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Abstract

This paper describes the University of Mary-
land’s submission to the Special Task on For-
mality Control for Spoken Language Transla-
tion at IWSLT, which evaluates translation
from English into 6 languages with diverse
grammatical formality markers. We investigate
to what extent this problem can be addressed
with a single multilingual model, simultane-
ously controlling its output for target language
and formality. Results show that this strategy
can approach the translation quality and formal-
ity control achieved by dedicated translation
models. However, the nature of the underlying
pre-trained language model and of the finetun-
ing samples greatly impact results.

1 Introduction

While machine translation (MT) research has pri-
marily focused on preserving meaning across lan-
guages, linguists and lay-users alike have long
known that pragmatic-preserving communication
is an important aspect of the problem (Hovy, 1987).
To address one dimension of this, several works
have attempted to control aspects of formality in
MT (Sennrich et al., 2016; Feely et al., 2019;
Schioppa et al., 2021). Indeed, this research
area was formalized as formality-sensitive machine
translation (FSMT) by Niu et al. (2017), where
the translation is not only a function of the source
segment but also the desired target formality. The
lack of gold translation with alternate formality
for supervised training and evaluation has lead re-
searchers to rely on manual evaluation and syn-
thetic supervision in past work (Niu and Carpuat,
2020). Additionally, these works broadly adapt to
formal and informal registers as opposed to specifi-
cally controlling grammatical formality.

The Special Task on Formality Control on Spo-
ken Language Translation provides a new bench-
mark by contributing high-quality training datasets

⇤ equal contribution.

Source: Do you like1 Legos? did you2 ever
play with them as a child or even later?

German Informal: Magst du1 Legos? Hast
du2 jemals als Kind mit ihnen gespielt oder
sogar später?

German Formal: Mögen Sie1 Legos? Haben
Sie2 jemals als Kind mit ihnen gespielt oder
sogar später?

Table 1: Contrastive formal and informal translations
into German. Grammatical formality markers are
bolded and aligned via indices.

for diverse languages (Nădejde et al., 2022). In this
task, a source segment in English is paired with two
references which are minimally contrastive in gram-
matical formality, one for each formality level (for-
mal and informal; Table 1). Training and test sam-
ples are provided in the domains of “telephony data”
and “topical chat” (Gopalakrishnan et al., 2019) for
four language pairs (English-{German (DE), Span-
ish (ES), Hindi (HI), Japanese(JA)}) and a test
dataset for two additional “zero-shot” (ZS) lan-
guage pairs (EN-{Russian (RU), Italian (IT)}).
Markers of grammatical formality vary across these
languages. Personal pronouns and verb agreement
mark formality in many Indo-European languages
(e.g., DE, HI, IT, RU, ES), while in JA, Korean
(KO) and other languages, distinctions can be more
extensive (e.g., using morphological markers) to
express polite, respectful, and humble speech.

In this work, we investigate how to control gram-
matical formality in MT for many languages with
minimal resources. Specifically, we ask whether a
single multilingual model can be finetuned to trans-
late in the appropriate formality for any of the task
languages. We introduce additive vector interven-
tions to encode style on top of mT5-large (Xue
et al., 2021) and mBART-large (Liu et al., 2020),
and investigate the impact of finetuning on varying
types of gold and synthetic samples to minimize
reliance on manual annotation.
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2 Method

Given an input sequence x, we design a single
model that produces an output

y⇤ = arg max p(y|x, l, f ; ✓LM , ✓F )

for any language l and formality level f considered
in this task. The bulk of its parameters ✓LM are
initialized with a pre-trained multilingual language
model. A small number of additional parameters
✓F enable formality control. All parameters are
finetuned for formality-controlled translation.

2.1 Multilingual Language Models
We experiment with two underlying multilingual
models: 1) mT5-large1 — a multilingual variant of
T5 that is pre-trained on the Common Crawl-based
dataset covering 101 languages and 2) mBART-
large2 — a Transformer encoder-decoder which
supports multilingual machine translation for 50
languages. While mBART-large is pre-trained
with parallel and monolingual supervision, mT5-
large uses only monolingual dataset during the
pre-training phase. Following standard practice,
mT5 controls the output language, l, via prompts
(“Translate to German”), and mBART replaces the
beginning of sequence token in the decoder with
target language tags (<2xx>).

2.2 Additive Formality Control
While large-scale pre-trained language models
have shown tremendous success in multiple mono-
lingual and multilingual controlled generation
(Zhang et al., 2022) and style transfer tasks, their
application to controlled cross-lingual text gener-
ation have been limited. Few-shot style-transfer
approaches (Garcia et al., 2021; Riley et al., 2021;
Krishna et al., 2022) hold the promise of minimal
supervision but perform poorly on low-resource
settings and their outputs lack diversity.

A popular way of introducing control when
generating text with a particular style attribute
is tagging, where the desired control tags (e.g.,
<2formal>) are appended to the source or the tar-
get sequence. However, as discussed in Schioppa
et al. (2021), this approach has several limitations,
including but not limited to the necessity of includ-
ing the control tokens in the vocabulary at the start

124 layers with 1024 sized embeddings, 2816 FFN embed-
ding dimension, and 16 heads for both encoder and decoder.

212 layers with 1024 sized embeddings, 4096 FFN embed-
ding dimension, and 16 heads for both encoder and decoder.

Figure 1: Controlling the output formality of a multilin-
gual language model with additive interventions.

of the training, which restricts the enhancement of
pre-trained models with controllability.

We introduce formality control by adapting the
vector-valued interventions proposed by Schioppa
et al. (2021) for machine translation (MT), as il-
lustrated in Figure 1. Formally, given source text
x, a formality level f , an encoder E and decoder
D, parameterized by ✓LM , and a style embedding
layer (Emb) parameterized by ✓F with the same
output dimension as E, we have

Z = E(x), V = Emb(f)

y = D(Z + V )

Our formality levels can take values corresponding
to formal, informal, and “neutral” translations, the
last of which is used to generate “generic” transla-
tions in which there is no difference in the gram-
matical formality of the translation of the source if
translated formally or informally. Unlike Schioppa
et al. (2021) who use a zero-vector as their neutral
vector, we learn a separate vector.

2.3 Finetuning

Finetuning each multilingual model requires
triplets of the form (x, y, f) for each available tar-
get language, l, where x, y and f are the source text,
the reference translation and the formality label cor-
responding to the reference translation respectively.
The loss function is then given by:

L =
X

(x,y,l,f)

log p(y|x, l, f ; ✓LM , ✓F ) (1)

Given paired contrastive training samples of the
form (X, Yf , Yif ), as provided by the shared task,
the loss decomposes into balanced formal and in-
formal components, but does not explicitly exploit
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Language Size Length Style
Train Test Source Formal Informal Avg. TER # Phrasal # Neutral

EN-DE 400 600 22.78 24.68 24.57 0.126 1.89 23
EN-ES 400 600 22.72 22.64 22.60 0.089 1.56 49
EN-HI 400 600 22.90 25.92 25.92 0.068 1.57 68
EN-JA 1000 600 24.61 32.43 30.80 0.165 2.47 20

Table 2: Shared Task Data Statistics: We use “13a” tokenization for all languages except Japanese for which we use
“ja-mecab” implemented in the sacrebleu library.

the fact that Yi and Yf align to the same input:

L =
X

(x,yf ,l)

log p(yf |x, l, f ; ✓LM , ✓F )+

X

(x,yif ,l)

log p(yif |x, l, if ; ✓LM , ✓F )
(2)

2.4 Synthetic Supervision
Since paired contrastive samples are expensive to
obtain, we explore the use of synthetic training sam-
ples to replace or complement them. This can be
done either by automatically annotating naturally
occurring bitext for formality, which yields formal
and informal samples, and additionally by rewrit-
ing the translation to alter its formality to obtain
paired contrastive samples. The second approach
was used by Niu and Carpuat (2020) to control the
register of MT output. However, since this shared
task targets grammatical formality and excludes
other markers of formal vs. informal registers, we
focus on the first approach, thus prioritizing control
on the nature of the formality markers in the out-
put over the tighter supervision provided by paired
contrastive samples.

Given a translation example (x, y), we predict a
silver-standard formality label (f ) for the target y
using two distinct approaches:

• Rules (ES, DE, IT, RU): We label formality
using heuristics based on keyword search, de-
pendency parses, and morphological features.
We use spaCy (Honnibal et al., 2020) to (non-
exhaustively) retrieve documents that imply a
necessarily formal, necessarily informal, or am-
biguously formal label. In the case of an ambigu-
ously formal label, we treat it as unambiguously
formal (for examples, see B). The complete set
of rules for each of the languages are included
in the Appendix Table 12. While simple to im-
plement, these heuristics privilege precision over
recall, and risk biasing the synthetic data to the
few grammatical aspects they encode.

• Classifiers (HI, JA, IT, RU): We train a binary
formal vs. informal classifier on the shared task
data (HI, JA) and on the synthetic data (IT,
RU). Unlike rules, they can also be transferred
in a zero-shot fashion to new languages, and
might be less biased toward precision when well-
calibrated.

3 Evaluation Settings

Data The shared task provides English source
segments paired with two contrastive reference
translations, one for each formality level (informal
and formal) for four language pairs: EN-{DE, ES,
JA, HI} in the supervised setting and two language
pairs: EN-{RU, IT} in the zero-shot setting. The
sizes and properties of the datasets for the super-
vised language pairs are listed in Table 2. Formal
texts tend to be longer and more diverse than infor-
mal texts for JA compared to other language pairs.
The percentage of neutral samples (same formal
and informal outputs) vary from 2% (in JA) to 17%
(in HI). In the zero-shot setting, 600 test samples
are released for the two language pairs (RU, IT).

During development, the last 50 paired con-
trastive examples from each domain are set aside
as a validation set for each of the supervised lan-
guages (TASK DEV) and use the remaining samples
for training (TASK TRAIN).

Metrics We evaluate the translation quality of the
detruecased detokenized outputs from each systems
using BLEU (Papineni et al., 2002) and COMET
(Rei et al., 2020). We use the 13A tokenizer to re-
port SACREBLEU3 scores for all languages, except
Japanese, for which we use the JA-MECAB. We
also report the official formality accuracy (ACC.).
Given a set of hypotheses H , sets of corresponding
phrase-annotated formal references F and informal

3https://pypi.org/project/sacrebleu/2.
0.0/
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Model Target Language Size Source

Synthetic Finetuned

JA 15K JParaCrawl (Morishita et al., 2020)
HI 13K CCMatrix (Schwenk et al., 2021b)

IT, RU 15K Paracrawl v8 (Bañón et al., 2020)
DE 15K CommonCrawl, Europarl v7 (Koehn, 2005)
ES 15K CommonCrawl, Europarl v7, UN (Ziemski et al., 2016)

Bilingual Baselines
DE,ES,IT,RU 20M Paracrawl v9

HI 0.7M CCMatrix
JA 3.2M Wikimatrix (Schwenk et al., 2021a), JESC (Pryzant et al., 2018)

Table 3: Data sources from which unlabeled formality parallel examples are sampled for EN-X for training the
Synthetic Finetuned and the Bilingual baselines.

references IF , and a function � yielding phrase-
level contrastive terms from a reference, the task-
specific evaluation metric is defined as follows:

matchf =
X

j

[�(Fj) 2 Hj ^ �(IFj) /2 Hj ]

matchi =
X

j

[�(Fj) /2 Hj ^ �(IFj) 2 Hj ]

accj =
matchj

matchf + matchi
, j 2 {f, i}

We note that the task accuracy is a func-
tion of the number of matches in the hypothe-
ses, not the number of expected phrases, i.e.
matchf + matchif  kHk and discuss the im-
plications in the Appendix (Section C).

4 Experimental Conditions

We compare multilingual models, where a single
model is used to generate formal and informal
translations for all languages with bilingual models
trained for each language pair, as detailed below.

4.1 Multilingual Models
Data We consider three finetuning settings:

• Gold finetuned: the model is finetuned only on
paired contrastive shared task data (400 to 1000
samples per language pair).

• Synthetic finetuned: the model is finetuned on
synthetic silver-labelled triplets (up to 7500 sam-
ples per formality level and language as described
below).

• Two-pass finetuned: the Synthetic finetuned
model is further finetuned on a mixture of gold
data and 1000 examples re-sampled from the syn-
thetic training set for unseen languages, which
we use to avoid catastrophic forgetting from the
silver finetuning stage.

Synthetic samples are drawn from multiple data
sources (3), sampling at most 7500 examples for
each language and formality level. 4 The formality
labels are predicted as described in 2.4. Rule-based
predictors directly give a label. With classifiers, we
assign the formal label if P (formal|y) � 0.85 and
informal if P (formal|y)  0.15.

We additionally compare with the translations
generated from the base mBART-large model with
no finetuning, referred to as the “formality agnostic
mBART-large”.

Training settings We finetune mT5-large and
mBART-large with a batch size of 2 and 8 respec-
tively for 10 and 3 epochs respectively. We mask
the formality labels used to generate vector-valued
interventions with a probability of 0.2. The mT5-
large model — “synthetic finetuned mT5-large” —
is trained for an additional 5 epochs, with a batch
size of 2 on a mixture of task data for seen lan-
guages and a subset of the sampled synthetic data
for unseen languages. Again, we mask the formal-
ity tag with probability 0.2 except in the case of un-
seen languages where the formality tag is masked
with probability 1.0, resulting in the “two-pass fine-
tuned mT5-large” model.

Formality Classifiers Following Briakou et al.
(2021), we finetune XLM-R on binary classifica-
tion between formal and informal classes, using
the shared task datasets for each of the supervised
language pairs (DE, ES, JA, HI) and synthetic
datasets for zero-shot language pairs (RU, IT). We
treat the “neutral” samples as both “formal” and
“informal” when training the classifiers. We use the
Adam optimizer, a batch size of 32, and a learning
rate of 5⇥10�3 to finetune for 3 epochs. We report

4We do not experiment with varying the sizes of the syn-
thetic dataset due to the time constraints and leave it to the
future work.
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SAMPLES TO
EN-DE EN-HI EN-JA EN-ES

BLEU ACC. BLEU ACC. BLEU ACC. BLEU ACC.

Paired Contrastive F 35.0 100 28.7 98.7 33.1 95.3 32.6 100
Unpaired Triplets F 35.5 100 31.6 100 39.6 100 35.5 100

Paired Contrastive IF 32.7 98.5 26.4 98.3 32.3 100 33.8 100
Unpaired Triplets IF 35.9 98.6 30.9 98.4 40.3 100 39.6 97.9

Table 4: Results on the TASK DEV split when training Additive mT5-large with and without contrastive examples:
Sample diversity from Unpaired triplets improve BLEU and Accuracy over paired contrastive samples.

DATA EN-DE EN-HI EN-JA EN-ES

Paired Contrastive 0.397 0.371 0.421 0.505
Unpaired Triplets 0.459 0.415 0.460 0.580

Table 5: Results on the TASK DEV split: TER between
generated formal and informal sentences.

the accuracy of the learned classifiers trained on
the TASK TRAIN dataset in Appendix Table 14.

4.2 Bilingual Models
We consider two types of bilingual models:

1. Formality Agnostic: These models were re-
leased by the shared task organizers. Each
model is bilingual and trained on a sample of 20
million lines from the Paracrawl Corpus (V9)
using the Sockeye NMT toolkit. Models use
big transformers with 20 encoder layers, 2 de-
coder layers, SSRU’s in place of decoder self-
attention, and large batch training.

2. Formality Specific (Gold): We finetune the
models in [1] to generate a formal model and an
informal model for each language pair (except
the zero-shot language pairs).

The effective capacity of the bilingual, formality
specific models is 3.14B parameters.Each model
has 314M parameters, resulting in (314⇥2⇥4) =
2.5B parameters for the four supervised languages
(DE, ES, HI, JA) and two pre-trained models
(314 ⇥ 2) = 628M parameters for the unseen lan-
guages (RU, IT).This is significantly larger than
the capacities of our single multilingual models
(Additive mT5-large: 1.25B, Additive mBART-
large: 610M).

5 System Development Results

During system development, we explore the im-
pact of different types of training samples and fine-
tuning strategies on translation quality and formal-
ity accuracy on TASK DEV.

Contrastive Samples We estimate the benefits of
fine-tuning on informal vs. formal translations of
the same inputs for this task. We train two variants
of the gold finetuned mT5-large model
using 50% of the paired contrastive samples and
100% of the unpaired triplets (i.e., selecting one for-
mality level per unique source sentence) from the
TASK TRAIN samples (Table 4). Results show that
sample diversity resulting from unpaired triplets
leads to better translation quality as measured by
BLEU (Average Gain: Formal +3.2. Informal
+5.38), without compromising on the formality
accuracy. Training with paired samples result in
lower TER between formal and informal output
compared to unpaired triplets (Table 5), suggesting
that the outputs generated by the model trained on
paired samples are more contrastive. This further
motivates our two-pass finetuned model
which uses gold contrastive samples on the final
stage of finetuning to bias the model towards gen-
erating contrastive MT outputs.

While TASK DEV is too small to make definitive
claims, we report our system development results
in Tables 6 and 7. We observe that finetuning on
gold contrastive examples (gold-finetuned)
improves the translation quality and accuracy of the
translation models (formality-agnostic),
highlighting the importance of limited but high-
quality in-domain supervision on the resulting
models. Further, each of the mT5-large mod-
els improves in translation quality with additional
data and training. While the results are dramatic
due to size of both TASK TRAIN and TASK DEV,
the trends validate the approach to augment both
mBART-large and the mT5-large with additive
interventions to control formality.

6 Official Results

Submissions We submit five variants of multi-
lingual models (numbered [1-5] in Tables 8-11),
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MODEL
EN-DE EN-ES EN-JA EN-HI

BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC.

Bilingual
Formality Agnostic 33.2 0.432 33.8 41.3 0.675 24.5 13.0 -0.093 25.6 27.8 0.464 96.5
Formality Specific (Gold) 49.1 0.539 100.0 56.0 0.790 100.0 26.0 0.242 89.1 37.5 0.694 100.0

Multilingual Model
mBART-large
Formality Agnostic 33.3 0.295 68.9 27.0 0.120 56.5 18.3 -0.016 71.9 20.7 0.340 88.4
Gold Finetuned 42.8 0.462 95.9 41.1 0.548 97.7 24.7 0.326 89.4 29.6 0.678 95.6
mT5-large
Gold Finetuned 53.3 0.260 100.0 53.5 0.427 100.0 49.8 0.645 98.1 43.5 0.359 100.0
Synthetic Finetuned 64.5 0.557 100.0 50.7 0.345 100.0 58.5 0.837 97.7 61.2 0.844 100.0
Two-pass Finetuned 86.8 0.824 100.0 88.2 1.070 100.0 68.3 0.980 100.0 70.4 0.975 100.0

Table 6: Results on the TASK DEV split in the formal supervised setting. ACC.: formal accuracy.

MODEL
EN-DE EN-ES EN-JA EN-HI

BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC.

Bilingual
Formality Agnostic 37.2 0.470 66.2 45.8 0.691 75.5 13.5 -0.096 74.4 23.7 0.436 3.5
Formality Specific (Gold) 48.4 0.557 98.5 55.1 0.813 95.7 22.6 0.182 97.8 36.3 0.675 91.5

Multilingual Model
mBART-large
Formality Agnostic 29.3 0.262 31.1 26.3 0.101 43.5 16.2 -0.036 28.1 18.7 0.330 11.6
Gold Finetuned 39.6 0.456 76.5 40.4 0.582 95.3 21.6 0.289 72.7 27.7 0.631 82.8
mT5-large
Gold Finetuned 52.8 0.232 100.0 53.8 0.513 100.0 47.3 0.617 100.0 41.7 0.144 100.0
Synthetic Finetuned 66.0 0.563 100.0 57.6 0.530 100.0 59.0 0.813 98.5 57.7 0.761 100.0
Two-pass Finetuned 86.6 0.843 100.0 87.7 1.081 100.0 69.5 0.976 100.0 70.1 0.957 100.0

Table 7: Results on the TASK DEV split in the informal supervised setting. ACC.: informal accuracy.

and compare them to the bilingual models built on
top of the organizers’ baselines. We first discuss
results on the official test split for the supervised
setting (Tables 8, 9). To better understand the de-
gree of overall control afforded, we also report the
average scores of the formal and informal settings
in Table 10 before turning to the zero-shot setting
in Table 11.

Multilingual Approach The best multilingual
models ([1] & [4]) consistently outperform
the bilingual formality-agnostic
baselines, improving both translation quality
(Worst-case gain in Average BLEU: Formal
(+1.67), Informal: (+3.7)) and formality accuracy
(Worst-case gain in Average ACC.: Formal
(+40.38), Informal: (+31.6)). They approach the
quality of formal and informal bilingual systems,
but the gap in translation quality and formality
accuracy varies across languages. While for DE
and ES, there is a large difference in translation
quality (approx. 10 BLEU points) between the
multilingual models and the bilingual baselines,

the multilingual models consistently get higher
formality accuracy across language pairs and style
directions and also perform comparably with the
bilingual models in matching the translation quality
for HI and JA. We attribute these differences
to the amount of training data used across the
language pairs (HI: 0.7M to DE 20M). This is an
encouraging result, since the bilingual approach
uses a much larger language-specific parameter
budget and bitext for training than the all purpose
multilingual models, which can benefit from
transfer learning across languages.

mBART vs. mT5 The gold finetuned
mBART-large model achieves the best overall
translation quality among the multilingual variants
as expected given that mBART-large is pre-trained
on parallel text. Its translation quality is higher
than that of mT5-large models according to BLEU
and COMET for all languages except HI (infor-
mal), which could be attributed to the nature and
amount of pre-training data used for HI. Its formal-
ity accuracy is in the 90’s and within 5 percentage
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EN-DE EN-ES EN-JA EN-HI
BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC.

Bilingual Models
Formality Agnostic 33.0 0.472 53.6 37.5 0.646 37.9 14.9 -0.102 23.3 26.5 0.519 98.8
Formal Gold Finetuned 45.9 0.557 100.0 48.6 0.734 98.4 26.0 0.290 87.1 23.0 0.303 98.9

Multilingual Models
mBART-large
Formality Agnostic 35.1 0.344 83.6 26.9 0.210 67.8 18.3 0.051 93.4 20.1 0.383 93.5

[4]Gold Finetuned 38.6 0.484 93.6 38.3 0.549 96.7 26.1 0.397 78.2 29.7 0.691 98.5
mT5-large

[3]Gold Finetuned 7.9 -1.472 100.0 5.2 -1.340 97.0 8.9 -0.792 88.5 3.9 -1.152 99.6
[2] Synthetic Finetuned 22.1 0.076 92.4 28.1 0.274 86.5 16.3 -0.086 84.5 22.6 0.305 99.5
[1]Two-pass Finetuned 37.0 0.302 99.4 38.6 0.509 99.5 24.7 0.273 86.3 29.9 0.471 99.4

Table 8: Results on the official test split in the formal supervised setting. Best scores from multilingual and bilingual
systems are bolded. Our official submissions to the shared task are numbered [1-4].

MODEL
EN-DE EN-ES EN-JA EN-HI

BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC.

Bilingual Models
Formality Agnostic 32.3 0.476 46.4 40.4 0.672 62.1 15.5 -0.094 76.7 20.8 0.493 1.2
Formality Specific (Gold) 43.5 0.559 90.0 48.2 0.762 92.9 23.5 0.272 98.7 31.2 0.724 92.1

Multilingual Models
mBART-large
Formality Agnostic 28.4 0.299 16.4 25.3 0.205 32.2 16.2 0.032 6.6 16.7 0.370 6.5

[4]Gold Finetuned 36.1 0.472 77.4 38.3 0.549 82.7 22.8 0.346 88.0 27.6 0.670 64.7
mT5-large

[3]Gold Finetuned 7.3 -1.424 96.0 5.9 -1.295 96.1 7.2 -0.795 98.9 2.7 -1.205 96.5
[2] Synthetic Finetuned 21.7 0.046 91.4 28.2 0.337 91.6 13.6 -0.135 83.3 17.8 0.277 8.3
[1]Two-pass Finetuned 35.9 0.301 96.5 38.0 0.539 93.2 22.3 0.252 97.5 29.2 0.439 98.7

Table 9: Results on the official test split in the informal supervised setting. Best scores from multilingual and
bilingual systems are bolded. Our official submissions to the shared task are numbered [1-4].

points to the highest score for all languages except
Japanese (78.2%) in the formal direction. In the
informal direction, the gap between mBART-large
and the best system on formality accuracy is larger
across the board (Average Acc.: +19.3), suggest-
ing that finetuning on gold data cannot completely
recover an informal translation despite generally
strong performance in formal translations.

Finetuning strategies Results show that the com-
bination of synthetic and gold data is crucial to
help the mT5-large-based model learn to trans-
late and mark formality appropriately. Finetun-
ing only on the gold data leads to overfitting: the
model achieves high formality accuracy scores, but
poor translation quality (BLEU < 10). Manual
inspection of mT5-large-based system outputs sug-
gests that translations often include tokens in the
wrong language (Appendix Table 13). Finetun-
ing on synthetic data improves translation qual-

ity substantially compared to gold data only (Av-
erage gain in BLEU: Formal (+15.8), Informal
(+14.6)). Two-pass finetuning improves formality
control (Average gain in ACC.: Formal (+5.43), In-
formal (+27.85)), with additional translation qual-
ity improvement across the board over synthetic-
finetuned model (Average gain in BLEU: Formal
(+10.27), Informal (+11.03); COMET: Formal
(+0.247), Informal (+0.252)). While we primarily
focused on the impact of synthetic supervision on
mT5-large, we believe a similar investigation using
mBART-large would yield interesting results and
leave this as future work.

Performance across languages While the higher
resource language pairs (DE, ES) achieve better
translation quality (in BLEU and COMET) over
the relatively lower resource languages (HI, JA),
the formality accuracy is more comparable across
the language pairs for the multilingual models
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MODEL
EN-DE EN-ES EN-JA EN-HI

BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC.

Bilingual Models
Formality Agnostic 32.7 0.474 50.0 39.0 0.659 50.0 15.2 -0.100 50.0 23.7 0.506 50.0
Formality Specific (Gold) 44.7 0.558 95.0 48.4 0.748 95.7 24.8 0.281 92.9 27.1 0.513 95.5

Multilingual Models
mBART-large
Formality Agnostic 31.8 0.322 50.0 26.1 0.207 50.0 17.3 0.041 50.0 18.4 0.377 50.0

[4]Gold Finetuned 37.4 0.478 85.5 38.3 0.549 89.7 24.5 0.371 83.1 28.7 0.680 81.6
mT5-large

[3]Gold Finetuned 7.6 -1.448 98.0 5.6 -1.317 96.6 8.1 -0.794 93.7 3.3 -1.179 98.1
[2] Synthetic Finetuned 21.9 0.061 91.9 28.2 0.305 89.1 15.0 -0.111 83.9 20.2 0.291 53.9
[1]Two-pass Finetuned 36.5 0.301 98.0 38.3 0.524 96.4 23.5 0.263 91.9 29.6 0.455 99.1

Table 10: Averaged formal and informal results on the official test split in the supervised setting. Best scores from
multilingual and bilingual systems are bolded. Our official submissions to the shared task are numbered [1-4].

MODEL
To Formal To Informal

EN-IT EN-RU EN-IT EN-RU
BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC. BLEU COMET ACC.

Bilingual baselines 37.0 0.557 4.5 27.9 0.220 93.3 44.2 0.618 95.5 22.0 0.169 6.7
[1] mT5-large (ZS) 27.6 0.306 32.8 22.7 0.123 100.0 32.6 0.379 97.9 17.0 0.058 1.1
[4] mBART-large (ZS) 30.2 0.545 38.7 26.2 0.275 100.0 35.0 0.597 95.9 20.8 0.203 13.8
[5] mT5-large (FS) 27.1 0.302 49.7 20.7 0.007 100.0 31.2 0.346 93.3 15.5 -0.050 1.8

Table 11: Results on the official test split for the zero-shot setting. Our official submissions to the shared task are
numbered [1-5].

(standard deviation: mT5-large (4), mBART-large
(10)). We can observe that the task accuracy is low-
est (< 90%) when translating to formal Japanese.
By inspection, we observe three broad classes of er-
rors: 1) lexical choice, 2) cross-script matching, 3)
ambiguity in politeness levels (Feely et al., 2019).
Lexical choice is invariant in machine translation
and is occasionally a valid error in the case of mis-
translation, so we focus on the latter two error cases.
Japanese has three writing systems and false pos-
itives in formality evaluation can occur when sur-
face forms do not match as in the case ofs√⌅
which can also be written as⌦B⌫M⌅ (gloss:
‘interesting’). Finally, there are cases in which the
system and reference formality mismatch but can
both be interpreted as formal (e.g., "�>⇡ vs.
"✏; gloss: ‘work’ (polite) vs. ‘work’ (formal)).

Zero-Shot We observe limited zero-shot trans-
fer of grammatical formality to unseen lan-
guages (Table 11). For both mBART-large and
mT5-large models, the EN-IT performance is
biased towards informal translations, while EN-
RU is biased in the formal direction. In the case of
EN-IT, both mBART-large and mT5-large almost
always interpret the English second person pronoun
as second person plural when translating to formal,

exploiting the ambiguity of English on the source
side. By contrast, when generating informal transla-
tions, pronouns are typically preserved as singular.
In comparison, with mT5-large-based translations
into RU, we see almost unanimous preference to-
ward the formal, likely due to sampling bias when
curating the synthetic training set. We also observe
that mBART-large prefers to translate in a formal
manner irrespective of desired target. In addition,
when mBART-large fails to account for the tar-
get formality, it often generates paraphrases of the
formal target. These strong preferences might be
symptoms of systematic differences in formality
across languages in the training data of these mod-
els. Finally, the use of silver standard formality
labels (“fully supervised” setting (FS)) does not
improve over the zero-shot approach, with similar
observations of mT5-large-based translations as
outlined above. We observe that in the case of EN-
RU, there is a higher incidence of code-switched
translations. This may indicate noise introduced in
the automatic labeling process and requires further
examination in future work.
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7 Related Work

Most MT approaches only indirectly capture the
style properties of the target text. While efforts
have been made to generate better outputs in their
pragmatic context via controlling formality (Sen-
nrich et al., 2016; Feely et al., 2019; Niu and
Carpuat, 2020; Schioppa et al., 2021), complex-
ity (Marchisio et al., 2019; Agrawal and Carpuat,
2019), gender (Rabinovich et al., 2017), these stud-
ies only focus a single language pair. Due to the
paucity of style annotated corpora, zero-shot style
transfer within and across languages has received
a lot of attention. However, adapting pre-trained
large-scale language models during inference us-
ing only a few examples (Garcia et al., 2021; Riley
et al., 2021; Krishna et al., 2022) limits their trans-
fer ability and the diversity of their outputs. While
prior works use pre-trained language models like
BERT, GPT to intialize ✓LM for improving trans-
lation quality (Guo et al., 2020; Zhu et al., 2019),
in this work, we focus on adapting sequence-to-
sequence multilingual models for controlled gener-
ation of a desired formality and study style transfer
in multilingual supervised and zero-shot settings.

8 Conclusion

We present the University of Maryland’s submis-
sion which examines the performance of a single
multilingual model allowing control of both tar-
get language and formality. Results show that
while multilingual FSMT models lag behind large,
bilingual, formality-specific models in terms of
MT quality, they show stronger formality control
performance across all the language pairs. Fur-
thermore, while synthetic unpaired triplets help
mT5-large with FSMT performance and the
two-stage finetuning process improves MT quality
and contrastive task performance, mBART-large
still outperforms this class of models, likely due to
its large amount of pre-training supervision.

In future work, we suggest a deeper investiga-
tion of potentially confounding roles in the study
of FSMT, such as the impact of formal register
as compared to grammatical formality in training
data. We also suggest a thorough analysis of what
is transferred in the zero-shot setting. Finally, we
recommend an audit of underlying pre-training and
finetuning data sources for pre-trained multilingual
models, which we believe hinder zero-shot formal-
ity transfer for EN-IT and EN-RU in which a sin-
gle formality is strongly preferred.
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A Rules for Synthetic Data Curation

LANG Formal Informal

en-de (P=2 ∈ M and Num=Plural ∈ M) or PP=Sie P=2 ∈ M and Num=Plural /∈ M
en-es P=2 ∈ M and Form=Polite ∈ M P=2 ∈ M and Num=Singular ∈ M and Form=Polite /∈ M
en-it PP=voi or PP=lei PP=tu
en-ru PP=Вы PP=ты

Table 12: Rules for extracting formal and informal sentences for each language pair from existing bitext. P: Person;
PP: Personal pronoun; N: Number; x ∈ M indicates that some token within the sentence has morphological features
matching x as produced by spaCy.

B Glosses

B.1 Necessarily formal
Appropriate pronouns with accompanying conjugation imply the sentence is grammatically formal.

(1) ¿Cuándo
When

nació
born

usted?
you (form.)?

(Spanish)

‘When were you (form.) born?’

(2) Woher
Where from

kommen
come

Sie?
you (form.)?

(German)

‘Where are you (form.) from?’

B.2 Necessarily informal
Appropriate pronouns with accompanying conjugation imply the sentence is grammatically informal.
Note that Spanish is pro-drop, which relaxes the requirement on personal pronouns.

(3) ¿Cuándo
When

naciste
born

(tú)?
you (inf.)?

(Spanish)

‘When were you (inf.) born?’

(4) Woher
Where from

kommst
come

du?
you (inf.)?

(German)

‘Where are you (inf.) from?’

B.3 Ambiguously formal
Because Spanish is pro-drop, personal pronouns can be omitted depending on context. Since formal
conjugations are shared with neutral third person subjects, this leaves ambiguity when the pronoun is
dropped. For sake of gloss, we use ∅ to indicate a dropped pronoun.

(5) ¿Cuándo
When

nació
born

∅?
{you (form.), he, she, it}?

‘When {were you (form.), was {he, she, it}} born?’

C Official Evaluation

We report the number of examples labeled as FORMAL, INFORMAL, NEUTRAL, OTHER by the
formality scorer for the best multilingual models ( [1, 4]) and the baseline systems for each language
pair and formality direction. As described in 3, the accuracy is computed based on realized matches,
which excludes examples labelled as NEUTRAL and OTHER. Figure 2 shows that the number of these
excluded NEUTRAL samples can range from 15% to 43%.
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D Example Outputs

Source: Wow, that’s awesome! Who is your favorite Baseball team? I like my Az team lol

German Formal Hypothesis: Wow, das ist toll! Wer ist Ihr Lieblings- Baseballteam? Ich mag meine
Az-Team lol.

German Formal Reference: Wow, das ist fantastisch! Welches ist Ihr Lieblingsbaseballteam? Ich
stehe auf mein AZ-Team lol.

German Informal Hypothesis: Wow, das ist toll! Wer ist dein Lieblings野球team? Ich mag meine
Az Team lol.

German Informal Reference: Wow, das ist fantastisch! Welches ist dein Lieblingsbaseballteam? Ich
stehe auf mein AZ-Team lol.

Table 13: Contrastive outputs from English-German. Note that there is not only variety in lexical choice between
references and hypotheses, but also between hypotheses of varying formality (i.e.,野球 is “baseball” in Japanese)

E Accuracy of Formality Classifiers

We report the accuracy of the learned classifiers on the TASK TRAIN dataset in Table 14.

LANGUAGE
Accuracy

Formal Informal

en-de 98% 99%
en-es 99% 92%
en-ja 98% 98%
en-hi 96% 95%

Table 14: Accuracy of trained formality classifiers on the TASK DEV dataset.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Class Distribution for the baseline, mBART-large and mT5-large systems for all the supervised language
pairs. 340


