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Abstract
Word alignment is essential for the downstream
cross-lingual language understanding and gen-
eration tasks. Recently, the performance of
the neural word alignment models (Garg et al.,
2019; Ding et al., 2019; Zenkel et al., 2020)
has exceeded that of statistical models. How-
ever, they heavily rely on sophisticated trans-
lation models. In this study, we propose a su-
per lightweight unsupervised word alignment
model named MirrorAlign, in which a bidirec-
tional symmetric attention trained with a con-
trastive learning objective is introduced, and
an agreement loss is employed to bind the
attention maps, such that the alignments fol-
low mirror-like symmetry hypothesis. Exper-
imental results on several public benchmarks
demonstrate that our model achieves compet-
itive, if not better, performance compared to
the state of the art in word alignment while
significantly reducing the training and decod-
ing time on average. Further ablation analysis
and case studies show the superiority of our
proposed MirrorAlign. Notably, we recognize
our model as a pioneer attempt to unify bilin-
gual word embedding and word alignments.
Encouragingly, our approach achieves 16.4×
speedup against GIZA++, and 50× parameter
compression compared with the Transformer-
based alignment methods. We release our code
to facilitate the community1.

1 Introduction

Word alignment, aiming to find the word-level cor-
respondence between a pair of parallel sentences,
is a core component of the statistical machine trans-
lation (Brown et al., 1993, SMT). It also has ben-
efited several downstream tasks, e.g., computer-
aided translation (Dagan et al., 1993), semantic
role labeling (Kozhevnikov and Titov, 2013), cross-
lingual dataset creation (Yarowsky et al., 2001),
cross-lingual modeling (Ding et al., 2020a), and
cross-lingual text generation (Zan et al., 2022).

1https://github.com/moore3930/MirrorAlign

Figure 1: Two examples of word alignment. The upper
and bottom cases are the Chinese and Japanese refer-
ences, respectively.

Recently, in the era of neural machine transla-
tion (Bahdanau et al., 2015; Vaswani et al., 2017,
NMT), the attention mechanism plays the role of
the alignment model in translation system. Un-
fortunately, Koehn and Knowles (2017) show that
attention mechanism may in fact dramatically di-
verge with word alignment. The works of Ghader
and Monz (2017); Li et al. (2019) also confirm this
finding.

Although there are some studies attempt to miti-
gate this problem, most of them are rely on a sophis-
ticated translation architecture (Garg et al., 2019;
Zenkel et al., 2020). These methods are trained
with a translation objective, which computes the
probability of each target token conditioned on
source tokens and previous target tokens. This will
bring tremendous parameters and noisy alignments.
Most recent work avoids the noisy alignment of
translation models but employed too much expen-
sive human-annotated alignments (Stengel-Eskin
et al., 2019). Given these disadvantages, simple
statistical alignment tools, e.g., FastAlign (Dyer
et al., 2013) and GIZA++ (Och and Ney, 2003)2,
are still the most representative solutions due to
their efficiency and unsupervised fashion. We ar-
gue that the word alignment task, intuitively, is
much simpler than translation, and thus should be
performed before translation rather than inducing

2GIZA++ employs the IBM Model 4 as default setting.
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alignment matrix with heavy neural machine trans-
lation models. For example, the IBM word align-
ment model, e.g., FastAlign, is the prerequisite of
SMT. However, related research about lightweight
neural word alignment without NMT is currently
very scarce.

Inspired by cross-lingual word embeddings (Lu-
ong et al., 2015b, CLWEs), we propose to im-
plement a super lightweight unsupervised word
alignment model in Section 3, named MirrorAlign,
which encourages the embedding distance between
aligned words to be closer. We also provide the
theoretical justification from mutual information
perspective for our proposed contrastive learning
objective in Section 3.4, demonstrating the rea-
sonableness of our method. Figure 1 shows an
English sentence, and its corresponding Chinese
and Japanese sentences, and their word alignments.
The links indicate the correspondence between
English⇔Chinese and English⇔Japanese words.
If the Chinese word “举行” can be aligned to En-
glish word “held”, the reverse mapping should also
hold. Specifically, a bidirectional attention mech-
anism with contrastive estimation is proposed to
capture the alignment between parallel sentences.
In addition, we employ an agreement loss to con-
strain the attention maps such that the alignments
follow symmetry hypothesis (Liang et al., 2006).

Our contributions can be summarized as follows:

• We propose a super lightweight unsupervised
alignment model (MirrorAlign), even merely
updating the embedding matrices, achieves
better alignment quality on several public
benchmark datasets compare to baseline mod-
els while preserving comparable training effi-
ciency with FastAlign.

• To boost the performance of our model, we
design a theoretically and empirically proved
bidirectional symmetric attention with con-
trastive learning objective for word alignment
task, in which we introduce extra objective to
follow the mirror-like symmetry hypothesis.

• Further analysis show that the by-product of
our model in training phase has the ability
to learn bilingual word representations, which
endows the possibility to unify these two tasks
in the future.

2 Related Work

Word alignment studies can be divided into two
classes:

Statistical Models Statistical alignment models
directly build on the lexical translation models of
(Brown et al., 1993), also known as IBM models.
The most popular implementation of this statis-
tical alignment model is FastAlign (Dyer et al.,
2013) and GIZA++ (Och and Ney, 2000, 2003).
For optimal performance, the training pipeline
of GIZA++ relies on multiple iterations of IBM
Model 1, Model 3, Model 4 and the HMM align-
ment model (Vogel et al., 1996). Initialized with
parameters from previous models, each subsequent
model adds more assumptions about word align-
ments. Model 2 introduces non-uniform distortion,
and Model 3 introduces fertility. Model 4 and the
HMM alignment model introduce relative distor-
tion, where the likelihood of the position of each
alignment link is conditioned on the position of
the previous alignment link. FastAlign (Dyer et al.,
2013), which is based on a reparametrization of
IBM Model 2, is almost the existing fastest word
aligner, while keeping the quality of alignment.

In contrast to GIZA++, our model achieves
nearly 15× speedup during training, while achiev-
ing the comparable performance. Encouragingly,
our model is at least 1.5× faster to train than FastAl-
ign and consistently outperforms it.

Neural Models Most neural alignment ap-
proaches in the literature, such as Alkhouli et al.
2018, rely on alignments generated by statistical
systems that are used as supervision for training the
neural systems. These approaches tend to learn to
copy the alignment errors from the supervising sta-
tistical models. Zenkel et al. (2019) use attention
to extract alignments from a dedicated alignment
layer of a neural model without using any output
from a statistical aligner, but fail to match the qual-
ity of GIZA++. Garg et al. (2019) represents the
current state of the art in word alignment, outper-
forming GIZA++ by training a single model that
is able to both translate and align. This model is
supervised with a guided alignment loss, and ex-
isting word alignments must be provided to the
model during training. Garg et al. (2019) can pro-
duce alignments using an end-to-end neural train-
ing pipeline guided by attention activations, but
this approach underperforms GIZA++. The perfor-
mance of GIZA++ is only surpassed by training
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Figure 2: Illustration of MirrorAlign, where a pair of sentences are given as example. Each xi and yj are the
representation of words in source and target part respectively. Given yj , we can calculate context vector in source
part. The NCE training objective is encouraging the dot product of this context vector and yj to be large. The
process in the other direction is consistent. By stacking all of the soft weights, two attention maps As→t and At→s

can be produced, which will be bound by an agreement loss to encourage symmetry.

the guided alignment loss using GIZA++ output.
Stengel-Eskin et al. (2019) introduce a discrimina-
tive neural alignment model that uses a dot-product-
based distance measure between learned source and
target representation to predict if a given source-
target pair should be aligned. Alignment decisions
are conditioned on the neighboring decisions using
convolution. The model is trained using gold align-
ments. Zenkel et al. (2020) uses guided alignment
training, but with large number of modules and pa-
rameters, they can surpass the alignment quality of
GIZA++.

They either use translation models for alignment
task, which introduces a extremely huge number of
parameters (compared to ours), making the train-
ing and deployment of the model cumbersome. Or
they train the model with the alignment supervision,
however, these alignment data is scarce in practice
especially for low resource languages. These set-
tings make above approaches less versatile.

Instead, our approach is fully unsupervised at
word level, that is, it does not require gold align-
ments generated by human annotators during train-
ing. Moreover, our model achieves comparable
performance and is at least 50 times smaller than
theirs, i.e., #Parameters: 4M (ours) vs. 200M
(above).

3 Our Approach

Our model trains in an unsupervised fashion, where
the word level alignments are not provided. There-
fore, we need to leverage sentence-level supervi-
sion of the parallel corpus. To achieve this, we in-

troduce negative sampling strategy with contrastive
learning to fully exploit the corpus. Besides, in-
spired by the concept of cross-lingual word em-
bedding, we design the model under the following
assumption: If a target token can be aligned to a
source token, then the dot product of their embed-
ding vectors should be large. Figure 2 shows the
schema of our approach MirrorAlign.

3.1 Sentence Representation

For a given source-target sentence pair (s, t),
si, tj ∈ Rd represent the i-th and j-th word embed-
dings for the source and target sentences, respec-
tively. Luong et al. (2015a); Ding et al. (2020b) il-
lustrate that modelling the neighbour words within
the local window helps to understand the current
words. Inspired by this, we perform a extremely
simple but effective mean pooling operation with
the representations of its surrounding words to cap-
ture the contextualized information. Padding op-
eration is used to ensure the sequence length. As
a result, the final representation of each word can
be calculated by element-wisely adding the mean
pooling embedding and its original embedding:

xi =MEANPOOL([si]
win) + si, (1)

where win is the pooling window size. We can
therefore derive the sentence level representations
(x1, x2, ..., x|s|), (y1, y2, ..., y|t|) for s and t. In ad-
dition to modeling words, modeling structured in-
formation (such as syntactic information) may be
helpful to enhance the sentence representation (Li
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et al., 2017; Marcheggiani and Titov, 2017; Ding
and Tao, 2019), thus improving the word alignment.
We leave this exploration for future work.

3.2 Bidirectional Symmetric Attention
Bidirectional symmetric attention is the basic com-
ponent of our proposed model. The aim of this
module is to generate the source-to-target (aka.
s2t) and target-to-source (aka. t2s) soft attention
maps. The details of the attention mechanism:
given a source side word representation xi as query
qi ∈ Rd and pack all the target tokens together into
a matrix Vt ∈ R|t|×d. The attention context can be
calculated as:

ATTENTION (qi, Vt, Vt) = (ait · Vt)
⊺, (2)

where the vector ait ∈ R1×|t| represents the atten-
tion probabilities for qi in source sentence over all
the target tokens, in which each element signifies
the relevance to the query, and can be derived from:

ait = SOFTMAX (Vt · qi)⊺ . (3)

For simplicity, we denote the attention context of
qi in the target side as attt(qi). s2t attention map
As,t ∈ R|s|×|t| is constructed by stacking the prob-
ability vectors ait corresponding to all the source
tokens.

Reversely, we can obtain t2s attention map At,s

in a symmetric way. Then, these two attention
matrices As,t and At,s will be used to decode align-
ment links. Take s2t for example, given a target
token, the source token with the highest attention
weight is viewed as the aligned word.

3.3 Agreement Mechanism
Intuitively, the two attention matrices As,t and AT

t,s

should be very close. However, the attention mech-
anism suffers from symmetry error in different di-
rection (Koehn and Knowles, 2017).

To bridge this discrepancy, we introduce agree-
ment mechanism (Liang et al., 2006), acting like a
mirror that precisely reflects the matching degree
between As,t and At,s, which is also empirically
confirmed in machine translation (Levinboim et al.,
2015). In particular, we use an agreement loss to
bind above two matrices:

Lossdisagree =
∑

i

∑

j

(As,t
i,j −At,s

j,i)
2. (4)

In Section 4.6, we empirically show this agree-
ment can be complementary to the bidirectional

symmetric constraint, demonstrating the effective-
ness of this component.

3.4 Training Objective and Theoretical
Justification

Suppose that (qi, attt(qi)) is a pair of s2t word
representation and corresponding attention context
sampled from the joint distribution pt(q, attt(q))
(hereinafter we call it a positive pair), the primary
objective of the s2t training is to maximize the
alignment degree between the elements within a
positive pair. Thus, we first define an alignment
function by using the sigmoid inner product as:

ALIGN(q, attt(q)) = σ(⟨q, attt(q)⟩), (5)

where σ(·) denotes the sigmoid function and ⟨·, ·⟩
is the inner product operation. However, merely
optimizing the alignment of positive pairs ig-
nores important positive-negative relation knowl-
edge (Mikolov et al., 2013).

To make the training process more informative,
we reform the overall objective in the contrastive
learning manner (Oord et al., 2018; Saunshi et al.,
2019) with Noise Contrastive Estimation (NCE)
loss (Mikolov et al., 2013), which has been widely
used in many NLP tasks (Xiong et al., 2021; Gao
et al., 2021; Wang et al., 2022). Specifically, we
first sample k negative word representations qj

3

from the margin pt(q). Then, we can formulate the
overall NCE objective as following:

Lossis→t = − E
{attt(qi),qi,qj}

[log

ALIGN(qi, attt(qi))

ALIGN(qi, attt(qi)) +
∑k

j=1 ALIGN(qj , attt(qi))
]

(6)
It is evident that the objective in Eq. (6) ex-

plicitly encourages the alignment of positive pair
(qi, attt(qi)) while simultaneously separates the
negative pairs (qj , attt(qi)).

Moreover, a direct consequence of minimizing
Eq. (6) is that the optimal estimation of the align-
ment between the representation and attention con-
text is proportional to the ratio of joint distribution
and the product of margins pt(q,attt(q))

pt(q)·pt(attt(q)) which

3In the contrastive learning setting, qj and attt(qi) can be
sampled from different sentences. If qj and attt(qi) are from
the same sentence, i ̸= j; otherwise, j can be a random index
within the sentence length. For simplicity, in this paper, we
use qj where i ̸= j to denote the negative samples, although
with a little bit ambiguity.
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Method EN-FR FR-EN sym RO-EN EN-RO sym DE-EN EN-DE sym
NNSA 22.2 24.2 15.7 47.0 45.5 40.3 36.9 36.3 29.5
FastAlign 16.4 15.9 10.5 33.8 35.5 32.1 28.4 32.0 27.0
MirrorAlign 15.3 15.6 9.2 34.3 35.2 31.6 31.1 28.0 24.8

Table 1: AER of each method in different direction. “sym” means grow-diag symmetrization.

Model EN-FR RO-EN DE-EN
Naive Attention 31.4 39.8 50.9
NNSA 15.7 40.3 -
FastAlign 10.5 32.1 27.0
MirrorAlign 9.2 31.6 24.8
(Zenkel et al., 2020) 8.4 24.1 17.9
(Garg et al., 2019) 7.7 26.0 20.2
GIZA++ 5.5 26.5 18.7

Table 2: Alignment performance (with grow-diagonal
heuristic) of each model.

is the point-wise mutual information, and we can
further have the following proposition with repect
to the mutual information:

Proposition 1. The mutual information between
the word representation q and its corresponding
attention context attt(q) is lower-bounded by the
negative Lossis→t in Eq. (6) as:

I(q, attt(q)) ≥ log(k)− Lossis→t, (7)

where k is the number of the negative samples.

The detailed proof can be found in (Oord et al.,
2018). Proposition 1 indicates that the lower bound
of the mutual information I(q, attt(q)) can be max-
imized by achieving the optimal NCE loss, which
provides theoretical guarantee for our proposed
method.

Our training schema over parallel sentences
is mainly inspired by the bilingual skip-gram
model (Luong et al., 2015b) and invertibility mod-
eling (Levinboim et al., 2015). Therefore, the ul-
timate training objective should consider both for-
ward (s → t) and backward (t → s) direction,
combined with the mirror agreement loss. Techni-
cally, the final training objective is:

Loss =
|t|∑

i

Lossis→t +

|s|∑

j

Lossjt→s

+ α · Lossdisagree,

(8)

where Losss→t and Losst→s are symmetrical and
α is a loss weight to balance the likelihood and
disagreement loss.

4 Experiments

4.1 Datasets and Evaluation Metrics

We perform our method on three widely used
datasets: English-French (EN-FR), Romanian-
English (RO-EN) and German-English (DE-EN).
Training and test data for EN-FR and RO-EN are
from NAACL 2003 share tasks (Mihalcea and Ped-
ersen, 2003). For RO-EN, we add Europarl v8
corpus, increasing the amount of training data from
49K to 0.4M. For DE-EN, we use the Europarl
v7 corpus as training data and test on the gold
alignments. All above data are lowercased and
tokenized by Moses. The evaluation metrics are
Precision, Recall, F-score (F1) and Alignment Er-
ror Rate (AER).

4.2 Baseline Methods

Besides two strong statistical alignment models,
i.e. FastAlign and GIZA++, we also compare our
approach with neural alignment models where they
induce alignments either from the attention weights
or through feature importance measures.

FastAlign One of the most popular statistical
method which log-linearly reparameterize the IBM
model 2 proposed by (Dyer et al., 2013).

GIZA++ A statistical generative model (Och and
Ney, 2003), in which parameters are estimated us-
ing the Expectation-Maximization (EM) algorithm,
allowing it to automatically extract bilingual lexi-
con from parallel corpus.

NNSA A unsupervised neural alignment model
proposed by (Legrand et al., 2016), which applies
an aggregation operation borrowed from the com-
puter vision to design sentence-level matching loss.
In addition to the raw word indices, following three
extra features are introduced: distance to the diago-
nal, part-of-speech and unigram character position.
To make a fair comparison, we report the result of
raw feature in NNSA.

Naive Attention Averaging all attention matrices
in the Transformer architecture, and selecting the
source unit with the maximal attention value for
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Figure 3: An visualized alignment example. (a-c) illustrate the effects when gradually adding the symmetric
component, (d) shows the result of FastAlign, and (e) is the ground truth. The more emphasis is placed on the
symmetry of the model, the better the alignment results model achieved. Meanwhile, as depicted, the results of the
attention map become more and more diagonally concentrated.

each target unit as alignments. We borrow the re-
sults reported in (Zenkel et al., 2019) to highlight
the weakness of such naive version, where signif-
icant improvement are achieved after introducing
an extra alignment layer.

Others Garg et al. (2019) and Zenkel et al. (2020)
represent the current developments in word align-
ment, which both outperform GIZA++. However,
They both implement the alignment model based
on a sophisticated translation model. Further more,
the former uses the output of GIZA++ as supervi-
sion, and the latter introduces a pre-trained state-
of-the-art neural translation model. It is unfair to
compare our results directly with them. We report
them in Table 2 as references.

4.3 Setup

For our method (MirrorAlign), all the source
and target embeddings are initialized by Xavier
method (Glorot and Bengio, 2010). The embed-
ding size d and pooling window size are set to 256
and 3, respectively. The hyper-parameters α is
tested by grid search from 0.0 to 1.0 at 0.1 inter-
vals. For FastAlign, we train it from scratch by the

open-source pipeline4. Also, we report the results
of NNSA and machine translation based model
(Section 4.2). All experiments of MirrorAlign are
run on 1 Nvidia P40 GPU. The CPU model is
Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz.
Both FastAlign and MirrorAlign take nearly half a
hour to train one million samples.

4.4 Main Results
Table 2 summarizes the AER of our method over
several language pairs. Our model outperforms all
other baseline models. Comparing to FastAlign,
we achieve 1.3, 0.5 and 2.2 AER improvements on
EN-FR, RO-EN, DE-EN respectively.

Notably, our model exceeds the naive attention
model in a big margin in terms of AER (ranging
from 8.2 to 26.1) over all language pairs. We at-
tribute the poor performance of the straightforward
attention model (translation model) to its contex-
tualized word representation. For instance, when
translating a verb, contextual information will be
paid attention to determine the form (e.g., tense) of
the word, that may interfere the word alignment.

Experiment results in different alignment direc-
tions can be found in Table 1. The grow-diag sym-

4https://github.com/lilt/alignment-scripts
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Setup P R F1 AER
Losss→t 74.9 86.0 80.4 20.9
Losst→s 71.9 85.3 77.3 23.3
Losss↔t 81.5 90.1 86.1 14.1
MirrorAlign 91.8 89.1 90.8 9.2

Table 3: Ablation results on EN-FR dataset.

metrization benifits all the models.

4.5 Speed Comparison
Take the experiment on EN-FR dataset as an exam-
ple, MirrorAlign converges to the best performance
after running 3 epochs and taking 14 minutes to-
tally, where FastAlign and GIZA++ cost 21 and 230
minutes, respectively, to achieve the best results.
Notably, the time consumption will rise dozens of
times in neural translation fashion.

4.6 Ablation Study
To further explore the effects of several components
(i.e., bidirectional symmetric attention, agreement
loss) in our MirrorAlign, we conduct an ablation
study. Table 3 shows the results on EN-FR dataset.
When the model is trained using only Losss→t or
Losst→s as loss functions, the AER of them are
quite high (20.9 and 23.3). As expected, combined
loss function improves the alignment quality sig-
nificantly (14.1 AER). It is noteworthy that with
the rectification of agreement mechanism, the final
combination achieves the best result (9.2 AER), in-
dicating that the agreement mechanism is the most
important component in MirrorAlign.

To better present the improvements brought by
adding each component, we visualize the alignment
case in Figure 3. As we can see, each component
is complementary to others, that is, the attention
map becomes more diagonally concentrated after
adding the bidirectional symmetric attention and
the agreement constraint.

5 Analysis

Alignment Case Study Figure 4 shows an align-
ment example. Our model correctly aligns “do not
believe” in English to “glauben nicht” in German.
Our model, based on word representation, makes
better use of semantics to accomplish alignment
such that inverted phrase like “glauben nicht” can
be well handled. Instead, FastAlign, relied on the
positional assumption5, fails here.

5A feature h of position is introduced in FastAlign
to encourage alignments to occur around the diagonal.

china distinctive
EN DE EN DE

china chinas distinctive unverwechselbaren
chinese china distinct besonderheiten
china’s chinesische peculiar markante
republic chinesischer differences charakteristische
china’ chinesischem diverse einzelnen

cat love
EN DE EN DE
cat hundefelle love liebe
dog katzenfell affection liebt
toys hundefellen loved liebe
cats kuchen loves lieben
dogs schlafen passion lieb

Table 4: Top 5 nearest English (EN) and German (DE)
words for each of the following words: china, distinc-
tive, cat, and love.

Figure 4: Example of the DE-EN alignment. (a) is the
result of FastAlign, and (b) shows result of our model,
which is closer to the gold alignment. The horizontal
axis shows German sentence “wir glauben nicht , da
wir nur rosinen herauspicken sollten .”, and the vertical
axis shows English sentence “we do not believe that we
should cherry-pick .”.

Word Embedding Clustering To further investi-
gate the effectiveness of our model, we also analyze
the word embeddings learned by our model. In par-
ticular, following (Collobert et al., 2011), we show
some words together with its nearest neighbors
using the Euclidean distance between their embed-
dings. Table 4 shows some examples to demon-
strates that our learned representations possess a
clearly clustering structure bilingually and mono-
lingually. We attribute the better alignment results
to the ability of our model that could learn bilingual
word representation.

6 Conclusion and Future Work

In this paper, we presented a super lightweight neu-
ral alignment model, named MirrorAlign, that has
achieved better alignment performance compared
to FastAlign and other existing neural alignment
models while preserving training efficiency. We

h(i, j,m, n) = −
∣∣ i
m

− j
n

∣∣, i and j are source and target
indices and m and n are the length of sentences pair.
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empirically and theoretically show its effectiveness
over several language pairs. In the future, we would
further explore the relationship between CLWEs
and word alignments. A promising attempt is us-
ing our model as a bridge to unify cross-lingual
embeddings and word alignment tasks.
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