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Abstract

MONAPipe is a collection of pipeline com-
ponents for the open-source Python library
spaCy. The components perform a broad
range of morphological, syntactic, semantic
and pragmatic analyses for German texts and
are mostly developed specifically for the lit-
erary domain. MONAPipe1 combines imple-
mentations from various separate resources
with new ones in one place, constituting a con-
venient tool for computational linguistics and
literary studies.

1 Introduction

When working with text using computational meth-
ods, one has to follow a series of standard process-
ing steps that are often combined into a pipeline
for efficiency. Although the choice of the existing
pipelines is large, there are only a view which fo-
cus on the literary domain (e.g. BookNLP2), from
which to our knowledge none is usable for German.
It is well known that literary texts have properties
which pose challenges for natural language pro-
cessing (NLP), such as non-standard orthography,
long and complex sentences, long-distance coher-
ence and possibly multi-layered narrative levels to
name but a few. MONAPipe presents an extension
of the spaCy pipeline which provides basic NLP
components based on high-performance German
models. Our custom pipeline consists of numerous
components that can be divided into six categories:
preprocessing, morphosyntactic analysis, semantic
analysis, speech and coreference resolution, feature
extraction and discourse units, narration and attri-
bution. Some components are domain-independent
(e.g. tense tagging), while others are specifically
created to analyze fiction and literary concepts (e.g.
literary comment).

1https://gitlab.gwdg.de/mona/pipy-public
2https://github.com/booknlp/booknlp

2 SpaCy

MONAPipe is developed for spaCy (v2.33), which
is an open-source software library for crosslinguis-
tic natural language processing in Python. An in-
put text is converted to a document object and then
consecutively piped through a series of (built-in
or custom) pipeline components which can be ar-
ranged by the user. The components enrich the
document with information that can be attributed
to the document, its tokens or spans (of tokens).

3 Pipeline Components

The main contribution of MONAPipe are new
pipeline components for spaCy. Some of the com-
ponents were developed from scratch whereas oth-
ers are reimplementations or wrappers of existing
tools. Table 1 provides an overview of the cur-
rently usable MONAPipe components, which we
will discuss in the following.

3.1 Preprocessing

If one wants to process a text which is not already
tokenized, one can use spaCy’s built-in Tokenizer.
Built-in follow-up components are a part-of-speech
(POS) Tagger which assigns both German (Smith,
2003b, p. 12 f.) and universal (de Marneffe et al.,
2021, p. 261) POS tags, a dictionary-based Lem-
matizer, and a named entity recognizer (NER) that
recognizes persons, locations, organizations and
miscellaneous entities (Nothman et al., 2013).

Older texts commonly exhibit non-standard or-
thography, which can cause problems in follow-
up language processing. We therefore provide a
Normalizer that replaces every out-of-vocabulary
word by its most frequent normalized form in the
German Text Archive4 (DTA), a collection of 4,160

3https://v2.spacy.io/usage
4https://www.deutschestextarchiv.de/download
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Component Type Main Reference(s)

Preprocessing
Tokenizer B spaCy
Tagger B spaCy
Lemmatizer B spaCy
NER B spaCy
Normalizer I this paper

Morphosyntactic Analysis
Sentencizer B/W spaCy, NLTK
DependencyParser B/I spaCy, Dönicke (2020)
Clausizer I Dönicke (2020)
Analyzer I Altinok (2018), Dönicke (2020)
TenseTagger I Dönicke (2020)

Semantic Analysis
TemponymTagger R Strötgen and Gertz (2010, 2015)
GermanetTagger I Hamp and Feldweg (1997), this paper
EmotionsTagger I Mohammad and Turney (2010), this paper

Speech and Coreference Resolution
SpeechTagger W/I Brunner et al. (2020)
SpeakerExtractor I this paper
Coref R Krug et al. (2015), this paper

Feature Extraction and Discourse Units
FeatureExtractor I Dönicke (2021), this paper
DiscourseSegmenter I Dönicke (2021)

Modes of Narration and Attribution
EventTagger W Vauth et al. (2021)
AnnotationReader I this paper
CommentTagger I Weimer et al. (to appear)
GenTagger I Gödeke et al. (to appear)
EntityLinker I Barth et al. (2022)
AttributionTagger I Dönicke et al. (2022)

Table 1: Overview of MONAPipe components with
origin (B: built-in in spaCy, R/I: re-/implemented by
MONAPipe authors, W: wrapper for external tool). See
text for more information.

texts (480M tokens) from 1600–1900. This ap-
proach correctly normalizes over 99.9% of tokens
and types in the DTA. Original forms and character
positions of tokens are preserved as attributes.

3.2 Morphosyntactic Analysis

The Sentencizer (i.e. sentence splitter) adds sen-
tence spans to the document. Currently, one can
use either a sentencizer from spaCy or NLTK5.

The DependencyParser adds a dependency tree
to each sentence. Which dependency scheme is
used depends on the spaCy model, where the Ger-
man model provided by spaCy produces trees in
the TIGER scheme (Smith, 2003b). An alterna-
tive to TIGER is the Universal Dependencies (UD)
scheme (de Marneffe et al., 2021). While some of
our components function in either scheme, most do
either require UD parses or function significantly
better with them. We therefore recommend using

5https://www.nltk.org/

MONAPipe with a UD-based spaCy model and use
the model provided by Dönicke (2020).

Dönicke (2020) also provides a Clausizer that
splits UD trees into clauses and adds clause spans
to the document and its sentences, a morphologi-
cal Analyzer based on DEMorphy (Altinok, 2018),
and a TenseTagger that extracts grammatical fea-
tures (finiteness, tense, mood, voice) and modal
verbs like müssen ‘must’ from a clause’s (poten-
tially composite) verb. Dönicke (2020) reports ac-
curacies of 93% for tense, 79% for mood, 94%
for voice and 80% for modal verbs in the liter-
ary domain. We integrate these components into
MONAPipe and make a small change in the han-
dling of modal verbs, so that semi-modal verbs like
pflegen (zu) ‘use (to)’ are properly recognized as
modal verbs in according contexts (and not always
treated as full verbs).6

3.3 Semantic Analysis

The TemponymTagger extracts and normalizes
temporal expressions from a document. The com-
ponent is a reimplementation of the HeidelTime7

system (Strötgen and Gertz, 2010, 2015) and uses
its resource files for German.

The GermanetTagger assigns Levin (1995)’s
semantic categories to verbs and clauses (in case
the verb is the root) and Hundsnurscher and Splett
(1982)’s categories to adjectives, which are ex-
tracted from GermaNet (Hamp and Feldweg, 1997).
Using the lemmas of verbs and adjectives, possi-
ble word senses (synsets) are identified and disam-
biguated using the synsets from the token’s context.

The EmotionsTagger adds scores for sentiment
(positive, negative) and basic emotions as defined
by Ekman (1992) (anger, anticipation, disgust, fear,
joy, sadness, surprise, trust) from the NRC Word-
Emotion Association Lexicon8 (Mohammad and
Turney, 2010, 2013) to tokens.

3.4 Speech and Coreference Resolution

The SpeechTagger assigns scores for speech9

types to tokens and clauses. We provide two im-

6For example, the semi-modal verb use is a full verb in
John used a lighter and a modal verb in John used to smoke.
We distinguish the two cases as follows: A semi-modal verb
is a modal verb if it is accompanied by a subordinate verb and
it is a full verb otherwise.

7https://github.com/HeidelTime/heideltime
8https://saifmohammad.com/WebPages/

NRC-Emotion-Lexicon.htm
9We use the term “speech” for any speech, thought or

writing representation in texts (cf. Brunner et al., 2020).
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plementations of this component. The first one
uses Brunner et al. (2020)’s Redewiedergabe tag-
ger to predict token-wise scores for direct, indirect,
free indirect and reported speech. It achieves 85%
F1 for direct, 76% F1 for indirect, 60% F1 for
reported and 59% F1 for free indirect speech for
texts from the 19th to the 20th century (both fiction
and non-fiction). The second, faster implementa-
tion simply labels tokens within quotation marks
as direct speech (ignoring other speech types) and
achieves 70% F1 on the same test set (since direct
speech is not always marked by quotation marks in
older texts). The clause-wise scores are calculated
from the product of the token-wise scores.

The SpeakerExtractor then adds direct speech
spans to the document and tries to identify speaker
and addressee for each span. We use a small set
of rules to identify a preceding/succeeding verbum
dicendi first and then select its subject as speaker
and object as addressee.

The development of our Coref (coreference)
component was driven by the aim to resolve
anaphoric pronouns and coreferent nominal phrases
(NPs) in a text. We therefore consider all NPs as
mentions (including pronouns10, common NPs and
named entities), which contrasts other works. For
example, in DROC – a corpus of German nov-
els – (Krug et al., 2018) only mentions of liter-
ary characters are annotated, and in ParCorFull
– a parallel corpus of news and other domains –
(Lapshinova-Koltunski et al., 2018) mentions can
be non-nominal and the annotation of a generic NP
depends on whether it is a common NP or a pro-
noun. The corpus with the most similar concept of
mentions to ours is GerDraCor-Coref – a corpus of
German dramatic texts – (Pagel and Reiter, 2020),
although non-nominal mentions are also annotated
in part of the corpus.

The Coref component is a UD-based reimple-
mentation of Krug et al. (2015)’s rule-based sys-
tem which consecutively executes 11 passes to find
the antecedent of a mention. Since Krug et al.
(2015)’s system was developed for DROC, we
made some adjustments to handle a wider variety
of NPs (passes 3, 5–7). We use the Extended Open
Multilingual Wordnet11 (Bond and Foster, 2013)
to find synonyms in the semantic pass (pass 8) and

10We exclude indefinite, interrogative and expletive pro-
nouns since they do not have antecedents. Possessive pro-
nouns are de facto exclduded since they usually appear within
a larger mention but we do not consider nested mentions.

11http://compling.hss.ntu.edu.sg/omw/summx.html

Mentions MUC B3 CEAFe CoNLL

GerDraCor
HotCoref – 56.55 14.98 14.84 28.79

DramaCoref 60.00 42.54 19.87 18.97 27.12
full mentions 56.24 43.21 19.78 12.56 25.18

mention heads 70.25 58.20 29.18 15.04 34.14
NP heads 74.36 57.10 31.91 18.18 35.73

gold NP heads 97.03 68.22 39.91 33.97 47.37

DROC
Schröder et al. (2021) – – – – 64.72

Krug (2020) – 87.50 40.40 31.60 53.17
full mentions 38.25 30.67 11.92 3.99 15.53

mention heads 57.04 45.55 24.06 10.88 26.83
NP heads 61.97 50.78 29.60 12.28 30.89

gold NP heads 97.85 68.14 39.42 28.85 45.47

ParCorFull
Pražák et al. (2021)13 – – – – 55.40

full mentions 36.98 24.19 18.76 16.15 19.70
mention heads 41.04 26.68 21.63 18.12 22.14

NP heads 43.21 28.23 23.73 20.63 24.20
gold NP heads 96.99 62.67 68.04 57.58 62.76

Table 2: Coref evaluation on three corpora. The first
numeric column shows the F1 for mention identifica-
tion. MUC, B3 and CEAFe are F1-based metrics for
coreference resolution (cf. Moosavi and Strube, 2016).
The CoNLL score is the average of the three.

the results from the SpeechTagger and SpeakerEx-
tractor to resolve pronouns in direct speech (passes
10–11). We store coreference clusters in the same
format as NeuralCoref12, so that one can replace
our Coref component by a (currently non-existent)
German NeuralCoref model in the future without
producing errors in follow-up components.

Despite contrasts to other works, we score our
system on GerDraCor, DROC and ParCorFull (see
Table 2) using the scorer from Moosavi et al. (2019)
to get a rough impression on its performance and
to compare it to previous works. We accede to
Nedoluzhko et al. (2021) and consider an evalua-
tion on mention heads in a cross-resource scenario
as more meaningful than using full mentions, but
show scores for full mentions for comparison. For
example, mention identification scores 14% higher
for mention heads than for full mentions on Ger-
DraCor.14 Since our system only links NPs, we
also show the scores when (heads of) non-nominal
mentions are excluded.15 Our system achieves sim-

12https://github.com/huggingface/neuralcoref
13The performance of Pražák et al. (2021)’s system on Par-

CorFull is listed at https://github.com/ondfa/coref-multiling.
14One reason is that mentions in GerDraCor may include

succeeding punctuation which is not the case for our mentions.
15According to the UD guidelines, we define a mention as

nominal if its head has one of these relations: nsubj, obj, iobj,
obl, vocative, expl, dislocated, nmod, appos, nummod.
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ilar results to those of the recently tested systems
HotCoref (Roesiger and Kuhn, 2016) and Drama-
Coref (Pagel and Reiter, 2021).16 For DROC and
ParCorFull, the F1 for mention identification suf-
fers from a low precision, since we consider much
more NPs to be mentions than those in the corpora,
and our system performs much lower than the neu-
ral systems presented in Krug (2020, p. 173) and
Schröder et al. (2021) for DROC17 and Pražák et al.
(2021) for ParCorFull. We therefore also provide
the scores for evaluating on gold NPs only: the
gold NPs in DROC are linked with a similar per-
formance as those in GerDraCor, and even better
in ParCorFull.

3.5 Feature Extraction and Discourse Units

The FeatureExtractor combines the information
from previous components and some additional in-
formation in a (mostly) delexicalized functional
grammar (DFG) structure. DFG structures com-
bine rudiments of lexical functional grammar
(LFG) and UD grammar and are created for each
clause. We take over the basic set-up of Dönicke
(2021), who includes grammatical features from
the clause, the complex verb, NPs and discourse
markers, and add separate levels for adjectives, ar-
ticles and quantifiers. We further integrate all avail-
able semantic information, including GermaNet
category and emotion (see Section 3.3), sentiment
from SentiWS18 (Remus et al., 2010), speech type
(see Section 3.4) as well as overt quantifier type
(using Dönicke et al. (2021)’s categories), and link
pronominal anaphora to their antecedents. An ex-
ample is shown in the appendix.

Dönicke (2021) uses the feature structures for
discourse unit segmentation and we also integrate
his German model as DiscourseSegmenter. The
model achieved 92% F1 for German in the DISRPT
2021 Shared Task on Elementary Discourse Unit
Segmentation (Zeldes et al., 2021) (4% lower than
the best-performing, neural system).

3.6 Narration and Attribution

The EventTagger is a wrapper for the event-
classification model from Vauth et al. (2021)19,
which classifies clauses into four event types: non-

16Like Pagel and Reiter (2021), we also randomly selected
80% of the texts in GerDraCor-Coref (1.2.1) as test set but
chances are high that our test sets are not identical.

17We use the same 18 texts from DROC as test set.
18https://github.com/Liebeck/spacy-sentiws
19https://github.com/uhh-lt/event-classification

event, stative event, process event and change of
state. The model was trained on works of litera-
ture and achieves accuracies of 84% for non-event,
75% for stative event, 79% for process event and
56% for change of state. Note that Vauth et al.
(2021)’s event types are based on narrative theory
(e.g. Schmid, 2014; Prince, 2012) but there are
parallels to discourse/situation entity types (also
known as clause-level aspect) from linguistic the-
ory (e.g. Vendler, 1957; Smith, 2003a; Friedrich
and Palmer, 2014), most importantly the distinction
between dynamic and stative events, which is why
we consider the EventTagger a useful component
for both narratological and linguistic analyses.

MONAPipe further includes components for the
automatic identification of narrative modes, which
are especially useful for the analysis of fictional
literature. The components were developed on
the Modes of Narration and Attribution Corpus
(MONACO) (Barth et al., 2021), a corpus of fic-
tional texts from 1600 to 1950 which are anno-
tated with narratological information. The annota-
tions in MONACO are saved in a CoNLL-based
format and the XML-based output format of the
annotation tool CATMA20. We provide an Anno-
tationReader that can read CATMA files for the
piped document and assigns the annotations to its
tokens and clauses. In this way, predictions and
annotations (e.g. gold annotations) can be directly
accessed at an element of interest.

The term ‘narrative mode’ itself is a cover term
for various stylistic devices that shape the narra-
tion of a story. Bonheim (1975) distinguishes four
narrative modes: description (depiction of things
in motion), report (depiction of things in motion),
speech (utterances, thoughts etc. of characters),
and comment. In comment, the narration pauses
and additional information is provided, e.g. when
the narrator interprets what just happened. A text
example with all narrative modes is shown in Fig-
ure 1. Since report and description usually consti-
tute the most part of a narrative text and speech
can be identified by the SpeechTagger, we consider
comment to be the most interesting narrative mode
to automatically identify in a text.

The annotation guidelines in MONACO follow
Chatman (1980) and distinguish three subtypes of
comment: interpretation (of story elements), judg-
ment/attitude (towards story elements), and meta-
fictional comment (about the story or the narra-

20https://catma.de/
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[Dr. Johnson was well along in years]DESCRIPTION

[when Boswell explained to him the solipsism of
Bishop Berkeley, yet Johnson was still nimble
enough to kick a pebble down the path and ex-
claim,]REPORT [‘thus do I refute him, Sir!’]SPEECH

[His was the voice of common sense kicking logic
out of the way.]COMMENT

Figure 1: Example text with annotated narrative modes
(Bonheim, 1975). Brackets mark annotation spans.

tion itself). The fourth subtype included by Chat-
man (1980), generalization (i.e. general truths that
“reach beyond the world of the fictional work into
the real universe”, p. 243), is not treated as a sub-
type of comment in MONACO. Instead, general-
ization and non-fictionality are treated as separate
modes with own subtypes.

Special difficulty when developing text-
classification systems for narrative modes is posed
by the fact that they can span arbitrarily long
text passages and overlap with each other. Since
‘passages’ in MONACO are defined as sequences
of clauses, one can approach the task as multi-class
multi-label classification of clauses and address
the reconnection of subsequent clauses with the
same labels to passages in a postprocessing step.

The statistical CommentTagger of MONAPipe
(described in Weimer et al. (to appear)) uses the
features from Section 3.5. When tested on two
held-out texts, the binary model achieves 59% F1,
which we consider to be a good state of the art
given the difficulties of the task and the literary
domain. The multi-class model achieves 36% F1
for interpretation, 28% F1 for attitude and 48% for
meta-fictional comment. Taggers for generalizing
and non-fictional passages are still in development
but MONAPipe also includes the current versions
of a rule-based and a statistical GenTagger to rec-
ognize generalizations (described in Gödeke et al.
(to appear)) as well as an EntityLinker (described
in Barth et al. (2022)), which links named entities
to Wikidata21 entries and determines whether they
are fictional or real entities.

MONACO also contains annotations for speaker
attribution, i.e. whether the content of a clause is
conveyed by a character, the narrator and/or the au-
thor of the text. In Dönicke et al. (2022), we trained
a neural classifier on MONACO, which we also
wrap in a spaCy component. The AttributionTag-

21https://www.wikidata.org/wiki/Wikidata:Main Page

ger and the SpeechTagger are indeed somewhat
similar, e.g. free indirect speech is typically at-
tributed to a character and the narrator. However,
while the task of the SpeechTagger is to identify
certain constructions, the AttributionTagger labels
the supposed source of information (independently
from preselected constructions). In Dönicke et al.
(2022), the model achieves 84% accuracy on a held-
out test set.

4 Other Features

Automatic saving/loading of intermediate results
can be enabled to avoid unnecessary recomputation,
which is especially useful for long texts.

We also include functions to 1) calculate inter-
annotator agreement in terms of Fleiss’s κ, Krip-
pendorff’s α and Mathet et al.’s γ after adding anno-
tations to documents, and 2) compare annotations
to automatically assigned labels in terms of accu-
racy, precision, recall and F1 or with a confusion
matrix. Agreement and evaluation measures can be
executed for tokens and clauses.

In addition, we developed a CorpusReader that
reads metadata from the source files (TEI-XML)
of our literary corpus and provides structured meta-
data, e.g. GND-identifiers22 for a work’s author,
that can be accessed within the pipeline. Further-
more, we enrich existing metadata, e.g. we detect
Wikidata entries for a literary work. These meta-
data is used in MONAPipe components such as the
EntityLinker.

5 Conclusion and Future Work

MONAPipe is a custom spaCy pipeline that pro-
vides a set of tools for the linguistic and literary
analysis of German texts. Many of its components
do not have equivalents and present state of the
art in the field of computational literary studies or
show competitive results compared to the existing
tools.

We plan to add further components for natural
and narratological language processing as well as
new versions of existing components, e.g. taggers
for generalization and non-fictionality. The current
coreference system is meant to be a make-shift im-
plementation and we want to develop wrappers for
other tools in the future. We also plan to upgrade
MONAPipe from spaCy v2.x to v3.x.

22GND: Integrated Authority File, German for “Gemein-
same Normdatei”, https://www.dnb.de/EN/Professionell/
Standardisierung/GND/gnd node.html.
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A Appendices

Aber Peter kauft sich jeden Morgen einen schlechten Kaffee.
‘But Peter buys himself a bad coffee every morning.’



NP



IOBJ

COREF 1
DEP iobj
NUMERUS sing
POS PRON


NSUBJ 1

CASE nom
DEP nsubj
NUMERUS sing
POS PROPN



OBJ
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[
LEMMA ein
POS DET

]
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DEP obj
GENDER masc
NUMERUS sing
POS NOUN
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OBL
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

CLAUSE


DEP ROOT
HEAD 0
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]
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Figure 2: Sample DFG structure.
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