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Abstract

This paper describes the SLT-CDT-UoS group’s
submission to the first Special Task on Formal-
ity Control for Spoken Language Translation,
part of the IWSLT 2022 Evaluation Campaign.
Our efforts were split between two fronts: data
engineering and altering the objective func-
tion for best hypothesis selection. We used
language-independent methods to extract for-
mal and informal sentence pairs from the pro-
vided corpora; using English as a pivot lan-
guage, we propagated formality annotations
to languages treated as zero-shot in the task;
we also further improved formality controlling
with a hypothesis re-ranking approach. On the
test sets for English-to-German and English-
to-Spanish, we achieved an average accuracy
of .935 within the constrained setting and .995
within unconstrained setting. In a zero-shot
setting for English-to-Russian and English-to-
Italian, we scored average accuracy of .590 for
constrained setting and .659 for unconstrained.

1 Introduction

Formality-controlled machine translation enables
the system user to specify the desired formality
level at input so that the produced hypothesis is
expressed in a formal or informal style. Due to
discrepancies between different languages in for-
mality expression, it is often the case that the same
source sentence has several plausible hypotheses,
each aimed at a different audience; leaving this
choice to the model may result in an inappropriate
translation.

This paper describes our team’s submission to
the first Special Task on Formality Control in
SLT at IWSLT 2022 (Anastasopoulos et al., 2022),
where the objective was to achieve control over bi-
nary expression of formality in translation (enable
the translation pipeline to generate formal or infor-
mal translations depending on user input). The task
evaluated translations from English (EN) into Ger-
man (DE), Spanish (ES), Russian (RU), Italian (IT),
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Japanese (JA) and Hindi (HI). Among these, EN-
{RU,IT} were considered zero-shot; for other pairs,
small paired formality-annotated corpora were pro-
vided. The task ran in two settings: constrained
(limited data and pre-trained model resources) and
unconstrained (no limitations on either resource).
Submissions within both the constrained and un-
constrained track were additionally considered in
two categories: full supervision and zero-shot.

Our submission consisted of four primary sys-
tems, one for each track/subtrack combination,
and we focused on the EN-{DE,ES,RU,IT} lan-
guage directions. We were interested in lever-
aging the provided formality-annotated triplets
(sre, tgtformal, ttinformal) to extract sufficiently
large annotated datasets from the permitted training
corpora, without using language-specific resources
or tools. We built a multilingual translation model
in the given translation directions and fine-tuned
it on our collected data. Our zero-shot submis-
sions used fine-tuning data only for the non-zero-
shot pairs. To boost the formality control (espe-
cially within the constrained track), we included a
formality-focused hypothesis re-ranking step. Our
submissions to both tracks followed the same con-
cepts, with the unconstrained one benefitting from
larger corpora, and thus more fine-tuning data.

In Section 2 we describe our submission to the
constrained track, including the data extraction step
(Section 2.2, 2.3). Our approach begins with ex-
tending this small set to cover more samples by
extracting them from the allowed corpora. We
use a language-independent approach of domain
adaptation for this. Then, we extract samples for
the zero-shot pairs (EN-{RU,IT}) based on data
collected for (EN-{DE,ES}). We then experiment
with re-ranking the top n model hypotheses with a
formality-focused objective function. Within our
systems, we provide the formality information as a
tag appended to the input of the model. Through-
out the paper we use [ to denote the formal style
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and I to denote the informal style.

All our models submitted to the “supervised”
subtracks achieved an average of +.284 accuracy
point over a baseline for all EN-{DE,ES,RU,IT} test
sets, while the “zero-shot”” models achieved an aver-
age improvement of .124 points on the EN-{RU,IT}
test sets. Our work highlights the potential of both
data adaptation and re-ranking approaches in at-
tribute control for NMT.

2 Constrained Track

The MuST-C textual corpus (Di Gangi et al., 2019)
with quantities listed in Table 1 was the only data
source allowed within the constrained track, along-
side the IWSLT corpus of formality-annotated sen-
tences (Nadejde et al., 2022). MuST-C is a collec-
tion of transcribed TED talks, all translated from
English. The IWSLT data itself came from two
domains: telephone conversations and topical chat
(Gopalakrishnan et al., 2019). The data was ad-
ditionally manually annotated at phrase level for
formal and informal phrases, and the organisers
provided an evaluation tool scorer.py which,
given a set of hypotheses, used these annotations
to match sought formal or informal phrases, yield-
ing an accuracy score when the number of correct
matches is greater than the number of incorrect
matches!. This scorer skips test cases where no
matches are found in the hypotheses.

In all our experiments we used the multilingual
Transformer model architecture provided within
fairseq (Ottet al., 2019). For our pre-training
data we used the full MuST-C corpus. We ap-
plied SentencePiece (Kudo and Richardson, 2018)
to build a joint vocabulary of 32K tokens across
all languages. We list the model specifications in
Table 2. Pre-training lasts 100K iterations or 63
epochs. We average checkpoints saved at roughly
the last 10 epochs.

2.1 Formality Controlling

Once the model was pre-trained, we fine-tuned it on
the supervised data to control the desired formality
of the hypothesis with a tagging approach (Sen-
nrich et al., 2016), whereby a formality-indicating
tag is appended to the source input. This method
has been widely used in research in various control-
ling tasks (e.g. Johnson et al., 2017; Vanmassen-
hove et al., 2018; Lakew et al., 2019).
'https://github.com/amazon-research/

contrastive—controlled-mt/blob/main/
IWSLT2022/scorer.py, accessed 8 April 2022.

2.2 Automatic Extraction of Formal and
Informal Data

Since our approach was strongly dependent on the
availability of labelled data, our initial efforts fo-
cused on making the training corpus larger by ex-
tracting sentence pairs with formal and informal
target sentences from the provided MuST-C corpus.
We made the assumption that similar sentences
would correspond to a similar formality level. Thus,
we decided to use the data selection approach to
select the most similar sentence pairs from the out-
of-domain corpus (MuST-C) to both the formal
and informal sides of the IWSLT corpus, which we
consider our in-domain data (each side separately).

Specifically, let G = (Ggpc,Ggr) be the
out-of-domain corpus (MuST-C), and let Sp =
(Ssrcastgt,]F) and S = (Ssre; Stgt,]l) be the in-
domain corpora (IWSLT). For simplicity, let us
focus on adaptation to Sp.

Our adaptation approach focuses on the target-
side sentences because the IWSLT corpus is paired
(for each English sentence there is a formal and
informal variant in the target language). The ap-
proach builds a vocabulary of non-singleton to-
kens from S, , then builds two language models:
LMsg from Syg g and LM¢ from a random sam-
ple of 10K sentences from Gy4; both language
models use the originally extracted vocabulary.
Then, we calculate the sentence-level perplexity
PP(LMg,Gigt) and PP(LMg,Gige). Finally,
the sentence pairs within GG are ranked by

PP(LMg,Ghy) — PP(LMg, Gigy).

Let Goorted by F> Gsorted_by_1 denote the resulting
corpora sorted by the perplexity difference. The in-
tuition behind this approach is that sentences which
use a certain formality will naturally rank higher on
the ranked list for that formality, due to similarities
in the used vocabulary.

To obtain the formal and informal corpora from
the sorted data, we needed to decide on a criterion.
Let 05 and I,,,s be the position of a sentence pair
in the formal/informal ranking, respectively. Our
first approach was simple: let C denote the size
of the out-of-domain corpus; we implemented an
Assigng function which, fora 6 € [0,C), assigned
a label to the sentence pair (src,tgt), using the
following rules:

F, if Fpos < 0 < Ipos;
Assigng < 1, if Ipos < 60 < Fpos;
None, otherwise.
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Corpus EN-DE EN-ES EN-IT EN-RU
MuST-C (v1.2) 229.7K 265.6K 253.6K 265.5K
IWSLT-22 0.8K 0.8K — —
Formality-annotated F I F I F I F I
INFEREASY 8.6K 86K 6.7K 6.7K 36.6K 36.6K 38.3K 38.3K
INFERFULL 13.7K 9.5K 10.5K 4.5K 11.4K 13.5K 12.0K 14.1K
+ZERO SHOT ON EN-{RU,IT} 13.7K 9.5K 10.5K 4.5K 0K 0K 0K 0K
+IWSLT-22 14.1K 99K 109K 49K 11.4K 13.5K 12.0K 14.1K

Table 1: Corpora containing training data used in the constrained track. Values indicate number of sentence pairs

after preprocessing.

CUDA_VISIBLE_DEVICES 0,1,2,3
—finetune-from-model x

-max—update =
—ddp-backend=legacy_ddp

—task multilingual_translation
—arch multilingual_transformer_iwslt_de_en
—-lang-pairs en-de,en-es,en-ru,en-it
—encoder-langtok tgt
—-share—encoders
—-share-decoder-input-output-embed
—optimizer adam

—adam-betas ' (0.9, 0.98)’

-1r 0.0005

—lr-scheduler inverse_sqrt
-warmup-updates 4000

"1e-07"
—label-smoothing 0.1

—criterion label_smoothed_cross_entropy
—dropout 0.3

-weight-decay 0.0001
—-save-interval-updates =*
—keep—-interval-updates 10
—no-epoch-checkpoints

-warmup—-init-1r

-max—-tokens 1000
—update-freq 2
-fpl6

Table 2: Parameters of fairseg-train for pre-
training and fine-tuning all models. The starred (x)
parameters depend on the track/subtrack and can be
found in the paper description or in the implementation.

We condition assignment on both positional lists
since common phrases such as (Yes! — Ja/) may
rank high on both sides, but should not get included
in either corpus. We determine 6 empirically by
selecting a value that yields the most data as a
result. These values were selected dynamically for
each language pair, and resulted in § = 0.45C for
EN-DE and # = 0.5C for EN-ES. We refer to this
approach as INFEREASY.

We quickly observed that the selection method
needed to take into account the relative ranking of
a sentence pair for both formalities. To illustrate
this, let § = 50, the number of sentences n = 100;
a sentence pair with rankings I, = 49, 55 = 51

will get included in the formal corpus, but with
Fpos = 1,105 = 50 it will not, because I is
in the top k for the informal set, even though the
relative difference between the two positions is
large. To amend this, we introduced a classifica-
tion by relative position difference: for any sen-
tence pair with positions (Fp,s, [,0s) We classify
it as formal if Fj,s — I,0s > . We determine
« empirically: using 0.05C and 0.2C as the lower
and upper bound, respectively, for several values
« in range we compute a language model from
the resulting data and calculate average perplexity
PP(LM¢rpus(a), IWSLT). We select the o value
which minimises this perplexity. We refer to this
approach as INFERFULL.

2.3 Generalisation for Zero-Shot Language
Pairs

For two language pairs (EN-{RU,IT}) no super-
vised training data was provided, meaning we could
only use the IWSLT corpus and our inferred data
from EN-{DE,ES} to obtain data for these pairs.
We decided to focus on comparisons on the source
(EN) side, meaning we could not use the IWSLT
corpus as it was paired. One observation we made
at this point was that, contrary to intuition, the same
source sentences within the MuST-C corpus had
different formality expressions in the German and
Spanish corpora, respectively.

Let EN-DEXES be a corpus of triplets of sen-
tences (srcex, tgtpe, tgtes) obtained by identifying
English sentences which occur in both the EN-DE
and EN-ES corpora. Since there are many such
sentences in the MuST-C corpus, the EN-DEXES
contains 85.72% of sentence pairs from the EN-DE
and 74.13% of pairs from the EN-ES corpus. After
marking the target sides of the EN-DEXES corpus
for formality with INFERFULL, we quantified in
how many cases both languages get the same label
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(formal of informal), and in how many cases they
get a different label (Table 3). Out of all annotated
triplets, only 5.8% triplets were annotated in both
target languages; this is a significantly smaller frac-
tion than expected. Within that group, almost 60%
triplets had matching annotations. This implies that
the same English sentence can sometimes (approx.
2 out of 5 times in our case) be expressed with dif-
ferent formality in the target language in the same
discourse situation.

EN-DE EN-ES Count % of annotated
F F 845 2.85%
I I 233 0.78%
F I 381 0.95%
I F 362 1.22%
F 0 10851 36.54%
I 0 7805 26.29%
0 F 6567 22.12%
0 I 2749 9.26%

Table 3: Context combinations for the EN-DEXES triplet
extracted from the MuST-C dataset. “(” denotes “no
context”.

Given the non-zero count of triplets with match-
ing formalities, we make another assumption:
namely that the English sentences of the triplets
with matching formalities may be of “strictly for-
mal” or “strictly informal” nature, meaning the
translations of at least some of those sentences to
Russian and Italian may express the same formality.
To extract formal and informal sentences for the
zero-shot pairs, we adapted the original method,
but this time using English as a pivot to convey the
formality information. As the in-domain corpus,
we used the English sentences whose German and
Spanish translations were both labelled as formal
or both as informal, respectively (columns 1,2 in
Table 3). We ranked the EN-RU and EN-IT corpora
by their source sentences’ similarity to that inter-
section (using the perplexity difference as before).

To infer the final corpora with the INFERFULL
method, we used the o which yielded corpora of
similar quantity to the ones for EN-{DE,ES }, since
we could not determine that value empirically.

2.4 Relative Frequency Model for Reranking:
FORMALITYRERANK

We observed that even when a model gets the for-
mality wrong in its best hypothesis, the correct
answer is sometimes found within the n best hy-

potheses, but at a lower position. We hypothesised
that by re-ranking the n-best list according to a
criterion different from the beam search log proba-
bility we could push the hypothesis with the correct
formality to the first position.

We performed an oracle experiment with
scorer.py to obtain an upper bound on what
can be gained by re-scoring the n-best list per-
fectly: we generated k-best hypotheses for k €
{1,5,10,20,30,..100}> and from each list of k
hypotheses we selected the first hypothesis (if any)
which scorer.py deemed of correct formality.
The results (Table 4) show that as we expand the
list of hypotheses, among them we can find more
translations of correct formality, up to a .959 aver-
age accuracy (+.106 w.r.t. the model) for £ = 100.
The column “# Cases” shows that on average in up
to 21 cases a hypothesis of the correct formality
could be found with re-ranking. Finally, for any £,
selecting the hypotheses with the correct formality
(Oracle) in place of the most probable ones does
(Model) not decrease translation quality, and may
improve it (column “BLEU”).

Accuracy 5 # Cases BLEU
Model Oracle “to-Pest °77 Model Oracle
1 .838 .838 0.00 0.00 2528 25.28
.858 .892 1.79 7.00 24.80 24.80
10 .857 913 2.66 11.50 25.10 25.53
20 .853 921 3.46 13.75 2474  25.15
30 .851 930 5.75 16.00 24.68  25.06
40 .853 936 7.84 16.75 2488 25.24
50 .853 944 9.64 18.25 24.84  25.20
60 .852 950 11.78 19.75 2471  25.04
70 .852 950 12.08 19.75 24.71 25.04
80 .852 952 12.78 20.25 2472  25.04
90 .852 954 13.58 20.50 2472  25.04
100 .853 959 14.66 21.25 2472  25.04

Table 4: Results of the oracle experiment. The used
model was constrained and trained with the INFERFULL
method, provided values are averaged across the devel-
opment set. ¢, pest describes the average distance to
the first hypothesis of correct formality for cases where
the most probable hypothesis is incorrect. The column
“# Cases” quantifies that phenomenon.

To re-rank the hypotheses we built a simple rel-
ative frequency model from the IWSLT data. For
each term t; € T we calculated its occurrence
counts Feqyn¢ in the formal set and T,y in the in-
formal set. Let count(t;) = Feount (ti) +Leount ().
Since we wished to focus on terms differentiating

2We capped the search at k& = 100 due to long inference
times for higher £ values.
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0.75 With FORMALITY RERANK
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Figure 1: Validation accuracy plot showing the effect
of applying FORMALITYRERANK to a list of £ model
hypotheses.

the two sets, we calculated the count difference
ratio and used it as the weight j:

’Fcount (tz) - ]Icount (tz) |

F tg) — 1 t
glea%i‘ count (tk) — Teount ()]

B(t:) =

We additionally nullified probabilities for terms for
which the difference of the number of occurrences
in the formal and informal sets was lower than the
third of total occurrences:

. ‘Fcount(ti)*ﬂcount(ti” 3.
k(t;) = {0, if Feount (t:)+lcount (ti) < 0.337%;

1, otherwise

p(Flti) = count (i) " B(ti) * k(t:)
pl1lr) = (200 < Bt « ()

For a hypothesis Y, a source sentence .S and con-
texts ¢, ¢ € {IF, I}, ¢ # ¢, our objective function in
translation thus became

p(Y[X,¢) = p(Y]X) + p(c]Y) = p(éY)

where

p(eY) = ZP(C\%)

Figure 1 shows how validation accuracy in-
creases when this method is used, and that the
model is now able to match the oracle accuracy for
nearly every k. For k£ = 100 the average improve-
ment in accuracy is .102. The effect of model’s

accuracy sometimes surpassing the oracle accuracy
(e.g. for k = 30) is a by-product of slight sample
size variations: the evaluation script scorer.py
depends on phrase matches, and a sample is only
counted for evaluation if a hypothesis has at least
one phrase match against the formality-annotated
reference.

2.5 Model Selection: BESTACCAVERAGING

We fine-tuned each model for 100K iterations on
the MuST-C corpus with formality tags appended
to relevant sentences. We then evaluated every
checkpoint (saved each epoch) with scorer.py
on IWSLT data. Our initial approach to selecting a
model assumed averaging the last 10 checkpoints
from training. We experimented with an alterna-
tive method to finding which checkpoints to aver-
age: we first computed the accuracy on the IWSLT
dataset for each checkpoint, and then selected a
window of 10 consecutive checkpoints with the
highest average accuracy (BESTACCAVERAGING).

2.6 Development Results

We report the validation results in Table 5. The first
result we observed was that in both language pairs
the pre-trained model (a strong baseline) learned
a dominant formality: formal for EN-DE (.853
accuracy to .147) and informal for EN-ES (.632
accuracy to .368).

We observed that both methods (INFEREASY
and INFERFULL) yield consistently better accu-
racy for dominant formalities than non-dominant
ones. Nevertheless, with INFERFULL we obtain an
average +.474 accuracy points over the baseline
for non-dominant formalities; INFEREASY fails to
learn meaningful control for non-dominant formal-
ities. Based on these results we focused out later
efforts on INFERFULL alone.

Continuing with INFERFULL, we noticed a sig-
nificant improvement of up to +.223 accuracy
points for (EN-DE, I) when using FORMALITYR-
ERANK on top of standard beam search (k = 100)
without impacting the translation quality. Finally,
BESTACCAVERAGING helped bring the average
accuracy score up to .961 without impacting trans-
lation quality.

2.7 Submitted Models

Based on the validation results, we submitted two
models to the constrained track: to the full su-
pervision subtrack, we submitted the INFERFULL
model with FORMALITYRERANK (k£ = 100) and
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MuST-C (BLEU)

IWSLT (Accuracy)

EN-DE EN-ES

EN-DE EN-ES EN-RU EN-IT F I " I Mean

Pre-trained 30.7 39.7 19.5 31.3 .853  .147 .368 .632 .500
INFEREASY 30.1 39.3 19.9 31.1 967 .167 .376 .595 .526
INFERFULL 30.1 39.8 19.8 31.2 978  .637 .854 .963 .858
+FORMALITYRERANK 30.1 39.8 19.8 31.2 1.000 .860 .968 .990 .955
+BESTACCAVERAGING  30.3 39.6 20.0 31.2 1.000 .899 .956 .990 961

Table 5: Results on the development sets for models built within the constrained track.

BESTACCAVERAGING upgrades; for the zero-shot
subtrack, we fine-tuned an alternative version of
the model where we skipped the EN-{RU,IT} fine-
tuning data, effectively making inference for these
zero-shot pairs*. We used the same augments as in
full supervision.

3 Unconstrained Track

Our submission for the unconstrained track largely
copies the constrained track one, but is applied to a
larger training corpus.

3.1 Data Collection and Preprocessing

We collect all datasets permitted by the organisers
for our selected language pairs, including:

* MuST-C (v1.2) (Di Gangi et al., 2019),
¢ Paracrawl (v9) (Banén et al., 2020),

* WMT Corpora (from the News Translation
task) (Barrault et al., 2021):

— NewsCommentary (v16) (Tiedemann,
2012),

— CommonCrawl (Smith et al., 2013),

— WikiMatrix (Schwenk et al., 2021),

— WikiTitles (v3) (Barrault et al., 2020),
— Europarl (v7, v10) (Koehn, 2005),

— UN (v1) (Ziemski et al., 2016),

— Tilde Rapid (Rozis and Skadins, 2017),
- Yandex’.

We list data quantities as well as availability for
all language pairs in Table 6. We preprocessed
the WMT and Paracrawl corpora: for both we first

“We labelled a small random sample of training data with
a random formality tag so the model learned to recognise the
symbol as part of the input.

‘https://translate.yandex.ru/corpus?
lang=en, accessed 4 Apr 2022.

ran a simple rule-based heuristic of removing sen-
tence pairs with sentences longer than 250 tokens,
and with a source-target ratio greater than 1.5; re-
moving non-ASCII characters on the English side,
pruning some problematic sentences (e.g. links).
We normalised punctuation using the script from
Moses (Koehn et al., 2007). We removed cases
where either sentence is empty or where the source
is the same as the target. Finally, we asserted that
the case (lower/upper) of the first characters must
be the same between source and target and that
if either sentence ends in a punctuation mark, its
counterpart must end in the same one. As the last
step, we removed identical and very similar sen-
tence pairs.

After the initial preprocessing, we ran the Bi-
Cleaner tool (Ramirez-Sanchez et al., 2020) on
each corpus; the algorithm assigns a confidence
score € [0, 1] to each pair, measuring whether the
sentences are good translations of each other, ef-
fectively removing potentially noisy sentences. We
removed all sentence pairs from the corpora which
scored below 0.7 confidence. The final training
data quantities are reported in Table 6.

3.2 Data Labelling

Before we applied the same method to obtain fine-
tuning data for the unconstrained track, we ob-
served that many sentence pairs in this corpus are
not dialogue, and hence useless for fine-tuning. As
the first step, we used the original perplexity-based
re-ranking algorithm to prune the unconstrained
corpus. We used the MuST-C corpus as in-domain
and all the unconstrained data as out-of-domain.
We truncated the unconstrained set to the top 5M
sentences most like the MuST-C data. We then
applied INFERFULL with « threshold adapted to
the data volume. The resulting data quantities can
be found in the last row of Table 6.
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COI‘pllS EN-DE EN-ES EN-IT EN-RU
MuST-C (v1.2) 0.23M 0.27T™M 0.25M 0.27T™M
Paracrawl (v9) 278.31M 269.39M 96.98M 5.38M

NewsCommentary v16 0.40M 0.38M 0.09M 0.34M
CommonCrawl 2.40M 1.85M — 0.88M
WikiMatrix 5.47TM — — 3.78M
WikiTitles (v3) 1.47TM — — 1.19M
Europarl (v7Iv10) 1.83M 1.97TM 1.91M —
UN (vl) — 11.20M — —
Tilde Rapid 1.03M — — —
Yandex — — — 1M
Total
Raw 291.14M 285.06M 99.23M 12.84M
Preprocessed 76.99M 91.29M 36.99M 3.86M
Formality-annotated F . F I F I F I
216.5K 187.2K 111.8K 129.7K 101.0K 172.0K 195.9K 218.4K

Table 6: Corpora containing training data used in the unconstrained experiments. Values indicate number of sentence

pairs after preprocessing.

3.3 Pre-training and Fine-tuning

We used an identical model architecture to the one
from the constrained track but extended the training
time: we pre-trained for 1.5M iterations (approx.
1.5 epochs) and fine-tuned for 0.25M iterations
(approx. 47 epochs). For fine-tuning, we used
the MuST-C corpus (to maintain high translation
quality) concatenated with the inferred formality-
annotated data (to learn formality control). We ap-
plied FORMALITYRERANK with £ = 50, but not
BESTACCAVERAGING as we found that the differ-
ences in average accuracy for most checkpoints is
minimal (and nears 100); instead, we averaged the
last 10 checkpoints.

3.4 Development Results

The development results (Table 7) surpassed those
achieved in the constrained track, presumably
thanks to richer corpora extracted for both formal-
ities. INFERFULL yielded near-perfect accuracy
for all sets but (EN-DE, I), and applying FORMALI-
TYRERANK effectively brought all scores up to a
mean accuracy of .999. Our pre-trained model for
this track achieved lower BLEU scores than for the
constrained track, which is explained by the test set
coming from the same domain as the constrained
training data.

3.5 Submitted model

Similarly to the constrained track, we submit two
models to the unconstrained track: to the full super-

vision subtrack, we submit the INFERFULL model
with FORMALITYRERANK (k = 50); for the zero-
shot subtrack, we fine-tune an alternative version of
that in which we skip the EN-{RU,IT} fine-tuning
data, effectively making inference for these pairs
zero shot.

4 Final Results

We report the final evaluation results in Table 8
(translation quality) and Table 9 (formality control).
In the latter we also provide the performance of our
baseline (pre-trained) model for reference.

Within the constrained track, we achieved near-
ideal accuracy for the dominant formality for each
language pair (between .961 and 1.000) with the
supervised model. Scores for non-dominant formal-
ities are weaker but still impressive for EN-{DE,ES }
with an average of .880. Our best model for EN-
{RU,IT} improved by .193 accuracy points over
the baseline. The models submitted to the uncon-
strained track again achieved an impressive average
accuracy of .992 for dominant formality; addition-
ally, performance for non-dominant formality in
EN-{DE,ES } improved significantly w.r.t. the con-
strained model, also averaging .992. This means
that with enough training data our methods were
capable of matching the performance on a minority
class w.r.t. a majority class.

Finally, contrary to the constrained track, the
unconstrained-zero-shot model achieved the best
accuracy for zero-shot pairs, to an average of .659.

347



MuST-C (BLEU) IWSLT (Accuracy)
EN-DE EN-ES EN-RU EN-IT EN-DE EN-ES Mean
F I F I
Pre-trained 28.9 39.5 18.5 29.3 634 366 .215 .785 .500
INFERFULL 323 40.8 20.4 32.0 990 1.000 .952 991 .983
+FORMALITYRERANK  32.3 40.8 20.4 32.0 1.000 1.000 .995 1.000 999

Table 7: Results on the development sets for models built within the unconstrained track.

BLEU COMET
Model name
EN-DE EN-ES EN-RU EN-IT EN-DE EN-ES EN-RU EN-IT
constrained-supervised (1) 31.50 36.53 21.41 33.28 4477 .6076 3311 5676
constrained-zero-shot (2)  31.25  36.65 21.43 33.15 4368  .6108  .3298  .5525
unconstrained-supervised (3)  32.50 36.98  22.01 33.56 4972 .6349 3846 .5927
unconstrained-zero-shot (4)  32.47 36.83 21.45 33.12 4851 .6209  .3565  .5623

Table 8: Translation quality results on the test sets for all submitted models. Numbers in brackets indicate number

of model submitted.

Model EN-DE EN-ES EN-RU EN-IT

odelname g I F 1 F I F I
constrained-pre-trained  .885 115 .457 543 .951 .049 .149 .851
constrained-supervised (1) 1.000 .886 .874 .980 .981 .234 .349 .961
constrained-zero-shot (2) — — — — 981 154 .294 .929
unconstrained-pre-trained 745  .255 .323 .677 .964 .036 .052 .948
unconstrained-supervised (3) 1.000 1.000 .981 1.000 .992 .136 .188 .980
unconstrained-zero-shot (4) — — — — 995 142 512 .986

Table 9: Accuracy results on the test data as measured by scorer.py.

5 Conclusions

Overall results suggest that it is easy for a pre-
trained translation model to learn controlled ex-
pression of the dominant type within a dichoto-
mous phenomenon while learning to render the
less-expressed type is significantly harder, espe-
cially in a low-resource scenario. Our methods
applied to the supervised language pairs (English-
to-German, English-to-Spanish) worked near un-
failingly, but using English as a pivot language
to propagate formality information did not help
achieve similar results for the zero-shot pairs.

We suspect that the significant accuracy gains
from FORMALITYRERANKING may have been par-
tially due to formality in the studied language pairs
itself being expressed primarily via certain token
words such as the honorific Sie in German creating
a pivot effect (Fu et al., 2019). As such, it may be
of interest for future research to study such meth-
ods applied to more complex phenomena, such as
grammatical expression of gender.

Finally, results for the EN-{RU,IT} language
pairs may not have been as good as expected be-
cause we used the inferred data from the con-
strained track to build the relative frequency model,
but the inferred data turned out to be not as high
quality as we expected. Future work may inves-
tigate a robust solution to this problem of propa-
gating formality via a source (pivot) language to
extract training data for other language pairs.

Code used for our implementation can
be accessed at https://github.com/
st-vincentl/iwslt_formality_slt_
cdt_uos/.
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