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Abstract

Simultaneous machine translation (SimulMT)
speeds up the translation process by starting
to translate before the source sentence is com-
pletely available. It is difficult due to lim-
ited context and word order difference between
languages. Existing methods increase latency
or introduce adaptive read-write policies for
SimulMT models to handle local reordering
and improve translation quality. However,
the long-distance reordering would make the
SimulMT models learn translation mistakenly.
Specifically, the model may be forced to predict
target tokens when the corresponding source
tokens have not been read. This leads to aggres-
sive anticipation during inference, resulting in
the hallucination phenomenon. To mitigate this
problem, we propose a new framework that de-
compose the translation process into the mono-
tonic translation step and the reordering step,
and we model the latter by the auxiliary sorting
network (ASN). The ASN rearranges the hid-
den states to match the order in the target lan-
guage, so that the SimulMT model could learn
to translate more reasonably. The entire model
is optimized end-to-end and does not rely on ex-
ternal aligners or data. During inference, ASN
is removed to achieve streaming. Experiments
show the proposed framework could outper-
form previous methods with less latency.

1 Introduction

Simultaneous machine translation (SimulMT) is
an extension of neural machine translation (NMT),
aiming to perform streaming translation by out-
putting the translation before the source input has
ended. It is more applicable to real-world scenarios
such as international conferences, where people
could communicate fluently without delay.

However, SimulMT faces additional difficul-
ties compared to full-sentence translation – such a
model needs to translate with limited context, and
the different word order between languages would
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Figure 1: Illustration of the training process. The trans-
lated output is rearranged to match the order of training
target, reducing anticipation. We use the gray part dur-
ing inference.

make streaming models learn translation mistak-
enly. The problems can often be alleviated by in-
creasing the context. Using more context allows
the model to translate with more information, trad-
ing off speed for quality. But the word order could
be very different among languages. Increasing the
context could only solve the local reordering prob-
lem. If long-distance reordering exists in training
data, the model would be forced to predict tokens in
the target language when the corresponding source
tokens have not been read. this is called anticipa-
tion (Ma et al., 2019). Ignoring the long-distance
reordering may cause unnecessarily high latency,
or encourage aggressive anticipation, resulting in
the hallucination phenomenon (Müller et al., 2020).

It sheds light on the importance of matching
the word order between the source and target lan-
guages. Existing methods aim to reduce antici-
pation by using syntax-based rules to rewrite the
translation target (He et al., 2015). It requires addi-
tional language-specific prior knowledge and con-
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stituent parse trees. Other approaches pre-train a
full-sentence model, then incrementally feed the
source sentence to it to generate monotonic transla-
tion target (pseudo reference) (Chen et al., 2021b;
Zhang et al., 2020). However, the full-sentence
model was not trained to translate incrementally,
which creates a train-test mismatch, resulting in
varying prediction quality. They require combining
with the original data to be effective.

To this end, this work aims to address long-
distance reordering by incorporating it directly into
the training process, as Figure 1 shows. We de-
compose the typical translation process into the
monotonic translation step and the reordering step.
Inspired by the Gumbel-Sinkhorn network (Mena
et al., 2018), we proposed an auxiliary sorting
network (ASN) for the reordering step. During
training, the ASN explicitly rearranges the hidden
states to match the target language word order. The
ASN will not be used during inference, so that the
model could translate monotonically. The proposed
method reduces anticipation, thus increases the lex-
ical precision (He et al., 2015) of the model without
compromising its speed. We apply the proposed
framework to a simple model – a causal Trans-
former encoder trained with connectionist tempo-
ral classification (CTC) (Graves et al., 2006). The
CTC loss can learn an adaptive policy (Chousa
et al., 2019), which performs local reordering by
predicting blank symbols until enough information
is read, then write the information in the target or-
der. Even so, it still suffers from high latency and
under-translation due to long-distance reordering in
training data. Our ASN handles these long-distance
reordering, improving both the latency and the qual-
ity of the CTC model. We conduct experiments on
CWMT English to Chinese and WMT15 German
to English translation datasets. Our contributions
are summarized below:

• We proposed a new framework for SimulMT.
The ASN could apply on various causal mod-
els to handle long-distance reordering.

• Experiments showed that the proposed
method could outperform the pseudo ref-
erence method. It indicated the proposed
method could better handle the long-distance
reordering.

• The proposed model is a causal encoder,
which is parameter efficient and could out-
perform wait-k Transformer with less latency.

Our implementation is based on fairseq (Ott et al.,
2019). The instructions to access our source code
is provided in Appendix A.

2 Related Works

2.1 Simultaneous Translation

SimulMT is first achieved by applying fixed read-
write policies on NMT models. Wait-if-worse and
Wait-if-diff (Cho and Esipova, 2016) form deci-
sions based on the next prediction’s probability or
its value. Static Read and Write (Dalvi et al., 2018)
first read several tokens, then repeatedly read and
write several tokens at a time. Wait-k (Ma et al.,
2019) trains end-to-end models for SimulMT. Its
policy is similar to Static Read and Write.

On the other hand, adaptive policies seek to
learn the read-write decisions. Some works ex-
plored training agents with reinforcement learning
(RL) (Gu et al., 2017; Luo et al., 2017). Others
design expert policies and apply imitation learn-
ing (IL) (Zheng et al., 2019a,b). Monotonic atten-
tion (Raffel et al., 2017) integrates the read-write
policy into the attention mechanism to jointly train
with NMT. MoChA (Chiu and Raffel, 2018) en-
hances monotonic attention by adding soft atten-
tion over a small window. MILk (Arivazhagan
et al., 2019) extends such window to the full en-
coder history. MMA (Ma et al., 2020c) extends
MILk to multi-head attention. Connectionist tem-
poral classification (CTC) were also explored for
adaptive policy by treating the blank symbol as
wait action (Chousa et al., 2019). Recently, making
read-write decisions based on segments of mean-
ingful unit (MU) (Zhang et al., 2020) improves the
translation quality. Besides, an adaptive policy can
also be derived from an ensemble of fixed-policy
models (Zheng et al., 2020).

When performing simultaneous interpretation,
humans avoid long-distance reordering whenever
possible (Al-Khanji et al., 2000; He et al., 2016).
Thus, some works seek to reduce the anticipation
in data to ease the training of simultaneous mod-
els. These include syntax-based rewriting (He
et al., 2015), or generating pseudo reference by
test-time wait-k (Chen et al., 2021b) and prefix-
attention (Zhang et al., 2020). We reduce anticipa-
tion from a different approach: instead of rewriting
the target, we let the model match its hidden states
to the target on its own. As shown in experiments,
our method is comparable or superior to the pseudo
reference method.
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2.2 Gumbel-Sinkhorn Network

The Sinkhorn Normalization (Adams and Zemel,
2011) is an iterative procedure that converts a
matrix into doubly stochastic form. It was ini-
tially proposed to perform gradient-based rank
learning. Gumbel-Sinkhorn Network (Mena et al.,
2018) combines the Sinkhorn Normalization with
the Gumbel reparametrization trick (Kingma and
Welling, 2014). It approximates sampling from a
distribution of permutation matrices. Subsequently,
Sinkhorn Transformer (Tay et al., 2020) applied
this method to the Transformer (Vaswani et al.,
2017) to model long-distance dependency in lan-
guage models with better memory efficiency. This
work applies the Gumbel-Sinkhorn Network to
model the reordering between languages, in order
to reduce anticipation in SimulMT.

3 Proposed Method

For a source sentence x = ⟨x1, x2, ..., x|x|⟩ and
a target sentence y = ⟨y1, y2, ..., y|y|⟩, in order
to perform SimulMT, the conditional probability
of translation p(y|x) is modeled by the prefix-to-
prefix framework (Ma et al., 2019). Formally,

pg(y|x) =
|y|∏

t=1

p(yt|x≤g(t),y<t). (1)

where g(t) is a monotonic non-decreasing function.
This way, the t-th token ŷt can be predicted with a
limited context x≤g(t). However, if long-distance
reordering exists in the training data, the model is
forced to generate target tokens whose correspond-
ing source tokens have not been revealed yet. This
issue is known as anticipation.

3.1 Training Framework

To overcome this, we introduce a latent variable Z:
a permutation matrix capturing the reordering pro-
cess from x to y. Thus, the translation probability
can be expressed as a marginalization over Z:

p(y|x) =
∑

Z

pg(y|x,Z)︸ ︷︷ ︸
monotonic
translation

p(Z|x)︸ ︷︷ ︸
reordering

. (2)

During training, since Z captures reordering, the
pg(y|x,Z) corresponds to monotonic translation,
which can be correctly modeled by a prefix-to-
prefix model without anticipation. During infer-
ence, we can translate monotonically by simply

removing the effect of Z:

ŷ = argmax
y

pg(y|x,Z = I). (3)

where I is the identity matrix. However, equation 2
is intractable due to the factorial search space of
permutations. One could select the most likely
permutation using an external aligner (Ran et al.,
2021), but such a method requires an external tool,
and it could not be end-to-end optimized. Instead,
we use the ASN to learn the permutation matrix Z
associated with source-target reordering. By doing
this, the entire model is optimized end-to-end.

Figure 2 shows the proposed framework applied
on the CTC model. It is composed of a causal
Transformer encoder, an ASN, and a length pro-
jection network. We describe each component in
detail below.

3.2 Causal Encoder

The encoder maps the source sequence x to hidden
states H = ⟨h1, h2, ..., h|x|⟩. During training, the
encoder uses a causal attention mask so that it can
be streamed during inference. To enable the trade-
off between quality and latency, we introduce a
tunable delay in the causal attention mask of the
first encoder layer. We define the delay in a similar
sense to wait-k: For delay-k, the t-th hidden state
ht is computed after observing the (t+ k − 1)-th
source token.

We pre-train the encoder with CTC loss (Li-
bovický and Helcl, 2018). Since the CTC is an
adaptive policy already capable of local reorder-
ing, initializing from it encourages the ASN to only
handle long-distance reordering. We study the ef-
fectiveness of this technique in Section 5.2.

3.3 Auxiliary Sorting Network (ASN)

The ASN samples a permutation matrix Z, which
would sort the encoder hidden states H into the
target order. To do so, the ASN first computes in-
termediate variables Q = ⟨q1, q2, ..., q|x|⟩ using a
stack of M non-causal Transformer decoder lay-
ers. These layers use the target token embeddings
as the context for cross attention. Providing this
context guides the reordering process1, inspired by
the word alignment task (Zhang and van Genabith,
2021; Chen et al., 2021a). We randomly mask out

1Although ASN has decoder layers and takes target tokens
as input, which are unavailable during inference, they are only
used to assist training.
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(a) The model consists of a causal encoder (lower left, blue), an ASN (right,
orange), and a length projection network (upper left, blue). “[M]” is the
masking embedding.
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(b) During inference, only the en-
coder and length projection (blue) are
used.

Figure 2: The architecture of the proposed model. Add & Norm layers are omitted for simplicity.

γ% of the context in ASN to avoid collapsing to a
trivial solution.

Subsequently, the Sinkhorn Attention in ASN
computes the attention scores between Q and H
using the scaled dot-product attention:

A =
QHT

√
dh

, (4)

where dh is the last dimension of H. To convert
the attention scores A to a permutation matrix Z,
ASN applies the Gumbel-Sinkhorn operator. Such
operator approximates sampling from a distribu-
tion of permutation matrices (Mena et al., 2018).
It is described by first adding the Gumbel noise
(equation 5), then scaling by a positive temperature
τ , and finally applying the l-iteration Sinkhorn nor-
malization (denoted by Sl(·)) (Adams and Zemel,
2011). We also add a scaling factor δ to adjust the
Gumbel noise level (equation 6). The output would
be doubly stochastic (Sinkhorn, 1964), which is a
relaxation of permutation matrix. We leave the de-
tailed description of the Gumbel-Sinkhorn operator
in Appendix F.

E ∈ RN×N i.i.d.∼ Gumbel(0, 1), (5)

Z = Sl ((A+ δE) /τ) , (6)

Next, we use a matrix multiplication of Z and H
to reorder H, the result is denoted by H:

H = ZH (7)

Since Z approximates a permutation matrix, us-
ing matrix multiplication is equivalent to permuting
the vectors in H. This preserves the content of its
individual vectors, and is essential to our method
as we will show in Section 5.1.

3.4 Length Projection
To optimize the model with CTC loss function, we
tackle the length mismatch between H and y by
projecting H to a µ-times longer sequence via an
affine transformation (Libovický and Helcl, 2018).
The µ represents the upsample ratio. For ASN
to learn reordering effectively, it is required that
the projection network and the loss must not per-
form reordering. Our length projection is time-
independent, and CTC is monotonic, both satisfy
our requirement.

3.5 Inference Strategy
To enable streaming, we remove the ASN during
inference2 (Figure 2(b)). Specifically, when a new
input token xt arrives, the encoder computes the
hidden state ht, then we feed ht directly to the
length projection to predict the next token(s). The
prediction is post-processed by the CTC collapse
function in an online fashion. Namely, we only
output a new token if 1) it is not the blank symbol
and 2) it is different from the previous token.

2While this seemingly creates a train-test discrepancy, we
address this in FAQ

46



4 Experiments

4.1 Datasets

We conduct experiments on English-Chinese and
German-English datasets. For En-Zh, we use a
subset3 of CWMT (Chen and Zhang, 2019) par-
allel corpora as training data (7M pairs). We use
NJU-newsdev2018 as the development set and re-
port results on CWMT2008, CWMT2009, and
CWMT2011. The CWMT test sets have up to 3
references. Thus we report the 3-reference BLEU
score. For De-En, we use WMT15 (Callison-Burch
et al., 2009) parallel corpora as training data (4.5M
pairs). We use newstest2013 as the development
set and report results on newstest2015.

We use SentencePiece (Kudo and Richardson,
2018) on each language separately to obtain its
vocabulary of 32K subword units. We filter out
sentence pairs that have empty sentences or exceed
1024 tokens in length.

4.2 Experimental Setup

All SimulMT models use causal encoders. During
inference, the encoder states are computed incre-
mentally after each read, similar to (Elbayad et al.,
2020). The causal encoder models follow a simi-
lar training process to non-autoregressive transla-
tion (NAT) (Gu et al., 2018; Libovický and Helcl,
2018; Lee et al., 2018; Zhou et al., 2020). We
adopt sequence level knowledge distillation (Seq-
KD) (Kim and Rush, 2016) for all systems. The
combination of Seq-KD and CTC loss has been
shown to achieve state-of-the-art performance (Gu
and Kong, 2021) and could deal with the reorder-
ing problem (Chuang et al., 2021). Specifically, we
first train a full-sentence model as a teacher model
on the original dataset, then we use beam search
with beam width 5 to decode the Seq-KD set. We
use the Seq-KD set in subsequent experiments. We
list the Transformer and ASN hyperparameters sep-
arately in Appendix C and D.

We use Adam (Kingma and Ba, 2015) with an
inverse square root schedule for the optimizer. The
max learning rate is 5e-4 with 4000 warm-up steps.
We use gradient accumulation to achieve an effec-
tive batch size of 128K tokens for the teacher model
and 32K for others. We optimize the model with
the 300K steps. Early stopping is applied when
the validation BLEU does not improve within 25K
steps. Label smoothing (Szegedy et al., 2016) with

3We use casia2015, casict2011, casict2015, neu2017.

ϵls = 0.1 is applied on cross-entropy and CTC
loss. For CTC, this reduces excessive blank sym-
bol predictions (Kim et al., 2018). Random seeds
are set in training scripts in our source code. For
the hardware information and environment settings,
see Appendix E.

For latency evaluation, we use SimulEval (Ma
et al., 2020a) to compute Average Lagging
(AL) (Ma et al., 2019) and Computation Aware Av-
erage Lagging (AL-CA) (Ma et al., 2020b). AL is
measured in words or characters, whereas AL-CA
is measured in milliseconds. We describe these met-
rics in detail in Appendix G. For quality evaluation,
we use BLEU (Papineni et al., 2002) calculated by
SacreBLEU (Post, 2018). We conduct statistical
significance test for BLEU using paired bootstrap
resampling (Koehn, 2004). For multiple references,
we use the first reference to run SimulEval4 and
use all available references to run SacreBLEU. The
language-specific settings for SimulEval and Sacre-
BLEU can respectively be found in Appendix H
and I.

4.3 Baselines

We compare our method with two target rewrite
methods which generate new datasets:

• Pseudo reference (Chen et al., 2021b): This
approach first trains a full-sentence model
and uses it to generate monotonic transla-
tion. The approach applies the test-time wait-
k policy (Ma et al., 2019), and performs
beam search with beam width 5 to generate
pseudo references. The pseudo reference set
is the combination of original dataset and the
pseudo references. We made a few changes 1)
instead of the full-sentence model, we use the
wait-9 model5. 2) instead of creating a new
dataset for each k, we only use k = 9 since it
has the best quality.

• Reorder: We use the word alignments to re-
order the target sequence. We use awesome-
align (Dou and Neubig, 2021) to obtain word
alignments on the Seq-KD set, and we sort
the target tokens based on their corresponding
source tokens. Target tokens that did not align
to a source token are placed at the position
after their preceding target token.

4we use SimulEval for latency metrics only. Only one
reference is required to run it.

5our wait-9 model has higher training set BLEU score than
applying test-time wait-k on full-sentence model.
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We train two types of models on either the Seq-KD
set, the pseudo reference set or the reorder set:

• wait-k: an encoder-decoder model. It uses
a fixed policy that first reads k tokens, then
repeatedly reads and writes a single token.

• CTC: a causal encoder trained with CTC loss.
The policy is adaptive, i.e., it outputs blank
symbols until enough content is read, outputs
the translated tokens, then repeats.

4.4 Quantitative Results
Figure 3 shows the latency-quality trade-off on the
CWMT dataset, each node on a line represents a
different value of k. Due to space limit, the signifi-
cant test results are reported in Appendix J.

First of all, although the vanilla CTC model has
high latency in terms of AL, they are comparable
to or faster than the wait-k model according to
AL-CA. This is due to the reduced parameter size.
Besides, CTC models outperform wait-k in low
latency settings. The pseudo reference method im-
proves the quality of wait-k and CTC models, and
it slightly improves the latency of the CTC model.
In contrast, the reorder method harms the perfor-
mance of both models. Meanwhile, our method
significantly improves both the quality and latency
of the CTC model across all latency settings, out-
performing the pseudo reference method and the
reorder method. In particular, our k = 1, 3 models
outperform wait-1 by around 13-15 BLEUs with a
faster speed in terms of AL-CA. This shows that
our models are more efficient than wait-k models
under low latency regimes.

Figure 4 shows the latency-quality trade-off on
the WMT15 De-En dataset. The vanilla CTC
model is much more competitive in De-En. It out-
performs vanilla wait-k in low latency settings in
BLEU and AL-CA, and its AL is much less than
those in En-Zh. Our method improves the qual-
ity of the CTC model, comparable to the pseudo
reference method. However, our method does not
require combining with the original dataset to im-
prove the performance.

To understand why our method is more effective
on CWMT, we calculate the k-Anticipation Rate
(k-AR) (Chen et al., 2021b) on the evaluation sets
of both datasets. For the definition of k-AR, see Ap-
pendix G. Intuitively, k-AR describes the amount
of anticipation (or reordering) in the corpus whose
range is longer than k source tokens. We report k-
AR across 1 ≤ k ≤ 9 in Figure 5. En-Zh has much

higher k-AR in general, and it decreases slower as
k increases. When k = 9, over 20% of anticipa-
tions remain in En-Zh, while almost none remains
in De-En. We conclude that En-Zh has much more
reordering, and over 20% of them are longer than
9 words. The abundance of long-distance reorder-
ing gives our method an advantage, which explains
the big improvement observed on CWMT. On the
other hand, De-En reordering is less common and
mostly local, so ASN has limited effect. Indeed,
we found that ASN predicts matrices close to the
identity matrix on De-En, whereas, on En-Zh, it
predicts non-identity matrices throughout training.

4.5 Qualitative Results

We show some examples from the CWMT test set.
We compare the predictions from wait-k, CTC, and
CTC+ASN models in Figure 6. In the first exam-
ple, wait-k predicts the sentence “demonstrative
is one of the major languages in the world’s lan-
guages,” which is clearly hallucination. CTC failed
to translate “8000” and “assets,” which shows that
CTC may under-translate and ignore source infor-
mation. In the second example, wait-k hallucinates
the sentence “this is the world’s best contest, but
to a earthquake without earthquake, it’s the open-
ing remarks.” CTC under-translates “silver said
in a telephone interview.” Our method generally
provides translation that preserves the content. Al-
though our model prediction is a bit less fluent than
wait-k, they are generally comprehensible. See
Appendix N for more examples.

We study the output of the ASN to verify that
reordering information is being learned. Figure 7
shows an example of the permutation matrix Z pre-
dicted by the ASN. The horizontal axis is labeled
with the source tokens. The vertical axis is the out-
put positions, each are labeled with 2 target tokens
(due to the length projection). In the example, the
English phrase “for all green hands” come late in
the source sentence, but their corresponding Chi-
nese tokens appear early in target, which causes
anticipation. Our ASN permutes the hidden states
of this phrase to early positions, so anticipation
no longer happens, and provides the correct train-
ing signal for the model. We provide additional
examples in Appendix M.

5 Ablation Study

We perform ablation studies on the CWMT dataset.
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5.1 Gumbel-Sinkhorn Network

We show that the Gumbel-Sinkhorn Network is
crucial to our method. We train CTC+ASN models
with k = 3 under the following settings:6

• No temperature: Set the temperature τ to 1.

• No noise: Set the Gumbel noise factor δ to 0.

• Gumbel softmax: Replace Sinkhorn normal-
ization with softmax.

• Default: The Gumbel-Sinkhorn Network.

6we do not use weight initialization in this subsection.

Table 1 shows the result of these settings. Without
low temperature, the ASN output Z is not sparse,
which means the content of individual vectors in H
is not preserved after applying ASN. Because ASN
is removed during inference, this creates a train-
test mismatch for the projection network, which is
detrimental to the prediction quality ((a) v.s. (d)).
Removing the noise ignores the sampling process,
which hurts the robustness of the model ((b) v.s.
(d)). Using softmax instead of Sinkhorn normaliza-
tion makes Z not doubly stochastic, which means
H might not cover every vector in H. Those not
covered are not optimized for generation during
training. However, during inference, all vectors
in H are passed to length projection to generate
tokens. This mismatch is also harmful to the result
((c) v.s. (d)).

Settings BLEU(↑)

(a) No temperature 28.39
(b) No noise 27.88
(c) Gumbel softmax 36.54
(d) Default 38.92

Table 1: Test set BLEU scores of different settings.

5.2 Weight Initialization

We investigate the effectiveness of initializing en-
coder parameters from the CTC baseline model.
Specifically, we train the CTC+ASN model from
scratch to compare it with the weight initialized set-
ting. As Figure 8 reveals, the weight initialization
significantly improves the translation quality while
slightly increasing the latency.

This improvement comes from what was already
learned by the CTC baseline model. The CTC
baseline model learns to perform reordering, i.e., it
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Figure 6: Examples from CWMT En→Zh. Text in red are hallucinations unrelated to source. We use k = 3 models.

Figure 7: The Z predicted by ASN. The horizontal axis
is the source tokens. The vertical axis is the output
positions, each corresponds to 2 target tokens.

outputs blank symbols when reading the informa-
tion, then outputs the content in the target language
order. Such information might span several source
tokens, so the AL of the CTC baseline model is
high (Figure 3). In our weight initialized setting,
ASN handles the long-distance reordering that CTC
was struggling with, while the local reordering al-
ready learned by CTC is preserved. In contrast,
when trained from scratch, ASN would learn most
of the reordering, so the encoder would not learn
to perform local reordering. We hypothesize that
if the model performs local reordering during in-
ference, its latency might increase, but the higher
order n-grams precision can improve, which ben-
efits its quality. Indeed, Figure 9 indicates that
the weight initialization mostly improves the 2,3,4-

1 2 3 4 5 6 7 8
AL

36

38

40

B
LE

U
Scratch
Weight init.

Figure 8: Latency and quality comparison between the
model trained from scratch and one with weight initial-
ization.
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Figure 9: The n-gram precision improvement of weight
initialization compared to Scratch across different de-
lays (k).

gram precision of the BLEU score.

6 Conclusion

We proposed a framework to alleviate the impact
of long-distance reordering on simultaneous trans-
lation. We apply our method to the CTC model and
show that it improves the translation quality and
latency, especially English to Chinese translation.
We verified that the ASN indeed learns the correct
alignment between source and target. Besides, we
showed that a single encoder can perform simulta-
neous translation with competitive quality in low
latency settings and enjoys the speed advantage
over wait-k Transformer.
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A Source Code

Our source code is available at https:
//github.com/George0828Zhang/
sinkhorn-simultrans. Please follow the
instructions in README.md to reproduce the
results.

B Datasets

We use the CWMT English to Chinese
and WMT15 German to English datasets
for experiments. They can be down-
loaded in the following links: 1) CWMT
http://nlp.nju.edu.cn/cwmt-wmt/)
2) WMT15 http://www.statmt.org/
wmt15/translation-task.html. The
WMT15 De-En is a widely used corpus for
simultaneous machine translation, in the news
domain. Another popular dataset is the NIST
En-Zh corpus, however, NIST is not publicly
available, thus we use CWMT corpus instead.
CWMT is also in the news domain.

Both datasets are publicly available. We didn’t
find any license information for both. We adhered
to the terms of use for both. We didn’t find any
information on names or uniquely identified indi-
vidual people or offensive content and the steps
taken to protect or anonymize them.

C Transformer Hyperparameters

Our architecture related hyperparameters are listed
in Table 2. We follow the base configuration of
Transformer for encoder-decoder models. For mod-
els without decoder, we follow the same configura-
tion for its encoder. The total parameter count for
Transformer is 76.9M. For encoder-only models
without ASN, it is 52.2M. The ASN has 12.6M
parameters.

Hyperparameter (A) (B)

encoder layers 6 6
decoder layers 6 0

embed dim 512 512
feed forward dim 2048 2048

num heads 8 8
dropout 0.1 0.1

Table 2: Transformer architecture related hyperparame-
ters for each model. (A) full-sentence and wait-k model
(B) CTC encoder model.

D ASN Hyperparameters

We perform a Bayesian hyperparameter optimiza-
tion on both datasets using the sweep utility pro-
vided by Weights & Biases (Biewald, 2020). Ta-
ble 3 shows the search range and the selected val-
ues. We found a well performing set in the 7th run
for CWMT and 1st run for WMT15. It is possi-
ble that different k might prefer different hyperpa-
rameters. However, we use the same set to fairly
compare to wait-k, and to reduce the cost. All sub-
sequent results are obtained using this set of values
if not specified.

Hyperparameter CWMT WMT15 Range

layers M 3 3 1, 3
iterations l 16 16 4, 8, 16

temperature τ 0.25 0.13 [0.05, 0.3]
noise factor δ 0.3 0.45 [0.1, 0.3]

upsample ratio µ 2 2 2, 3
mask ratio γ 0.5 0.5 [0., 0.7]

Table 3: ASN related hyperparameters and the search
range. We use Bayesian hyperparameter optimization,
so the combinations are not exhaustively searched.

E Hardware and Environment

For training, each run are conducted on a container
with a single Tesla V100-SXM2-32GB GPU, 4
CPU cores and 90GB memory. The operating
system is Linux-3.10.0-1127.el7.x86_
64-x86_64-with-glibc2.10. The version
of Python is 3.8.10, and version of PyTorch is
1.9.0. We use a specific version of fairseq (Ott
et al., 2019) toolkit, the instructions are provided
in README.md of our source code. All run uses
mixed precision (i.e. fp16) training implemented
by fairseq. All training took 10-15 hours to con-
verge (early stopped).

For inference, the evaluation are conducted on
another machine with 12 CPU cores (although we
restrict the evaluation to only use 2 threads), 32GB
memory and no GPU is used. The operating sys-
tem is Linux-5.11.0-25-generic-x86_
64-with-glibc2.10.

F Gumbel-Sinkhorn Operator

The Sinkhorn normalization (Adams and Zemel,
2011) iteratively performs row-wise and column-
wise normalization on a matrix, converting it to a
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doubly stochastic matrix. Formally, for a N dimen-
sional square matrix X ∈ RN×N , the Sinkhorn
normalization S(X) is defined as:

S0(X) = exp(X), (8)

Sl(X) = Tc
(
Tr

(
Sl−1(X)

))
, (9)

S(X) = lim
l→∞

Sl(X). (10)

where Tr and Tc are row-wise and column-wise
normalization operators on a matrix, defined below:

Tr(X) = X ⊘ (X1N1⊤N ), (11)

Tc(X) = X ⊘ (1N1⊤NX). (12)

The ⊘ denotes the element-wise division, and 1N
denotes a column vector full of ones. As the
number of iterations l grows, Sl(X) will eventu-
ally converge to a doubly stochastic matrix (equa-
tion 10) (Sinkhorn, 1964). In practice, we often
consider the truncated version, where l is finite.

On the other hand, the Gumbel-Sinkhorn
operator adds the Gumbel reparametrization
trick (Kingma and Welling, 2014) to the Sinkhorn
normalization, in order to approximate the sam-
pling process. It can be used to estimate marginal
probability via sampling. Formally, suppose that
a noise matrix ε is sampled from independent and
identically distributed (i.i.d.) Gumbel distributions:

E ∈ RN×N i.i.d.∼ Gumbel(0, 1). (13)

The Gumbel-Sinkhorn operator is described by
first adding the Gumbel noise E , then scaling by
a positive temperature τ , and finally applying the
Sinkhorn normalization:

S((X + E)/τ). (14)

By taking the limit τ → 0+, the output converges
to a permutation matrix. The Gumbel-Sinkhorn
operator approximates sampling from a distribution
of permutation matrices. Thus, the equation 2 can
be estimated through sampling:

p(y|x) = EZ∼p(Z|x) [pg(y|x,Z)] . (15)

In practice, we sample from p(Z|x,y) instead, as
it is easier to perform word alignment (p(Z|x,y))
than directly predicting order (p(Z|x)).

G Details on Evaluation Metrics

G.1 Average Lagging (AL)

The AL measures the degree the user is out of sync
with the speaker (Ma et al., 2019). It measures the
system’s lagging behind an oracle wait-0 policy.
For a read-write policy g(·), define the cut-off step
τg(|x|) as the decoding step when source sentence
finishes:

τg(|x|) = min{t| g(t) = |x|}

Then the AL for an example x,y is defined as:

ALg(x,y) =
1

τg(|x|)

τg(|x|)∑

t=1

g(t)− t− 1

|y|/|x|

The second term in the summation represents the
ideal latency of an oracle wait-0 policy in terms of
target words (or characters for Chinese). The AL
averaged across the test set is reported.

G.2 Computation Aware Average Lagging
(AL-CA)

Originally proposed for simultaneous speech-to-
text translation (Ma et al., 2020b), the AL-CA is
similar to AL, but takes the actual computation
time into account, and is measured in milliseconds.

ALCA
g (x,y)

=
1

τg(|x|)

τg(|x|)∑

i=1

dCA(yi)−
(i− 1) · Ts

|y|/|x| (16)

The dCA(yi) is the the time that elapses from the
beginning of the process to the prediction of yi,
which considers computation. Ts represents the
actual duration of each source feature. The second
term in the summation represents the ideal latency
of an oracle wait-0 policy in terms of milliseconds,
without considering computation. In speech-to-
text translation, Ts corresponds to the duration of
each speech feature. However, since our source
feature is text, the “actual duration” for a word is
unavailable, so we set Ts = 1.

The motivation behind using AL-CA here is to
show the speed advantage of CTC models. When
calculating AL-CA, we account for variance by
running the evaluation 3 times and report the aver-
age.

55



G.3 Character n-gram F-score (chrF)

The general formula for the chrF score is given by:

chrFβ = (1 + β2)
chrP · chrR

β2 · chrP + chrR
. (17)

where

• chrP: percentage of character n-grams in the
hypothesis which have a counterpart in the
reference.

• chrR: percentage of character n-grams in the
reference which are also present in the hypoth-
esis.

• β: a parameter which assigns β times more
importance to recall than to precision.

The maximum n-gram length N is optimal when
N = 6 (Popović, 2015), and the optimal β is shown
to be β = 2 (Popović, 2016).

The motivation behind using chrF2 is that 1) as
machine translation researchers, we are encouraged
to report multiple automatic evaluation metrics. 2)
BLEU is purely precision-based, while chrF2 is
F-score based, which takes recall into account. 3)
chrF2 is shown to correlate better with human rank-
ings than the BLEU score.

G.4 k-Anticipation Rate (k-AR)

For each sentence pair, we first use awesome-
align (Dou and Neubig, 2021) to extract word
alignments, then for each aligned target word yj ,
it is considered a k-anticipation if it is aligned to
a source word xi that is k words behind, in other
words, if i − k + 1 > j. See Figure 10 for an ex-
ample of 2-anticipation. The k-AR is calculated as
the percentage of k-anticipation among all aligned
word pairs.

Figure 10: An example of 2-anticipation. The links are
alignments, and the red link is an instance of anticipa-
tion.

H SimulEval Configuration

Table 4 show the language specific options for la-
tency evaluation on SimulEval, which affect the
AL calculation.

Options En Zh

–eval-latency-unit word char

–no-space false true

Table 4: Configuration for SimulEval under different
target languages.

I SacreBLEU Signatures

Table 5 shows the signatures of SacreBLEU evalu-
ation.

Lang Metric Signature

Zh BLEU
nrefs:var|bs:1000|seed:12345

|case:lc|eff:no|tok:zh
|smooth:exp|version:2.0.0

Zh chrF2
nrefs:var|bs:1000|seed:12345

|case:lc|eff:yes|nc:6 |nw:0
|space:no|version:2.0.0

En BLEU
nrefs:1|bs:1000|seed:12345

|case:lc|eff:no|tok:13a
|smooth:exp|version:2.0.0

En chrF2
nrefs:1|bs:1000|seed:12345
|case:lc|eff:yes|nc:6 |nw:0

|space:no|version:2.0.0

Table 5: The SacreBLEU signatures for each target
language and each metric.

J Detailed Statistics of Quality Metrics

Table 7 shows the detailed distributional statistics
of the quality metrics evaluated on the CWMT and
WMT15 datasets. All settings are trained once, but
we use statistical significant test using bootstrap
resampling.

K Latency-quality results with chrF

Figure 11 show the quality-latency trade off with
chrF on the CWMT En-zh dataset. Figure 12
show the quality-latency trade off with chrF on
the WMT15 De-En dataset. These results have
similar trends with BLEU score.
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Figure 11: Latency-quality trade off with chrF score on the CWMT En-Zh dataset. Each line represents a system,
and the 5 nodes corresponds to k = 1, 3, 5, 7, 9, from left to right. The figures share the same legend.
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Figure 12: Latency-quality trade off with chrF score on the WMT15 De-En dataset. Each line represents a system,
and the 5 nodes corresponds to k = 1, 3, 5, 7, 9, from left to right. The figures share the same legend.

L Performance with Oracle Reordering

We study our encoder models’ performance when
the oracle reordering is provided. To achieve this,
we re-use the ASN during inference, and fed the
(first) reference translation as the context to ASN
to estimate Z. The results compared to default
setting is shown in Table 6. This result serves as
a upperbound for the performance of CTC-based
encoder models.

M More on ASN Output

We describe how the target tokens are placed on
the vertical axis of the ASN output illustration.
Since the length projection upsamples H to 2 times
longer, each position of H corresponds to two tar-
get tokens (including repetition and blank sym-
bols introduced by CTC). To find the optimal po-
sition for each target tokens and blank symbols,
we use the Viterbi alignment (an implementation is
publicly available at https://github.com/
rosinality/imputer-pytorch) to align
the model’s logits and the actual target tokens.

Figure 13 shows more examples of the approx-
imated permutation matrix predicted by the ASN.

k Method BLEU 1/2/3/4-gram BP

1
Default 38.58 76.7 / 51.0 / 32.5 / 20.6 0.96
+ Oracle 41.59 76.0 / 52.7 / 35.9 / 23.9 0.96

3
Default 40.24 79.5 / 53.7 / 34.8 / 22.6 0.94
+ Oracle 41.75 77.5 / 53.7 / 36.5 / 24.4 0.95

5
Default 40.34 78.8 / 53.5 / 35.0 / 22.7 0.94
+ Oracle 41.70 76.0 / 52.4 / 35.5 / 23.6 0.98

7
Default 40.81 80.0 / 54.2 / 35.2 / 22.9 0.94
+ Oracle 43.37 78.8 / 55.2 / 37.9 / 25.8 0.96

9
Default 40.83 79.5 / 54.1 / 35.4 / 23.1 0.94
+ Oracle 41.77 76.3 / 52.7 / 35.5 / 23.6 0.98

Table 6: The BLEU score on the CWMT dataset, includ-
ing n-gram precision and brevity penalty (BP), of the
CTC+ASN system for each k with and without oracle
order.

The sentence pairs are from CWMT En-Zh test set.

N More CWMT Examples

Figure 14 shows more examples from CWMT
test set and the predictions of wait-k, CTC and
CTC+ASN models.
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O FAQ

Q1 The trained ASN cannot be used during
inference, how to guarantee the model can
still perform reordering?

We categorize reordering into local reordering and
long-distance reordering. Our goal is for the ASN
to primarily deal with long-distance reordering. In
Section 5.2, we observed that employing the weight
initialization improves the 2,3,4-gram precision
(but not the unigram), and slightly increases the
latency. This suggest that CTC+ASN model can
indeed perform local reordering during inference.

As for long-distance reordering, we stress that in
simultaneous interpretation, humans actively avoid
long-distance reordering in order to reduce latency,
which is also the goal of SimulMT. This provides
the justification for removing the ASN during in-
ference. (equation 3)

We additionally provide the performance when
Z is available during inference in Appendix L.

Q2 Using ASN during training may cause the
model to rely on Z, which may cause
train-test discrepancy during inference?

In terms of the mismatch of hidden representation,
because Gumbel-Sinkhorn gaurantees that Z is dou-
bly stochastic (and almost permutation, depending
on τ ), the representation before and after ASN
would only differ by a permutation. This is also
discussed in Section 5.1 where removing Sinkhorn
nomalization indeed negatively impact the perfor-
mance.

As for the mismatch of the order of the repre-
sentation, we note that the length projection net-
work is merely a position-wise affine transforma-
tion, which means it is independent of time, so
the mismatch of order between training and testing
would not negatively impact the prediction made
by the length projection network.

Q3 Proposed method underperform wait-k in
high latency.

Simultaneous translation aims to translate in a short
time, hence our work focuses on improving the
translation quality under low latency setting. The
higher latency model is less acceptable in practice.
For instance, a k = 9 model decodes a single word
after seeing 9 words. We included the results for
experimental completeness purpose.

For the reason why proposed method under-
perform wait-k model: Based on the observation

in Appendix L, 43.37 is the best performance of
CTC+ASN method. It is inferior to the wait-9
model’s 43.80. We suspect that it is caused by
the inherent difference between non-autoregressive
(NAR) model and auto-regressive (AR) model.
However, CTC+ASN method’s performance is rela-
tively consistent when the latency decreases, while
wait-k’s performance decreases drastically. There-
fore, to fit the simultaneous translation setting, our
proposed method is more suitable than wait-k.

Q4 Explanation for why ASN could
outperform Reorder and Pseudo reference
baselines?

For the Reorder baseline, we suspect that since the
external aligner is fixed and not jointly optimized, it
may produce incorrect alignments, or miss correct
ones, producing wrongful training targets.

As for the Pseudo reference baseline, there are
two problems that might limit its effectiveness. For
one, the pseudo reference is produced from a full-
sentence model while using a wait-k decoding strat-
egy, which is a train-test discrepancy. For another,
in order to compensate for the first issue, the orig-
inal translation is included as a second target for
each example. This leads to the infamous multi-
modality problem for non-autoregressive models,
which might be harmful to our CTC-based encoder.

Q5 What are the limitations of the proposed
method?

First of all, for SimulMT to be applicable to a con-
ference setting, we assume a streaming ASR is
available. However, we did not account for ASR
errors in our SimulMT models.

Second, as discussed in Section 4.4, our method
is only effective if the language pair includes suffi-
cient long-distance reordering. For instance, when
translation from English to Spanish, we there’s
hardly any reason to employ our method.

Finally, as discussed in Q3, our method is less
advantageous when the latency budget is high.

Q6 What are the risks of the proposed
method?

One risk is that our method may favor low-latency
over high precision, which means that erroneous
translation may occur, which might twist the mean-
ing of source sentence. However, latency and qual-
ity is inherently a trade-off, and erroneous trans-
lation could be mitigated by refinement or post-
editing techniques.
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Figure 13: More approximated permutation matrices predicted by ASN.
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CWMT En→Zh WMT15 De→En

Delay Method BLEU µ±95%CI chrF2 µ±95%CI BLEU µ±95%CI chrF2 µ±95%CI

offline Transformer 45.85 45.85±0.60 32.46 32.46±0.45 31.67 31.70±0.77 57.65 57.67±0.61

k = 1

wait-k 24.31 24.29±0.62 18.69 18.67±0.43 19.91 19.91±0.68 46.68 46.70±0.69
wait-k+Pseudo *25.93 25.91±0.66 *19.89 19.87±0.46 *20.63 20.63±0.68 *47.34 47.35±0.68
wait-k+Reorder 23.98 23.96±0.59 18.50 18.49±0.39 *20.54 20.55±0.65 *47.59 47.61±0.68
CTC 28.44 28.42±0.56 22.24 22.24±0.35 23.08 23.09±0.69 51.11 51.13±0.56
CTC+Pseudo †30.77 30.75±0.61 †23.81 23.81±0.38 †24.48 24.49±0.69 †52.31 52.32±0.56
CTC+Reorder †24.09 24.08±0.58 †20.49 20.48±0.36 †20.77 20.78±0.65 †48.84 48.85±0.56
CTC+ASN †38.58 38.57±0.45 †27.74 27.73±0.32 †24.17 24.19±0.70 †52.08 52.10±0.54

k = 3

wait-k 32.27 32.25±0.65 23.90 23.90±0.43 25.85 25.87±0.78 51.79 51.81±0.67
wait-k+Pseudo *33.53 33.52±0.64 *24.88 24.87±0.44 25.74 25.76±0.77 51.76 51.78±0.66
wait-k+Reorder *31.47 31.46±0.66 *23.54 23.54±0.45 *25.26 25.28±0.73 51.97 51.99±0.65
CTC 32.45 32.44±0.61 24.97 24.96±0.39 26.07 26.09±0.69 53.19 53.21±0.58
CTC+Pseudo †34.03 34.03±0.61 †26.05 26.05±0.39 †26.61 26.63±0.68 †53.89 53.91±0.55
CTC+Reorder †28.52 28.50±0.62 †23.28 23.28±0.40 †23.50 23.52±0.71 †51.04 51.06±0.55
CTC+ASN †40.24 40.23±0.51 †28.88 28.87±0.34 †26.53 26.55±0.73 †53.68 53.70±0.57

k = 5

wait-k 37.40 37.39±0.65 27.19 27.19±0.44 28.52 28.54±0.82 54.66 54.68±0.64
wait-k+Pseudo *37.96 37.95±0.67 *27.56 27.56±0.46 28.68 28.71±0.78 54.92 54.95±0.60
wait-k+Reorder *36.86 36.84±0.65 27.00 26.99±0.44 *27.35 27.38±0.75 *53.78 53.81±0.63
CTC 33.64 33.63±0.62 25.67 25.66±0.39 26.51 26.53±0.77 53.66 53.68±0.58
CTC+Pseudo †34.65 34.64±0.61 †26.45 26.45±0.40 †27.48 27.49±0.76 †54.41 54.43±0.60
CTC+Reorder †29.68 29.68±0.61 †23.99 23.98±0.38 †23.90 23.91±0.72 †51.41 51.44±0.57
CTC+ASN †40.34 40.33±0.50 †28.81 28.81±0.36 †27.43 27.45±0.75 †54.24 54.27±0.57

k = 7

wait-k 40.78 40.76±0.67 29.50 29.50±0.48 30.28 30.32±0.80 56.44 56.47±0.62
wait-k+Pseudo *42.34 42.34±0.62 *30.50 30.50±0.45 30.53 30.56±0.82 56.47 56.49±0.64
wait-k+Reorder *40.23 40.23±0.61 *29.03 29.03±0.45 *28.77 28.79±0.75 *55.55 55.58±0.57
CTC 34.14 34.12±0.58 25.96 25.95±0.40 26.77 26.78±0.72 53.82 53.84±0.62
CTC+Pseudo †36.04 36.04±0.63 †27.27 27.27±0.41 †27.66 27.67±0.75 †54.70 54.72±0.58
CTC+Reorder †29.45 29.44±0.64 †23.86 23.85±0.40 †24.21 24.23±0.70 †51.50 51.53±0.57
CTC+ASN †40.81 40.80±0.49 †29.22 29.21±0.35 †27.30 27.32±0.74 †54.18 54.21±0.57

k = 9

wait-k 43.80 43.79±0.63 31.42 31.42±0.45 30.52 30.55±0.77 56.77 56.79±0.61
wait-k+Pseudo *44.99 44.98±0.57 *32.23 32.23±0.45 *30.99 31.02±0.79 *57.14 57.16±0.62
wait-k+Reorder *43.27 43.27±0.62 *30.92 30.92±0.44 *29.37 29.39±0.80 *56.25 56.27±0.58
CTC 34.20 34.18±0.60 26.03 26.02±0.41 27.37 27.38±0.74 54.37 54.39±0.59
CTC+Pseudo †36.83 36.83±0.64 †27.67 27.66±0.41 †27.72 27.74±0.75 †54.75 54.77±0.58
CTC+Reorder †29.81 29.79±0.65 †24.07 24.06±0.40 †24.32 24.33±0.71 †51.66 51.68±0.58
CTC+ASN †40.83 40.82±0.51 †29.21 29.20±0.35 †28.00 28.02±0.78 †54.71 54.74±0.60

Table 7: Detailed quality metrics statistics on both datasets. Significance tests are conducted with paired bootstrap
resampling. “*” suggests significantly different (better or worst) from the wait-k baseline with p-value < 0.05. “†”
suggests significantly different from the CTC baseline. Bold text suggests the best value in the same k. If multiple
values are in bold, it means that these values are not significantly different according to paired bootstrap resampling.
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Figure 14: More examples from CWMT En→Zh. Text in red are hallucinations unrelated to source. We use k = 3
models.
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