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Abstract

Simultaneous translation is a task that requires
starting translation before the speaker has fin-
ished speaking, so we face a trade-off between
latency and accuracy. In this work, we focus
on prefix-to-prefix translation and propose a
method to extract alignment between bilingual
prefix pairs. We use the alignment to segment
a streaming input and fine-tune a translation
model. The proposed method demonstrated
higher BLEU than those of baselines in low la-
tency ranges in our experiments on the IWSLT
simultaneous translation benchmark.

1 Introduction

Simultaneous machine translation (SimulMT) is a
task to start outputting translation before observ-
ing the whole input sentence. SimulMT is more
difficult than the translation with the whole input
sentence because it cannot use the latter part of
the sentence as context. SimulMT has to decide
whether to wait for more input or to output partial
translation using the input so far, in real-time. The
translation quality should become better if we can
use longer inputs and vice versa. We have to han-
dle such a trade-off between the quality and latency
of the translation by decision policies to choose
the next action between read (waiting for the next
input segment) and write (outputting a translation
segment) for a given input-output history (Gu et al.,
2017). Neural Machine Translation (NMT) models
used for SimulMT can be roughly categorized into
policy-dependent and policy-independent.

A policy-dependent model is trained with the
constraints given by the policy, in order to trans-
late an input prefix into an output prefix. Ma et al.
(2019) proposed a simple method with a fixed pol-
icy called wait-k, where the NMT first takes k read
actions followed by alternating write and read ac-
tions until the end of the translation output. Ari-
vazhagan et al. (2019) proposed a joint training

framework for flexible policies and the correspond-
ing NMT model using a latency-augmented loss
function and Monotonic Infinite Lookback (MILk)
attention.

In contrast, a policy-independent model is a
standard NMT model to translate the whole in-
put into the whole output and used for SimulMT
along with a given policy in the inference. We
can share one NMT model for different policies,
so the quality-latency trade-off can be controlled
easily. Dalvi et al. (2018) achieved some latency
reduction with a small loss in BLEU by the use of
a fixed policy called STATIC-RW. Ma et al. (2019)
also applied their wait-k policy using a sentence-
based NMT model, called test-time wait-k. Zhang
et al. (2020) proposed a flexible policy to predict
segment boundaries in an input. Once a bound-
ary is found, the segment is translated using a
sentence-based NMT model. The model based
on their segmentation demonstrated better results
in quality-latency trade-off than those using wait-k
and MILk in Chinese-to-English SimulMT. Kano
et al. (2021) proposed another flexible policy using
simple rules with syntactic constituent label pre-
diction and showed better performance than MU-
based SimulMT in English-to-Japanese.

One problem in the use of a policy-independent
model in SimulMT is the difference between train-
ing and inference conditions; the NMT model is
trained in the sentence level but is used to translate
the prefix of a sentence in inference. This causes
unexpectedly long translation and hurts the quality
of SimulMT (Kano et al., 2021). To mitigate the
problem, we propose a method for data augmenta-
tion to fine-tune a policy-independent NMT model
to the problem of prefix-to-prefix translation, called
Bilingual Prefix Alignment. We use a pre-trained
sentence-based NMT model to align source lan-
guage prefix and target language prefix of sentences
in the training corpus and collect prefix translation
pairs. The proposed method demonstrated higher

22



BLEU than baselines in low latency ranges, in our
SimulMT experiments using IWSLT English-to-
Japanese and English-to-German datasets.

2 Related Work

The problem of SimulMT has been tackled for
a decade. In early attempts using statistical ma-
chine translation, decision policies were combined
with the beam search decoding (Sankaran et al.,
2010; Bangalore et al., 2012). Fujita et al. (2013)
used phrase reordering probabilities used in phrase-
based statistical machine translation for their deci-
sion policy. In later years, feature-based learned
policies were proposed. Oda et al. (2014) proposed
a feature-based policy optimization to maximize
BLEU. Syntactic features also successfully used
for the policies (Rangarajan Sridhar et al., 2013;
Oda et al., 2015).

Recently, most SimulMT studies are based on
NMT, and such methods can output more flu-
ent translation than before. Among NMT-based
SimulMT studies, one major approach is to train an
NMT model optimized for given or jointly-learned
policies. Wait-k (Ma et al., 2019) is a very sim-
ple fixed policy that waits for k input tokens first.
Zheng et al. (2020) proposed an ensemble of differ-
ent wait-k-based models for adaptive SimulMT. To
make the policies more flexible, latency-augmented
loss functions are used to jointly optimize accuracy
and latency in the training of the SimulMT model
(Raffel et al., 2017; Arivazhagan et al., 2019; Ma
et al., 2020b).

Another approach employs such policies only in
inference, using a standard sentence-based NMT
model. Fixed policies can be applied to this ap-
proach easily (Dalvi et al., 2018; Ma et al., 2019).
Cho and Esipova (2016) proposed greedy decod-
ing with policies conditioned by the decoder’s
prediction, called Wait-If-Worse and Wait-If-Diff.
Kano et al. (2021) proposed a rule-based policy
using incremental prediction of the syntactic con-
stituents. To learn segmentation policies from
the bilingual corpus, reinforcement learning-based
methods were proposed (Grissom II et al., 2014;
Satija and Pineau, 2016; Gu et al., 2017; Alinejad
et al., 2018). It is a straightforward way to optimize
latency and accuracy jointly, but its training process
is relatively complex and sometimes unstable. In-
stead of the joint learning of a segmentation policy
and policy-dependent model, Zheng et al. (2019)
proposed a method to find oracle read and write

actions using a pre-trained NMT model. Zhang
et al. (2020) also used a pre-trained NMT model to
find segments called Meaningful Units (MUs).

This work is motivated by Dalvi et al. (2018) and
Zhang et al. (2020) and extends them with Bilin-
gual Prefix Alignment using a pre-trained NMT
model. Our method finds appropriate segment
boundaries based on the similarity between ref-
erence and translation hypothesis for given pre-
fix segments in a different way from Zhang et al.
(2020). We also fine-tune the pre-trained NMT
model using the bilingual prefix pairs, which is a
more sophisticated way than Dalvi et al. (2018)1.

3 Simultaneous Machine Translation

A sentence-level NMT is formulated as follows,
letting x = x1, x2, ..., xn be an input sentence and
y = y1, y2, ..., ym be its translation:

p(y|x) =
m∏

t=1

P (yt|x,y<t). (1)

SimulMT takes a prefix of the input for its incre-
mental decoding, formulated as follows:

p(y|x) =
m∏

t=1

P (yt|x≤g(t),y<t), (2)

where g(t) is a monotonic non-decreasing function
that represents the number of input tokens read by
the t-th step so that x≤g(t) means an input prefix
given so far, and y<t is a prefix translation by the
previous step. This means that we can obtain a
pair of a input prefix and the corresponding prefix
translation (x≤g(t),y≤t) at t-th step.

In this work, we use chunk-based incremental
decoding (Kano et al., 2021), in which we translate
an input prefix from the beginning. It is similar to
an approach called re-translation (Niehues et al.,
2016; Arivazhagan et al., 2020), but we force the
decoder to follow already translated output prefixes
in the same way as the teacher forcing in NMT
training.

4 Proposed Method

Figure 1 shows the whole translation process of the
proposed method at the inference step. We propose
Prefix Alignment for training a segmentation policy
and fine-tuning a sentence-level NMT model for
the policy-dependent SimulMT. Suppose we have a

1Note that the authors reported they obtained no perfor-
mance improvement by the fine-tuning.
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Step 1 I

Step 2 I bought

Step 3 I bought a 

Step 4 I bought a pen 

0.9 > 0.5 私は

0.2 < 0.5

0.3 < 0.5

0.7 > 0.5 私はペンを買った

Read source 
words

Boundary
Prediction translation

Step 5 I bought a pen . 0.7 > 0.5 私はペンを買った。

Figure 1: The translation process of the proposed
method from English to Japanese. The threshold of
boundary probability is 0.5 in this case. The underlined
part is the forced output prefix.

pre-trained NMT model and a bilingual corpus for
fine-tuning the model for SimulMT. The proposed
method consists of the following steps:

1. Collect prefix translation pairs using the pre-
trained model

2. Find reference prefixes corresponding to the
prefix translation pairs

3. Train a boundary prediction model

4. Fine-tune the NMT model

Their details are described in the following subsec-
tions.

4.1 Collecting Prefix Translation Pairs

In this step, we collect prefix translation pairs from
the bilingual corpus using the pre-trained NMT
model. For every source language sentence in the
bilingual corpus, we extract prefix translation pairs
using NMT results of the source language sentence,
by the following procedure. First, we translate the
source language sentence x into the target language
sentence y using the NMT model. Then, we trans-
late a prefix of x with one word2, x|w|≤1, into a tar-
get language prefix ȳ(1). Here, if the longest com-
mon prefix ȳ

(1)
lcp between y and ȳ(1) is not empty,

we extract the pair (x|w|≤1, ȳ(1)
lcp ) as a prefix trans-

lation pair. We iterate this prefix translation pair
extraction with enlarging the prefix length one by
one; we translate the i-word prefix x|w|≤i into ȳ(i)

and check ȳ
(i)
lcp. In the iteration, we may obtain the

same longest common prefix with different source

2Here, we use the word-based prefix length even though
we use subwords. Thus, x|w|≤1 may consists of one or more
subwords.

language prefixes. We just extract the first appear-
ance and ignore the rest with longer source lan-
guage prefixes in such cases. Furthermore, once
we extract a prefix translation pair (x|w|≤i, ȳ

(i)
lcp),

we use the target language prefix ȳ
(i)
lcp as a forced

output prefix and applied it to update the sentence-
level translation y and to generate prefix translation
ȳ(j) for j > i. This is because the translation for
longer prefixes or the whole sentence may change
by a beam search when a forced output prefix is
given.

Our prefix extraction strategy is different from
that by Zhang et al. (2020), in which the whole
prefix translation ȳ(i) should be a prefix of the
sentence-level translation y, not taking the longest
common prefix as in this work.

Figure 2 shows an example. The first prefix trans-
lation ends with a punctuation mark, so Meaningful
Unit (Zhang et al., 2020) cannot extract the first
prefix as the pair because the mark does not match
with the end of prefix of full-sentence translation.
In contrast, the proposed method can extract the
matched target prefix by ignoring the latter part
of the prefix translation. Therefore, the proposed
method identifies more boundaries than Meaning-
ful Unit.

Another difference from Meaningful Unit relates
to the extraction strategy above. Since the original
pre-trained NMT model often generates unneces-
sary tokens like punctuation marks at prefix bound-
aries, we fine-tune the pre-trained model using the
extracted prefix pairs to avoid such problems.

4.2 Prefix Alignment with References

Since the prefix translations obtained through the
process above are NMT results and different from
their references in general, we also extract corre-
sponding reference prefixes from the bilingual cor-
pus. We use BERTScore (Zhang* et al., 2020) to
find the correspondence between an NMT-based
prefix and a reference prefix, varying the length
of the reference prefix. We choose the reference
prefix that has the largest BERTScore F-measure
as the corresponding one to a given NMT-based
prefix. Using this correspondence, we can align a
source language prefix and its reference counterpart
to make bilingual prefix alignment.

4.3 Training a Boundary Predictor

We train a boundary predictor for the chunk-based
SimulMT using the extracted source language pre-
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Source Prefix Source prefix 
Translation

Full-sentence 
translation

Extracted Target 
Prefix

Boundary

I 私は。 私はペン買った。 私は 1
I bought 私は買った。 私はペンを買った。 0
I bought a 私は買った。 私はペンを買った。 0
I bought a pen 私はペンを買った 私はペンを買った。 私はペンを買った 1
I bought a pen . 私はペンを買った。 私はペンを買った。 私はペンを買った。 1

Figure 2: Extract Prefix Alignment

fixes. It is a binary classifier, and its training data
consist of pairs of a source language sentence pre-
fix and the boundary label. The label is set to 1 for
the prefixes in the extracted prefix translation pairs
and 0 for the other possible prefixes of the corre-
sponding source sentence, as shown in Figure 2.

4.4 Fine-Tuning a SimulMT Model
We fine-tune the pre-trained NMT model using the
extracted bilingual prefix pairs for our SimulMT
model. The model is used to translate an input
incrementally in the chunk-based manner as pre-
sented in Section 3.

5 Experimental Setup

We conducted experiments on English-to-German
(En-De) and English-to-Japanese (En-Ja) simulta-
neous translation to compare the proposed method
with the baselines in the quality-latency trade-off.

5.1 Dataset and Preprocessing
In En-De translation, we used WMT 2014 train-
ing set (4.5 M sentence pairs) for pre-training and
IWSLT 2017 training set (206 K sentence pairs)
for fine-tuning. We used IWSLT dev2010, tst2010,
tst2011 and tst2012 (5,589 sentence pairs in total)
for the development dataset. We used 1,080 sen-
tence pairs from IWSLT tst2015 for the evaluation.

In En-Ja translation, we used WMT 2020 (17.9
M sentence pairs) for pre-training and IWSLT
2017 (223 K sentence pairs) for fine-tuning dataset.
We used IWSLT dev2010, tst2011, tst2012, and
tst2013 (5,312 sentence pairs in total) for develop-
ment dataset. We used 1,442 sentence pairs from
IWSLT dev2021 for the evaluation.

Prefix translation pairs are collected only from
the IWSLT dataset. We tokenized Japanese
sentences using MeCab (Kudo, 2005). En-
glish and German sentences were tokenized us-
ing tokenizer.perl in Moses (Koehn et al.,
2007). We prepared a shared subword vocabulary

with 16 K entries based on Byte Pair Encoding
(BPE) (Sennrich et al., 2016) for each language
pair.

5.2 Model Settings

We mainly compared the following four methods
in the experiments:

Prefix Alignment The proposed method has a
hyperparameter to adjust latency, the threshold of
boundary probability output by the boundary pre-
dictor. We used 0.5 as the default value for the
binary classification and tried the following values
for further investigation: [0.1, 0.15,..., 0.95], [0.99,
0.991, 0.992,..., 0.999], and [0.9991, 0.9992,...,
0.9999]. We also compared a one look-ahead
boundary predictor that took one future word as the
input at the cost of the delay in one word (PA-1),
in addition to a standard (no look-ahead) boundary
predictor (PA-0).

Meaningful Unit We used the same boundary
probability thresholds as in PA. We implemented
the refined version of MU-based method to trans-
late with low latency following (Zhang et al., 2020),
but did not apply the removal of monotonic trans-
lation examples following Kano et al. (2021). We
also compared one look-ahead (MU-1) and no look-
ahead (MU-0) boundary predictors.

Incremental Constitutent Label Prediction
(ICLP) Following Kano et al. (2021), we used
a one look-ahead label predictor. We segmented
the input sequence based on their rules with the
predicted labels VP and S. The minimum segment
length adjusts latency. The range is [1, 2, 3, ..., 29].

Wait-k We tried [2, 4, 6, ..., 30] for the hyper-
parameter k.

NMT Settings We trained a standard NMT
model (full-sentence) using WMT and
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IWSLT training dataset. This model was used for
MU, PA and ICLP as the pre-trained NMT model.

All the NMT models were based on Transformer-
base (Vaswani et al., 2017) implemented with
fairseq (Ott et al., 2019). Their hyperparameter
settings basically followed the official baseline for
IWSLT 20213, for both pre-training and fine-tuning.
The models were saved on checkpoints in every
5,000 updates for pre-training and every 200 up-
dates for fine-tuning. We applied early stopping
with the patience for four checkpoints, based on
the loss on the development set. We set the learn-
ing rate to 0.0007, minibatch size to 4,096 with
the parameter update frequency of 4. We applied
a chunk-based beam search for the methods other
than wait-k, in which the low-scored hypotheses
out of the specified beam size were eliminated at
the end of the chunk. We used greedy-decoding for
wait-k, due to the nature of its model.

Boundary Predictor The boundary predictors
for the chunk-based methods were implemented
similarly using BERT (Devlin et al., 2019) with
a pre-trained model bert-base-uncased and
the corresponding subword tokenizer from Hug-
gingface transformers (Wolf et al., 2020). We set
the learning rate to 5e-5 and the batch size to 512
instances. The models were saved at every epoch,
and we applied early stopping with patience for
three epochs based on the loss on the development
set.

5.3 Evaluation Metrics

We used BLEU (Papineni et al., 2002) and Average
Lagging (AL) (Ma et al., 2019) for our quality and
latency evaluation metrics. They were calculated
using SimulEval (Ma et al., 2020a) and drawn in
scatterplots to show the quality-latency trade-off.

6 Results

6.1 English-to-German

Figure 3 shows the BLEU and AL results in
English-to-German simultaneous translation. The
proposed method (PA-0 and PA-1) showed best
performance among the compared methods. On
the other hand, the other chunk-based SimulMT
(MU-0, MU-1, and ICLP) did not outperform

3https://github.com/pytorch/fairseq/
blob/master/examples/simultaneous_
translation/docs/enja-waitk.md, https:
//github.com/pytorch/fairseq/issues/346
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Figure 3: BLEU and Average Lagging (En-De)
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Figure 4: Length ratio and Average Lagging (En-De)

Wait-k. We can also see the look-ahead bound-
ary prediction did not improve BLEU both for PA
and MU but increased AL.

Figure 4 shows the results in the length ratio
between a translation result and its reference. The
proposed method demonstrated better results in
the translation length than the other methods. The
other chunk-based SimulMT methods generated
much longer translation results than the references
and resulted in a large drop in BLEU due to the
brevity penalty.

6.2 English-to-Japanese

Figure 5 shows the BLEU and AL results in
English-to-Japanese simultaneous translation. This
shows a large difference from the results in English-
to-German; the proposed method outperformed the
baselines in very small latency ranges around AL
of 2, but showed worse BLEU in the large latency
ranges.

Figure 6 shows the results in the length ratio.
The proposed method generated shorter transla-

26

https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/blob/master/examples/simultaneous_translation/docs/enja-waitk.md
https://github.com/pytorch/fairseq/issues/346
https://github.com/pytorch/fairseq/issues/346


2 4 6 8 10 12 14 16
AL

8

10

12

14

16

18

BL
EU

PA-0
PA-1
wait-k
MU-0
MU-1
ICLP
full-sentence
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Figure 6: Length ratio and Average Lagging (En-Ja)

tion results especially with the large latency ranges,
even though the other methods resulted in a better
length ratio of around 1.0. The difference between
the two language directions would come from the
length issue; the full-sentence NMT resulted in
the length ratio slightly larger than 1.0 in English-
to-German and around 0.9 in English-to-Japanese.
The proposed method encouraged to shorten the
translation length in general so that it did not con-
tribute to the BLEU improvement in English-to-
Japanese.

7 Analysis

7.1 Effect of PA-based NMT fine-tuning
For the detailed analyses, we investigated the per-
formance of the chunk-based SimulMT without
the fine-tuning using the bilingual prefix pairs.
Here, only the boundary predictor was used to
segment the input for the chunk-based SimulMT.
Figures 7, 8, 9, and 10 show the results by the
proposed method with the pre-trained NMT model
(PAoff-0 and PAoff-1). They clearly show
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Figure 7: BLEU and Average Lagging (En-De) without
PA-based NMT fine-tuning
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Figure 8: Length ratio and Average Lagging (En-De)
without PA-based NMT fine-tuning

the proposed method does not work well without
fine-tuning the NMT model; it resulted in a longer
translation length so BLEU decreased due to the
brevity penalty. These results suggest the segmen-
tation policy in the chunk-based SimulMT should
match the prefix translation models because a full-
sentence translation model often generates a too-
long translation result for a short prefix input.

7.2 Length Distribution in training dataset

En-De En-Ja
# Source prefixes 1,874,909 1,059,865
# Words in sentences 4,228,604 4,593,194

Table 1: Statistics of the training data

We investigated the length issue on the training
data. Table 1 shows statistics of the IWSLT training
set, in the number of source language prefixes ex-
tracted for the fine-tuning of the SimulMT models
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Figure 10: Length ratio and Average Lagging (En-Ja)
without PA-based NMT fine-tuning

and the number of words in the whole sentences.
Even though the number of words is almost sim-

ilar, the number of prefixes is largely different; that
in En-De is almost two times larger than that in
En-Ja. This is because of the large word order dif-
ference between English and Japanese, compared
to that between English and German. The word
order difference should cause poor prefix matches
in the prefix translation pair extraction, so just a
few short prefix pairs are found. Figure 11 shows
the source prefix length distribution in the IWSLT
training data. The peak of the En-Ja distribution is
to the right of that of En-De distribution because
of this word order difference. The number of the
En-De shortest prefixes is more than three times
larger than that of En-Ja ones. This large number
of short prefixes contributed to the improvement of
En-De SimulMT.

Figures 12 and 13 show the change of length
distribution of the training data; blue bars represent
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Figure 11: Source prefix length distribution in the
IWSLT training data
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the original distribution on the whole training data
(WMT and IWSLT), and red bars represent that on
the training data augmented by the additional prefix
pairs. The change in English-to-German was much
larger than that in English-to-Japanese, because
of the large difference in the number of bilingual
prefix pairs. These findings suggest the proposed
method had a larger effect in English-to-German
than English-to-Japanese.

8 Conclusion

We proposed a method to train the neural SimulMT
model by extracting bilingual prefix pairs by Prefix
Alignment. The proposed method outperformed
the baselines in quality-latency trade-off in English-
to-German simultaneous translation but showed
mixed results in English-to-Japanese. We investi-
gated the results in detail and found the difference
in the translation length made a large effect on the
results, caused by the performance of the sentence-
level NMT model and the word order difference.

In future work, we extend the method to work
for language pairs with the large word order differ-
ences such as English-Japanese, in the wide range
of AL. The proposed method to extract source pre-
fixes can be adapted to speech input. We applied
this method to Speech-to-text simultaneous ma-
chine translation system submitted to the IWSLT
2022 Evaluation Campaign (Anastasopoulos et al.,
2022; Fukuda et al., 2022).
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