lazaridou
and Krestel, 2016) and the trust in the executive’s
impartiality (Pfeiffer et al., 2018).

By training language models on such tenden-
tious texts, we tend to reproduce and spread their
bias (Bender et al., 2021), even if the resulting mod-
els are used in rather neutral contexts (Liu et al.,
2021). Since political bias (PB) is closely related to
credibility (Su et al., 2020; Vargas et al., 2020; Ak-
senov et al., 2021; DeVerna et al., 2021; Saltz et al.,
2021) and trustworthiness (Viviani and Pasi, 2017),
such language models will suffer from reduced
acceptance and utility unless we can reasonably
detect and decrease their bias. The same applies
to traditional media content: There is no way to
holistically analyze media credibility without con-
sidering the PB of respective outlets. Thus, we
make the following contributions:

• We introduce a new classification scheme for
PB adapted to recent insights of political sci-
ence.

• Using the Polly corpus (De Smedt and Jaki,
2018), a dataset of German tweets, we train
and evaluate transformer-based classifiers
with our new scheme. Polly corpus does not
provide the labels with respect to political di-
mension; instead provides a political party
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label. Although there are large annotated
datasets incorporating fine-grained schemes
for parliament speeches and interviews (Blätte
and Blessing, 2018; Rauh and Schwalbach,
2020), there are none for social media such
as Twitter. Hence we use party affiliations
as a proxy for the dimensions. We represent
the extremes of cultural dimension with polit-
ical parties Grüne and AfD and the extremes
of socio-economic dimension with Die Linke
and FDP.

• Using the classifiers, we test four hypotheses:

1. The current one-dimensional schemes
are overly simplistic models of PB. Inte-
grating socio-economic and cultural di-
mensions of political conflict is more ef-
fective for classifying PB.

2. Adding more data and balancing the
dataset leads to better PB classification
results.

3. Misclassified texts often exhibit lexical
overlap with the opposing end of the re-
spective dimension.

4. In misclassified texts, words from the
opposing end of the respective dimen-
sion receive high attention from the trans-
former model.

We make our source code1 and models2 publicly
available. In the following, we describe our con-
ceptual model of PB, the annotations in the dataset
and the architecture of our classifiers, as well as
their training and the corresponding evaluation.

2 Related Work

Previous machine learning approaches to PB detec-
tion have mostly conceptualized it as binary text
classification: Given an input text, the algorithm
assigns a label indicating the presence or absence
of PB. Similarly, the binary choice can also be used
to model the direction of bias on continuous scales
(Iyyer et al., 2014; Fairbanks et al., 2018; Liu et al.,
2021), moving the desired outputs closer to semi-
nal applications of text-based ideological scaling
in the political sciences (Laver et al., 2003; Slapin
and Proksch, 2008; Rheault and Cochrane, 2020;
Sältzer, 2022).

1https://github.com/konstantinschulz/
political-bias-classification

2https://live.european-language-grid.eu/catalogue/
tool-service/18689

As in many cases of language modeling, binary
decisions are easy to set up and learn. On the
downside, they do not properly reflect all nuances
of complex concepts like PB. That is why some
approaches use more fine-grained classification
schemes: They extend the left-right spectrum to
incorporate more intermediate positions (Aksenov
et al., 2021) or reuse datasets that originally pro-
ceeded this way (Fairbanks et al., 2018). Such
advanced schemes may be more accurate than the
simple binary models, but are also harder to an-
notate. In cases where this kind of data does not
yet exist, many researchers fall back to using other
documented phenomena as proxies for PB: Pref-
erence of specific political parties (Krestel et al.,
2012; Kang and Yang, 2022), membership in such
parties (Iyyer et al., 2014) and social interactions of
the authors on Twitter (Li and Goldwasser, 2019)
are prominent examples in that regard.

All in all, existing computational approaches
to PB detection are still mostly one-dimensional,
thereby reducing the political conflict to a single
‘left-right’ dimension. In political science, however,
there is a growing agreement that political con-
flict is at least two-dimensional. The conventional
left-right dimension comprising of socio-economic
preferences regarding the relative power of markets
and the state is increasingly complemented by a
separate ‘cultural’ dimension of political conflict
(Hooghe et al., 2002; Kriesi et al., 2008; Bornschier,
2010; Zürn and de Wilde, 2016; Lengfeld and Dil-
ger, 2018). This dimension captures disagreements
on culturally ‘liberal’ versus ‘conservative’ value
orientations, compounding political stances on the
openness of borders, migration, minority protec-
tion, environmentalism, or gender and sexuality
questions. This two-dimensional structure has been
shown to map onto political competition among
partisan elites (Kriesi et al., 2008) and is also re-
flected in attitudes and vote intentions of citizens
(Lucassen and Lubbers, 2012; Lengfeld and Dilger,
2018; Norris and Inglehart, 2019).

3 Methodology

This section discusses our conceptual model of PB,
and different ways of classifying PB, followed by
methods used to explain cases of misclassification.

Conceptual Model: To provide a more sophisti-
cated model of PB, we follow recent insights from
the field of political science and abandon the overly
simple one-dimensional perspective. Instead, we
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use a two-dimensional approach aimed at captur-
ing both socio-economic and cultural conflict lines.
Unfortunately, to our knowledge, there is no dataset
of German texts with readily available aggregate
annotations on these two dimensions. Therefore,
we use party affiliation as a proxy for the two di-
mensions. The intuition is that certain political
parties in Germany represent the extremes on each
of the two separate dimensions. This assumption is
consistent with extant party-classification schemes
in the political sciences (Polk and Rovny, 2017;
Volkens et al., 2021) and is a common makeshift
solution in PB classification suffering from annota-
tion scarcity.

Domain and Register: We build on previous
work analyzing social media because this forum of
public discourse is known to be associated with PB
(Badjatiya et al., 2019; Li and Goldwasser, 2019;
Recuero et al., 2020) and corresponding disinfor-
mation (Gallotti et al., 2020; Keller et al., 2020;
Sharma et al., 2020; Zhou et al., 2020; DeVerna
et al., 2021; Mattern et al., 2021; Weinzierl and
Harabagiu, 2021). This decision has important con-
sequences for our trained classifiers: They will be
well-adjusted to the short, rather colloquial texts
on social media, but may fail when confronted
with more formal registers and longer texts. The
key challenge here is domain divergence (Kashyap
et al., 2021), which we cannot reliably address with-
out having access to multiple comparable datasets.
Considering the political science work on corre-
spondences between social media communication
and parliamentary behavior of politicians (Silva
and Proksch, 2021; Sältzer, 2022), one step into
this direction would be the application of our classi-
fiers to German parliamentary speeches (similar to
the approach by Krestel et al., 2012). In that case,
the domain would still be political, but the register
drastically differs. We plan to evaluate this setup
in future studies.

Classification: As a baseline, we chose to encode
the tweets using FastText embeddings (Bojanowski
et al., 2017) and train traditional machine learning
(ML) models. FastText embeddings are learned
with a method built on top of the continuous skip-
gram model (Mikolov et al., 2013) overcoming the
limitation of assigning a different vector for every
word of the vocabulary by considering sub-word
information. Hence, FastText embeddings perform
better for morphologically rich languages like Ger-

man and are suitable for our classification problem.
We obtain the FastText embeddings for each word
in the tweet, average them and feed them into ML
models. We train different classifiers based on Ran-
dom Forests (Breiman, 2001), Logistic Regression
(Cox, 1958), Multi-Layer Perceptrons (MLP, Ram-
choun et al., 2016), and Support Vector Machines
(SVM, Cortes and Vapnik, 1995) with a linear ker-
nel. Random Forest is an ensemble classification
algorithm whose output is based on predictions of
several decision trees constructed at training time.
The Logistic Regression algorithm classifies a data
point by computing log-odds on the linear combi-
nation of independent variables. MLP is a simple
feed-forward neural network trained with backprop-
agation. SVMs construct a hyperplane in a high-
dimensional space separating the two classes. The
location of the data points on either side of the
hyperplane determines their class.

FastText embeddings only incorporate distribu-
tional semantic relations between words but fail to
consider the context of a word in a sentence, such
as word order. We use transfer learning from pre-
trained language models such as GBERT (Chan
et al., 2020) to overcome this limitation. We chose
GBERT-base model for our classification task due
to the limited amount of data. GBERT has the same
architecture as BERT (Devlin et al., 2019), but it
is pre-trained on a large German corpus and has
achieved impressive performance on various nat-
ural language processing tasks. The architecture
of BERT is based on the multi-layer bidirectional
transformer encoder with a multi-head attention
mechanism (Vaswani et al., 2017). The base ver-
sion consists of 12 layers, a hidden size of 768, and
12 attention heads, making up 110M parameters.

Error Analysis: For the error analysis, we are
mainly interested to find out how well the model
can learn the data distribution. Hence, we analyze
attention scores (hypothesis 4) as an approxima-
tion of token importance (Wiegreffe and Pinter,
2019; Tutek and Šnajder, 2020), in combination
with association scores (hypothesis 3) derived from
the dataset. To identify the most important words
associated with a particular class, we use a cus-
tom word importance WI metric which includes
Pointwise Mutual Information (PMI) and Term Fre-
quency–Inverse Document Frequency (TF-IDF),
weighted by relative word frequency. Both mea-
sures have been shown to be useful approximations
of association strength (Bouma, 2009; Krestel et al.,
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2012; Fan et al., 2019). The distance between as-
sociation scores for different classes gives higher
scores to the words frequent in one class and in-
frequent in the opposite class. Normalizing by
relative word frequency helps us avoid high scores
for words with rare occurrences. The formula is

WI(c, w) = (α(c, w)− α(ĉ, w)) · f(c, w) (1)

where ĉ is the opposing class, α is either PMI or
TF-IDF and f(c, w) is the relative frequency of w
within class c. We create two vocabularies for each
class consisting of important words, one identified
with the WI metric using PMI as α (PMI vocab-
ulary) and the other using TF-IDF as α (TF-IDF
vocabulary). Furthermore, we compute attention
scores for each word in the tweet, summing up
the attention scores for all sub-tokens forming the
word. We average the attention score over all the
attention heads across all the layers.

To verify hypothesis 3, we analyze the percent-
age of confusing words in each tweet. A word is
confusing if WI(c, w)−WI(ĉ, w) is positive, indi-
cating that the word is more important in the oppo-
site end of the dimension. We analyze the amount
of tweets above a certain threshold percentage of
confusing words and examine how this number
changes for varying minima. We compare the ratio
of wrong and correct predictions for each thresh-
old to confirm the hypothesis. Further, to verify
the hypothesis 4, we rank the confusing words ac-
cording to the magnitude of WI(c, w)−WI(ĉ, w)
and check if the topmost confusing words receive
the highest attention from the model. Again, we
compare the ratio of false and correct predictions
to confirm the hypothesis. We repeat the process
for the vocabularies in both dimensions.

4 Experiments

Dataset: We trained our classification models
on a subset of the Polly corpus (De Smedt and
Jaki, 2018). The corpus focuses on the 2017 Ger-
man Federal Election and consists of 125K tweets
collected from August 2017 to December 2017.
It comprises seven subgroups denoting tweets by
fans, by politicians, about politicians, containing
the phrase ist ein (“is a”), hate speech, emojis, and
random tweets. In our study, we used the subset
containing tweets by politicians also denoted as
“By-Party” currently in their Google Sheet3. Each

3https://docs.google.com/spreadsheets/d/
1c5peNMjt24U0FcEMSj8gD_JjzumqXTWbPWa_yb2nNt0/
edit. URLs were all last accessed on 2022-06-09.

tweet in the By-Party subset also provides metadata
such as likes, timestamps, names of the politicians,
and their associated political parties. The By-Party
subset has about 14.2K tweets from seven different
parties: CDU, CSU, SPD, Die Linke, Die Grünen,
FDP, and AfD. With respect to gender, it contains
tweets from 13 female and 22 male politicians se-
lected based on their popularity.

Following extant party-classification schemes
in the political sciences (Polk and Rovny, 2017;
Volkens et al., 2021) we exploit the following party
labels. For the dimension capturing conflict be-
tween culturally liberal and conservative stances,
we consider tweets from Die Grünen (the rather cos-
mopolitan German Green party) and the Alternative
für Deutschland (AfD, a populist far-right party) as
representations of the most extreme stances. We
anchor the socio-economic left-right dimension on
tweets from Die Linke (a far-left party) and the
FDP (taking market-liberal stances). This results
in about 4.5K tweets for each dimension. The data
distribution for the socio-economic dimension is
1.96k tweets for Die Linke and 2.52k tweets for
FDP (Die Linke = 43.82%, FDP = 56.7%). Sim-
ilarly, the distribution for the cultural dimension
is 2.16k tweets for Die Grünen and 2.4k tweets
for AfD (Die Grünen = 47.33%, AfD = 52.66%).
Given the limited data points, we split the collec-
tion of tweets into train and test data at a 90:10
ratio. We then preprocess the tweets to remove
mentions, URLs and the retweet string “RT @men-
tion”. While we retain the emoticons for the classi-
fication using the BERT model, we remove them
for the FastText embeddings because FastText does
not contain meaningful embeddings for them. We
always downsample the majority class to achieve
class balancing before training the model.

Baseline Model: For our classification task, we
download the 300-dimensional pre-trained vectors
for the German language4, provided by Facebook5

to initialize the FastText model using the Gensim li-
brary6. We normalize and tokenize the tweets using
the ICU-Tokenizer7. To obtain the final embedding,
we average the FastText word embeddings of each
token in the tweet. The resulting vectors are used to
train the ML classifiers with the scikit-learn library.

4https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.
de.zip

5https://fasttext.cc/docs/en/pretrained-vectors.html
6https://radimrehurek.com/gensim/models/fasttext.html
7https://github.com/mingruimingrui/ICU-tokenizer
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The Random Forest classifier is trained with the
Gini criterion with 100 trees as estimators. The
MLP classifier comprises 12 layers and is trained
with the Adam optimizer, ReLU activation and
early stopping. We use a linear kernel for the SVM
classifier and Stochastic Average Gradient solver
for the Logistic Regression.

GBERT Model: We fine-tune the GBERT-base
model on the Polly By-Party subcorpus using the
HuggingFace transformers library8. Before fine-
tuning, we tokenize the tweets using the AutoTo-
kenizer for GBERT from the same library. The
GBERT model encodes the tweets, and these encod-
ings are fed into an output feed-forward network,
followed by a softmax layer. This is achieved by us-
ing the AutoModelForSequenceClassification class
from the transformers library. We train the model
with the AdamW optimizer, with a learning rate of
5e-5 and a batch size of 8 for five epochs.

5 Results

Classification: Tables 1 and 2 show the accuracy,
micro-averaged precision, recall and F1 scores
for different classification models over cultural
and socio-economic dimensions. We use micro-
averaging for the evaluation to be consistent with
our additional experiments on class imbalance (see
below). GBERT-base performs best for both dimen-
sions, although the performance is much higher for
the cultural dimension with 92% accuracy than
for the socio-economic dimension with 86%. The
better performance of GBERT in comparison to
ML algorithms can be explained by the fact that
GBERT has been pre-trained on large German text
corpora. Besides, it takes into consideration the
context of a word in both directions. Its large num-
ber of parameters enables it to model a complex
underlying function. All the ML algorithms per-
form the same, more or less, and the varying model
sizes can explain the slight differences. In contrast,
the GBERT model trained on a traditional left-right
dimension with Die Linke on the left end and AfD
on the right end of the spectrum as proxies has an
accuracy of 87.02% (micro F1 = 86.4%). Hence,
deviating from the traditional one-dimensional ap-
proach leads to higher classification performance,
supporting our hypothesis 1.

Table 3 shows the results of the GBERT model
trained with reduced data for balanced and unbal-

8https://huggingface.co/bert-base-german-cased

anced scenarios. For both dimensions, the model’s
performance reduces when trained with half the
data, supporting hypothesis 2. We can see that the
majority class (FDP) is easier to classify for the
socio-economic dimension. Hence, the accuracy
drops after balancing. Meanwhile, for the cultural
dimension, both classes are equally hard to classify,
and increasing the relative importance of the mi-
nority class (Die Grünen) through balancing leads
to a slight increase of overall accuracy. We hy-
pothesize that, after the balancing intervention, the
model uses a larger share of its weights and bi-
ases to model the (former) minority class, which
increases the performance for that class.

Application: We apply the two trained classifiers
to the whole dataset (see Figure 1). Each tweet
gets a cultural and a socio-economic score. The
score for a specific party is the average of all its
associated tweets. We observe that, as expected,
the four proxy parties (AfD, FDP, Die Grünen, Die
Linke) are close to the respective extreme of the
dimension that they represent. Interestingly, these
proxy parties form two pairs: The distance from
the Left to the Green party is smaller than to the
liberal or conservative party. The same goes for
the liberal party, which has a small distance to the
conservative party, as opposed to the Left or Green.
Finally, we note that most parties are situated in
the lower left quadrant (open, socialist), while the
remaining two occupy outlier places (liberal and/or
conservative). This could be an indication of politi-
cal isolation. However, the dataset is a sample of
just a few dozen politicians with a moderate bias
regarding the distribution of gender, and possibly
age or other important factors. Thus, our results

Figure 1: Cultural and Socio-economic Scores of Ger-
man Political Parties
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are not necessarily representative of each party as a
whole. Instead, they can serve as general tendency
that needs to be investigated more thoroughly in
future studies.

TF-IDF Vocabulary: Figures 2 and 3 show the
percentage of tweets consisting of a minimum num-
ber of confusing words (threshold) for the TF-IDF
vocabulary. For the cultural dimension (Figure 2),
we can infer that, on average, 10.6% more tweets
meeting the threshold are misclassified, compared
to the correct predictions. Although not consistent
over all the thresholds, we see similar behavior
(Figure 3) for the socio-economic dimension, be-
tween the 10% and 35% thresholds, with 1.3%
more tweets meeting the threshold and being mis-
classified, compared to the correct predictions on
average. Furthermore, misclassified tweets make
up a larger share of the dataset (+19.3%) compared
to the correctly classified ones, with at least one
confusing word receiving the highest attention for
the cultural dimension (Figure 4). We see a differ-
ent behavior when we consider only a few of the
top confusing words up to a minimum of 30%, after
which the trend reverses. The same trend emerges
for the socio-economic dimension (see Appendix
A) when we consider at least the top 25% of con-
fusing words. The behavior is not as strong as in
the cultural dimension, with only 2% of wrong pre-
dictions consisting of a confusing word receiving
highest attention in comparison to 1.5% for the
correct predictions. Some lexical examples of com-
monly confused words in a TF-IDF vocabulary are
as in Table 6.
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Figure 2: Percentage of wrong predictions and correct
predictions for varying thresholds of confusing words
computed using the TF-IDF vocabulary for the cultural
dimension.

PMI Vocabulary: Analogous to our analysis us-
ing TF-IDF, we also observe the variation in the
percentage of wrong and correct predictions for the
PMI vocabulary. For the cultural dimension (Ap-
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Figure 3: Percentage of wrong predictions and correct
predictions for varying thresholds of confusing words
computed using the TF-IDF vocabulary for the socio-
economic dimension.
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Figure 4: Percentage of tweets consisting of a confusing
word receiving the highest attention from the model for
the cultural dimension with the TF-IDF vocabulary.

pendix A), at any given threshold, the percentage of
misclassified tweets meeting the threshold exceeds
the correctly classified tweets by 11.6% on average.
For the socio-economic dimension, we observe the
same trend up to the 28% threshold, with wrong
predictions meeting the threshold exceeding the
correct predictions by 5.31% on average. Also, sim-
ilar to the TF-IDF vocabulary, on average, 12.7%
more misclassified tweets than correct ones in the
cultural dimension includes at least one confusing
word that receives the highest attention (Figure 5).
We observed the same trend when considering only
a few of the top confusing words. The behavior is
not so evident for the socio-economic dimension,
with wrong predictions constituting only 2% more
than correct predictions on average. The trend re-
verses when we consider more than 55% of the
top confusing words (Appendix A). For lexical ex-
amples of commonly confused words in a PMI
vocabulary see Table 6.

For both TF-IDF vocabulary and PMI vocabu-
lary, hypothesis 3 holds for the cultural dimension
over all the thresholds. In contrast, hypothesis 4 is
confirmed with a larger margin for the PMI vocabu-
lary compared to the TF-IDF vocabulary (Figures 4
and 5). For the socio-economic dimension, hy-

34



Model Accuracy Precision Recall F1
GBERT-base 0.92 0.93 0.92 0.92

Logistic Regression 0.80 0.81 0.80 0.80
SVM 0.83 0.83 0.83 0.83

Random Forests 0.81 0.81 0.81 0.81
MLP 0.82 0.82 0.82 0.82

Table 1: Comparative evaluation of classification: GBERT-base with ML classifiers for the cultural dimension (Die
Grünen vs. AfD) on Polly test data.

Model Accuracy Precision Recall F1
GBERT-base 0.86 0.89 0.83 0.86

Logistic Regression 0.68 0.68 0.68 0.67
SVM 0.71 0.71 0.71 0.71

Random Forests 0.73 0.73 0.73 0.73
MLP 0.70 0.70 0.70 0.69

Table 2: Comparative evaluation of classification: GBERT-base with ML classifiers for the socio-economic
dimension (Die Linke vs. FDP) on Polly test data.
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Figure 5: Percentage of tweets consisting of a confusing
word receiving the highest attention from the model for
the cultural dimension with the PMI vocabulary.

pothesis 3 holds over a specific range of thresholds
only, although the distinction is more explicit in
the PMI vocabulary than in the TF-IDF vocabulary.
Similarly, the PMI vocabulary shows a clearer dif-
ference between wrong and correct predictions for
hypothesis 4 than the TF-IDF vocabulary. Further-
more, hypothesis 4 holds when we consider more
confusing words for the TF-IDF vocabulary in con-
trast to fewer confusing words in the case of the
PMI vocabulary for the socio-economic dimension
(Appendix A).

6 Conclusions

We have shown that PB can be reliably analyzed
in two dimensions. In particular, we follow recent
insights from political science and abandon one-
dimensional scales like ‘left vs. right’. Instead,
we use separate dimensions for cultural and socio-
economic conflict lines to model different aspects

of PB. Due to a lack of appropriately annotated
datasets for this new scheme, we use party affilia-
tion as a proxy for the dimensions: The German
political parties Grüne and AfD represent differ-
ent extremes of the cultural dimension, while Die
Linke and FDP span up the socio-economic con-
flict line. We use GBERT to train separate binary
classifiers for tweets by each of those parties’ mem-
bers, showing that the cultural distinction is easier
to model in our setup. In both cases, the deep learn-
ing approach is superior to other ML baselines like
SVM or Random Forests.

We conduct additional experiments to explain
classification errors. The classifiers struggle when
many words from the opposing political spectrum
are used and receive high attention by the trans-
former model. This is particularly true for the cul-
tural dimension, but only partially for the socio-
economic cleavage. We hypothesize that, in the
latter case, the language use of the different parties
is more similar to each other, blurring the lexical
boundaries and thus reducing the risk of classifica-
tion errors based solely on the presence of specific
words. This may be related to a long-standing polit-
ical science debate on position- vs. salience-based
party competition (Dolezal et al., 2014): in the
former perspective, parties compete with different
stances on the same topics, which would mean that
they share a high number of words. In the latter per-
spective, parties compete by emphasizing different
topics, which should be related to greater lexical
diversity across tweets from different parties.
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Dimension Data Distribution (%) F1 Accuracy
socio-economic Die Linke FDP Die Linke FDP

unbalanced 43.82 56.7 0.825 0.861 0.845
balanced 50 50 0.841 0.833 0.837

cultural Die Grünen AfD Die Grünen AfD
unbalanced 47.33 52.66 0.884 0.894 0.889

balanced 50 50 0.898 0.897 0.897

Table 3: Evaluation of the GBERT model trained on only half of the Polly train data. For each dimension, we see
the model’s performance in balanced and unbalanced setups indicated by per-class F1 score and overall accuracy.
The two classes for each dimension are the two extremes of the dimension represented by political parties.

In terms of future work, we plan to evaluate our
classifiers on other datasets of political language,
such as extant collections of German parliamen-
tary speeches (Blätte and Blessing, 2018; Rauh
and Schwalbach, 2020). Besides, we need to em-
pirically explore possible reasons for the different
classification performance in our two dimensions.
Furthermore, creating new annotations specifically
for our proposed model of PB would enable re-
searchers to train classifiers with a higher con-
struct validity. Finally, while our bi-dimensional
scheme for PB detection is better than the single-
dimensional scheme, exploring other dimensions
is worthwhile following new political science re-
search.
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A Detailed Results

In this section, we provide additional plots and
information that further strengthen the discussions
provided in the main paper.

A.1 Error Analysis
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Figure 6: Percentage of tweets consisting of a confusing
word receiving the highest attention from the model for
the socio-economic dimension with the TF-IDF vocabu-
lary.
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Figure 7: Percentage of wrong predictions and correct
predictions with varying thresholds of confusing words
computed using the PMI vocabulary for the cultural
dimension.
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Figure 8: Percentage of wrong predictions and cor-
rect predictions with varying thresholds of confusing
words computed using the PMI vocabulary for the socio-
economic dimension.
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Figure 9: Percentage of tweets consisting of a confusing
word receiving the highest attention from the model for
the socio-economic dimension with the PMI vocabulary.
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Die Linke FDP Die Grünen AfD
btw17 cl darumgruen afd
heute tl darumgrün traudichdeutschland
linke btw17 btw17 btw17
mehr denkenwirneu get merkel

merkel fdp heute mehr
spd jamaika mehr zeit

menschen beer katrin wer
cdu heute geht fdp

müssen mal klimaschutz eu
soziale mehr jamaika morgen

Table 4: Top 10 important words based on WI with TF-IDF as α.

Die Linke FDP Die Grünen AfD
linke fdp klimaschutz afd

soziale netzdg kohleausstieg traudichdeutschland
merkel cl sondierungen dr
btw17 tl bdk17 merkel

gerechtigkeit sondierung sondierung guten
cdu kurdistan umwelt bitte
spd freut jamaika grenzen

arbeit denkenwirneu zukunft spitzenkandidatin
menschen digitalisierung grün bundestag

rente trendwende klima zeit

Table 5: Top 10 important words based on WI with PMI as α.

TF-IDF as α PMI as α
Cultural Socio-Economic Cultural Socio-Economic

zeit mal btw17 btw17
statt bt mehr mal
fdp geht statt mehr
mal ab zeit müssen

berlin dank mal warum
merkel klar gibt jamaika
ganz besser jamaika menschen

immer genau fdp eu
politik interview politik wohl
warum bildung merkel brauchen

Table 6: Examples of some commonly confused words for each dimension.
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