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Abstract

This paper describes CMU’s submissions to the
IWSLT 2022 dialect speech translation (ST)
shared task for translating Tunisian-Arabic
speech to English text. We use additional
paired Modern Standard Arabic data (MSA) to
directly improve the speech recognition (ASR)
and machine translation (MT) components of
our cascaded systems. We also augment the
paired ASR data with pseudo translations via
sequence-level knowledge distillation from an
MT model and use these artificial triplet ST
data to improve our end-to-end (E2E) sys-
tems. Our E2E models are based on the Multi-
Decoder architecture with searchable hidden
intermediates. We extend the Multi-Decoder
by orienting the speech encoder towards the
target language by applying ST supervision as
hierarchical connectionist temporal classifica-
tion (CTC) multi-task. During inference, we
apply joint decoding of the ST CTC and ST
autoregressive decoder branches of our modi-
fied Multi-Decoder. Finally, we apply ROVER
voting, posterior combination, and minimum
bayes-risk decoding with combined N-best lists
to ensemble our various cascaded and E2E sys-
tems. Our best systems reached 20.8 and 19.5
BLEU on test2 (blind) and test1 respectively.
Without any additional MSA data, we reached
20.4 and 19.2 on the same test sets.

1 Introduction

In this paper, we present CMU’s Tunisian-Arabic to
English ST systems submitted to the IWSLT 2022
dialectal ST track (Anastasopoulos et al., 2022).
One of our goals is to investigate dialectal transfer
from large MSA ASR and MT corpora to improve
Tunisian-Arabic ST performance. We also view
this task as setting for extending the sequence-level
knowledge distillation (SeqKD) (Kim and Rush,
2016), E2E Multi-Decoder architecture (Dalmia
et al., 2021), and system combination methods in
our IWSLT 2021 offline ST systems (Inaguma et al.,
2021b).

In particular, our contributions are the following:

1. Dialectal transfer from large paired MSA cor-
pora to improve ASR and MT systems (§3.1)

2. MT SeqKD on MSA ASR data for artificial ST
triplets to improve E2E ST systems (§3.2.2)

3. Multi-Decoder with hierarchical CTC training
for target-oriented speech encodings (§3.2.3)

4. Multi-Decoder with CTC beam search hypothe-
sis re-scoring during ST inference (§3.2.4)

5. Multi-Decoder with surface and posterior-level
guidance from external models (§3.3.1)

6. Joint minimum bayes-risk decoding as an en-
sembling method (§3.3.2)

Results on the blind test set, test2, and ablations on
the provided test set, test1, demonstrate the overall
efficacy of our systems and the relative contribu-
tions of the aforementioned techniques (§5).

2 Task Description and Data Preparation

The Arabic language is not a monolith. Of its esti-
mated 400 million native speakers, many speak in
colloquial dialects such as, Tunisian-Arabic, that
have relatively less standard orthographic rules and
smaller ASR and MT corpora compared to formal
MSA (Hussein et al., 2022). Both of these real-
ities present challenges to building effective ST
systems, and as such the dialectal speech transla-
tion shared task is an important venue for tackling
these research problems.

Table 1 shows the corpora relevant to the shared
task. The IWSLT22-Dialect corpus consists of ST
triplets where 160 hours of 8kHz conversational
Tunisian-Arabic speech are annotated with tran-
scriptions and also translated into English. The
MGB2 corpus (Ali et al., 2016) consists of 1100
hours of 16kHz broadcast MSA speech and the
corresponding transcriptions. The OPUS corpus
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#Hours #Sentence

of Speech Arabic English

IWSLT22-Dialect 160 0.2M 0.2M
MGB2 1100 1.1M -
OPUS - 42M 42M

Table 1: Statistics for the three corpora included in the
IWSLT 2022 dialect ST shared task. IWSLT22-Dialect
has triplets of speech, source Arabic transcription, and
target English translation. MGB2 and OPUS have only
pairs for ASR and MT respectively.

(Tiedemann et al., 2020) consists of 42M MSA-
English translation pairs across several domains.
Any systems that use MGB2 or OPUS data for
pre-training, fine-tuning, or any other purpose are
designated as dialect transfer systems.1

Following the shared task guidelines, punc-
tuation is removed and English text is lower-
cased. Buckwalter one-to-one transliteration of
Arabic text (Habash et al., 2007) was applied to
help non-Arabic speakers with ASR output in-
terpretation. English sentences were tokenized
with the tokenizer.perl script in the Moses
toolkit (Koehn et al., 2007) for training and deto-
kenized for scoring. Language-specific sentence-
piece vocabularies were created using the byte pair
encoding (BPE) algorithm (Sennrich et al., 2016)
with the sentencepiece toolkit.2 Speech data
was up-sampled by a factor of 3 using 0.9 and 1.1
speed perturbation ratios (Ko et al., 2015). The
IWSLT22-Dialect data was upsampled to 16kHz
for consistency using the sox toolkit3.

3 Proposed Methods

In this section, we describe our cascaded (§3.1) and
E2E systems (§3.2). Then we describe methods for
integrating both approaches §3.3.

3.1 Cascaded ASR→MT Systems
3.1.1 ASR
To train ASR models for our cascaded system,
we use the ESPnet (Watanabe et al., 2018) frame-
work. Our ASR architecture is based on hybrid
CTC/attention approach (Watanabe et al., 2017)
with a Conformer encoder (Gulati et al., 2020).

1We do not use self-supervised representations, morpho-
logical analyzers, or any other resources reliant on data other
than the three aforementioned corpora.

2https://github.com/google/
sentencepiece

3http://sox.sourceforge.net

The Conformer, which employs convolutions to
model local patterns and self-attention to model
long-range context, has shown to be effective on
both ASR and E2E ST tasks (Guo et al., 2020;
Inaguma et al., 2021b). We also use a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997;
Graves and Schmidhuber, 2005) language model
(LM) to re-score beam search hypotheses during in-
ference. We ensemble multiple ASR systems with
varying hyper-parameters using Recognizer Output
Voting Error Reduction (ROVER) with minimal
word-level edit-distance alignment (Fiscus, 1997).

3.1.2 MT
To train MT models for our cascaded system, we
use the Fairseq (Ott et al., 2019) framework to train
transformers encoder-decoder models (Vaswani
et al., 2). To mitigate the exposure bias of training
with ground-truth data and using ASR outputs at
test time, we introduce ASR mixing, where during
training, for each sample in the training set, the
model maximizes the log-likehood of translation
from both the ground-truth source and the ASR
source from an ASR system. This is possible be-
cause we have triplet data for training set as well.
We use the same system used in the cascaded sys-
tem to generate ASR outputs for the training set.
We ensemble multiple MT systems with varying
random seeds using posterior combination of hy-
potheses during beam search.

We also train an MT model using the ESPnet
toolkit (Watanabe et al., 2018) as an auxiliary
model used for posterior combinations with our
E2E ST systems as described in §3.3.1. These mod-
els use BPE vocabulary sizes that are optimal for
E2E ST, which we found empirically to be smaller
than for MT.

3.1.3 Direct Dialectal Transfer
To leverage MSA annotated speech data to im-
prove our ASR system, we select a subset of the
MGB2 data as an augmentation set to be added
to the IWSLT22-Dialect data. We first use an
ASR model trained on IWSLT22-Dialect data only
to compute the cross-entropy of the utterances
in the MGB2 data. We then select a percentage
of the MGB2 utterances with the lowest cross-
entropy. Similar cross-entropy based data selec-
tion has shown to effectively reduce noise result-
ing from domain mismatches in language model-
ing (Moore and Lewis, 2010) and MT (Junczys-
Dowmunt, 2018). After pre-training on the mixture
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of MGB2 and IWSLT22-Dialect data, we then fine-
tune on IWSLT22-Dialect data only.

To leverage the MSA translation data to improve
our MT system, we use the OPUS corpus, cleaning
sentences longer than 200 subwords. This results
in about 30M sentence pairs of training data for
MSA-English. We then train a larger transformer
for 20 epochs on this training data. We the use
fine-tune this model on the IWSLT22-Dialect data.

3.2 E2E ST Systems
3.2.1 Multi-Decoder Architecture
Multi-decoder model (Dalmia et al., 2021) is an
end-to-end sequence model that exploits decom-
position of a complex task into simpler tasks in
it’s model design. For speech translation it decom-
poses the task into ASR and MT sub-nets while
maintaining the end-to-end differentiability. To
train Multi-Decoder models, we modified the ESP-
net framework (Watanabe et al., 2018).

As shown in figure 1.a, the speech signal, X =
{xt ∈ RD|t = 1, ..., T}, is mapped to encoder rep-
resentations by the Speech Encoder which are then
in turn mapped autoregressively to decoder repre-
sentations corresponding to the source language
transcription, Y ASR = {yASR

l ∈ V|l = 1, ..., L},
by the ASR Decoder. These ASR Decoder represen-
tations, referred to as searchable hidden interme-
diates, are passed to the downstream ST Encoder-
Decoder. In order to avoid error-propagation, the
ST Decoder performs cross-attention over both the
Speech Encoder and ST Encoder representations.
The network is optimized with multi-tasking on
cross-entropy losses for both the source and target
languages, LASR

CE and LST
CE respectively, along with

a CTC (Graves, 2012) loss LASR
CTC:

L = λ1LASR
CE + λ2LASR

CTC + λ3LST
CE (1)

where λ’s are used for interpolation. During infer-
ence, the CTC branch of the Speech Encoder is
also used to re-score beam search hypotheses pro-
duced by the ASR Decoder, following the Hybrid
CTC/Attention method (Watanabe et al., 2017).

Inaguma et al. (2021a) showed that sampling
CTC output instead of always using ground truth
previous token helps the Multi-Decoder model.
With a CTC sampling rate of 0.2, which means that
with a probability of 0.2 we would use the CTC
output instead of the ground truth during training.
This simulates the inference condition where there
would be ASR errors. We found this technique to
be particularly helpful for this dataset.

3.2.2 SeqKD Dialectal Transfer
Our Multi-Decoder training objective, equation 1,
assumes that each speech signal is annotated with
both a source language transcription and target lan-
guage translation. In order to include additional
paired MSA data into this training regime, we first
generate artificial speech, transcript, and transla-
tion triplets. To do so, we first build a MSA MT
model using the OPUS data. We then generate
pseudo-translations for the paired MGB2 data by
feeding the MSA transcriptions as inputs to the MT
model. This method is based on SeqKD Kim and
Rush (2016) and can be considered as a dialectal
application of MT to ST knowledge-distillation.
We mix a percentage of the pseudo-translated data
using the same cross-entropy based methodology
as decribed in §3.1.3 with the Tunisian-Arabic data
during training. We refer to this data augmentation
as MT SeqKD in future sections.

3.2.3 Hierarchical Speech Encoder
CTC loss is often used as auxiliary loss in attention
based encoder decoder models (Watanabe et al.,
2017). It helps the attention based decoder by in-
ducing monotonic alignment with the encoder rep-
resentations (Kim et al., 2017). In this work, we
extend this idea by creating a hierarchical encoder
that customizes the ordering of the encoder for the
individual sub-tasks by using auxiliary CTC loss at
each sub-task. Here, we use an auxiliary CTC loss
with ASR targets and another CTC loss with ST
targets. As shown in figure 1.b, the first 12 layers
of the Speech Encoder produce ASR CTC align-
ments, ZASR = {zASR

n ∈ V ∪ {∅}|n = 1, ..., N},
while the final 6 layers produce ST CTC align-
ments, ZST = {zST

n ∈ V ∪ {∅}|n = 1, ..., N},
where ∪{∅} denotes the blank emission. This
creates a hierarchical encoder structure similar to
(Sanabria and Metze, 2018; Lee and Watanabe,
2021; Higuchi et al., 2021). The Multi-Decoder
with hierarchical encoder is optimized with an ad-
ditional ST CTC loss, LST

CTC:

L = λ1LASR
CE + λ2LASR

CTC + λ3LST
CE + λ4LST

CTC
(2)

Note that the ST Decoder now performs cross-
attention Speech Encoder representations that are
oriented towards the target language.

3.2.4 Joint CTC/Attention Decoding for ST
The ST CTC branch of the Speech Encoder intro-
duced in the previous section allows us to apply
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ASR CTC
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Encoder Layers Encoder Layers 

Decoder Layers Encoder Layers

ASR CTC

ST CTC

Decoder Layers 

Encoder Layers Encoder Layers 

Decoder Layers 

(a) Multi-Decoder (b) Multi-Decoder w/ Hierarchical Encoder + CTC/Attn ST Decoding

Figure 1: The left side presents the original Multi-Decoder architecture with searchable hidden intermediates
produced by the ASR Decoder. The red lines indicate joint CTC/Attention decoding of beam search hypotheses
produced by an autoregressive decoder. The right side presents a modified Multi-Decoder with both a hierarchical
ASR to ST Speech Encoder optimized via CTC objectives and joint CTC/Attention ST inference.

joint CTC/Attention decoding using the one-pass
beam search algorithm (Watanabe et al., 2017) dur-
ing ST inference as well. Although previously
only applied to ASR decoding, we found that
joint CTC/Attention inference for the ST Decoder
beam search hypotheses were beneficial in this task.
Deng et al. (2022) show that joint modeling of
CTC/Attention is effective for short contexts of
blockwise streaming ST; as far as we know, our
work is the first to show the benefit on long con-
text. Our conjecture is that speech to translation
transduction with attention mechanisms, as in the
original Multi-Decoder, contains irregular align-
ments between the acoustic information and the
target sequence. The hierarchical encoder and joint
CTC/Attention decoding methods may alleviate
these irregularities by enforcing greater monotonic-
ity. We refer to the Multi-Decoder with hierarchical
encoder and joint CTC/Attentionn ST decoding as
the Hybrid Multi-Decoder in future sections.

3.3 Integrating E2E and Cascaded Systems

3.3.1 Guiding Multi-Decoder Representations

Since the Multi-Decoder (Dalmia et al., 2021) uses
hidden representations from the autoregressive ASR
Decoder, we can perform search and retrieval over
this intermediate stage of the model. Dalmia et al.
(2021) showed that ST quality improves by using
beam search and external models like LMs to im-
prove the representations the ASR sub-task level.
We believe this an important property to have when
building models for complex sequence tasks like
speech translation, as often there is additional data

present for the sub-tasks like ASR and MT. In this
work, we help guide our Multi-Decoder model to
retrieve better decoder representations by using ex-
ternal ASR and MT models.

We experimented with two approaches: 1) pos-
terior level guidance and 2) surface level guidance.
The former is similar in concept to posterior com-
bination for model ensembling during inference
as described in (Inaguma et al., 2021b), however
the Multi-Decoder allows us to incorporate both an
external ASR and MT model due to the searchable
hidden intermediates whereas a vanilla encoder-
decoder ST model would only be compatible with
an external MT model. This method requires beam
search over both ASR and MT/ST for multiple mod-
els. Alternatively, surface level guidance can avoid
this expensive search over the ASR intermediates
by instead retrieving the hidden representations for
an ASR surface sequence produced externally.

We use the ROVER ASR outputs described
in §3.1.1 as surface level guides for the Multi-
Decoder’s ASR intermediates and found this to
be more effective than posterior combination with
external ASR models. We refer to this method of
retrieval as ROVER intermediates in future sections.
Since ROVER is based on minimal edit-distance
alignment, we did not find it compatible with trans-
lation sequences. For the ST Decoder, we use poste-
rior combination with external ST and MT models
and refer to this as ST/MT Posterior Combination
in future sections.
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3.3.2 Minimum Bayes-Risk
Rather than finding the most likely translation, Min-
imum Bayes-Risk (MBR) decoding aims to find
the translation that maximizes the expected util-
ity (equivalently, that minimizes risk, (Kumar and
Byrne, 2002, 2004; Eikema and Aziz, 2020)). Let
Ȳcands, Ȳsamples be sets containing N candidate
hypotheses and M sample hypothesis. This sets
can be obtained from one or multiple model by,
for example sampling or taking the top beams in
beam search. Let u(y∗, y) be an utility function
measuring the similarity between a hypothesis y
and a reference y (we only consider BLEU in this
work). MBR decoding seeks for

ŷMBR = argmax
y∈Ȳcands

EY∼pθ(y|x)[u(Y, y)]︸ ︷︷ ︸
≈ 1

M

∑M
j=1 u(y

(j), y)

, (3)

We experimented with using MBR as a technique
for system combination, in two forms:

• True: the stronger system (the E2E) is used
to generate the N candidates Ȳcands and the
weaker system (the Cascaded system) is used
to generate M samples Ȳsamples. This means
that the outputs will guaranteed to generated
by the E2E system.

• Joint: in this case, both the E2E and the
Cascaded generate N hypotheses, with are
then concatenated to make both the candidate
set and sample set Ȳsamples = Ȳcands, with
|Ȳcands| = 2N

We explored using beam search and nucleus sam-
pling (Holtzman et al., 2019) with different p values
for both generating candidates and generating sam-
ples to compute the expectation over. Overall we
found that, for both settings, using beam search to
generate hypothesis for the E2E model and nucleus
sampling with p = 0.9 for the cascaded system
yield the best results. We use N = M = 50 for
both settings.

4 Experimental Setup

ASR: We extracted 80-channel log-mel filter-
bank coefficients computed with 25-ms window
size and shifted every 7-ms with 3-dimensional
pitch features.4 The features were normalized by
the mean and the standard deviation calculated

47-ms shift was found to be helpful due to the presence of
many short utterances in the IWSLT22-Dialect data.

on the entire training set. We applied SpecAug-
ment (Park et al., 2019) with mask parameters
(mT ,mF , T, F ) = (5, 2, 27, 0.5) and bi-cubic
time-warping. We use a BPE vocabulary size of
1000. Our encoder has 2 CNN blocks followed by
12 Conformer blocks following (Guo et al., 2020).
Each CNN block consisted of a channel size of
256 and a kernel size of 3 with a stride of 2 × 2,
which resulted in time reduction by a factor of 4.
Our decoder has 6 Transformer blocks. In both
encoder and decoder blocks, the dimensions of the
self-attention layer dmodel and feed-forward net-
work dff were set to 256 and 2048, respectively.
The number of attention heads H was set to 8. The
kernel size of depthwise separable convolution in
Conformer blocks was set to 31. We optimized the
model with the joint CTC/attention objective with
a CTC weight of 0.3. We also used CTC and LM
scores during decoding. Models were trained for
60 epochs. We averaged the model parameters of
the 10 best epoch checkpoints by validation loss.
Our LM is a BLSTM with 4 layers and 2048 unit
dimension. Beam search is performed with beam
size 20, CTC weight 0.2, and LM weight 0.1.

MT: We use SentencePiece (Kudo and Richard-
son, 2018) with the Byte-pair Encoding algorithm
(Sennrich et al., 2016). We experimented with var-
ious vocabularies sizes and found that 4000 vo-
cabulary size to be the best for small models. For
the pretrained model, we use a vocabulary size of
16000. The small transformer model used for the
non-dialect submissions has 512 embedding dimen-
sions, 1024 feedforward dimensions, 6 layers and
4 heads on each layer on both encoder/decoder.
The large transformer model used for dialect trans-
fer has 1024 embedding dimensions, 4096 feed-
forward dimensions, 6 layers and 16 heads on
each layer on both encoder/decoder. Models were
trained with early stopping by validation loss. We
averaged the model parameters of the last 5 epoch
checkpoints. Unless otherwise specified, we use
beam search with beam size of 5 and no length
penalty in beam search.

Multi-Decoder: We use the same feature extrac-
tion as for ASR. We use separate BPE vocabularies
for source and target, both of size 1000. The ASR
sub-net of the Multi-Decoder is also the same as
our ASR configuration, allowing for pre-trained ini-
tialization of the ASR encoder, decoder, and CTC.
The hierarchical encoder adds 6 additional Trans-
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Dialect test1

ID Model Type / Name Transfer WER(↓)

A1 ASR Conformer ✗ 50.4
A2 + ROVER Comb. ✗ 48.1
A3 ASR Conformer ✓ 50.0
A4 + ROVER Comb. ✓ 47.5

MT BLEU(↑)

B1 MT Transformer (Fairseq) ✗ 21.8
B2 + Posterior Comb. ✗ 22.8
B3 MT Transformer (Fairseq) ✓ 22.4
B4 + Posterior Comb. ✓ 23.6
B5 MT Transformer (ESPnet) ✗ 21.0

Table 2: Results of the ASR and MT components of our
cascaded systems, as measured by % WER and BLEU
score on the provided test1 set. ROVER and posterior
combinations were applied to ASR and MT respectively.

former layers to the original 12 Conformer layers.
The MT sub-net of the Multi-Decoder has a 2 layer
Transformer encoder and a 6 layer Transformer de-
coder. This second encoder has no convolutional
subsampling. The MT sub-net has the same dmodel

and dff as the ASR sub-net. We optimized the
model a CTC weight of 0.3 and an ASR weight of
0.3. Models were trained for 40 epochs. We av-
eraged the model parameters of the 10 best epoch
checkpoints by validation loss. Beam search over
the ASR-subnet uses the same setting as for ASR.
Beam search over the MT-subnet uses beam size
5/10 with CTC weight 0.3/0.1 for the basic/dialect
conditions. Length penalty 0.1 was used for all
cases.

5 Results and Analyses

5.1 Submitted Shared Task Systems

Figure 2 shows the results for ASR and MT systems
used as part of the cascaded system as evaluated by
WER and BLEU score respectively on the provided
test set, test1. Dialectal transfer provides a moder-
ate boosts of 0.4% and 0.6% WER without ROVER
and with ROVER respectively. Notably, WER’s for
all systems are relatively high despite a moderate
amount of training data; this is perhaps due to the
non-standard orthographic form of the Tunisian-
Arabic transcriptions.5 Another possible cause for
the high WER is the conversational nature of the
data, which may require normalization similar to
the Switchboard dataset (Godfrey et al., 1992). For

5We found that the WER’s decreased by about 4% when
removing diacritics from the hypothesis and the reference.

the MT systems, we see that posterior combination
leads to over 1 BLEU point improvements when
translating ground-truth source sentences. Interest-
ingly, while there is some benefit from the dialectic
transfer, the benefits are relatively small, yielding
an additional 0.8 BLEU for the ensembled models.
This might be due to the domain mismatch between
the Tunisian-Arabic data and MSA data.

Figure 3 shows the results of our cascaded, E2E,
and integrated cascaded/E2E systems on both the
blind shared task test set, test2, and on the pro-
vided test set, test1. The Hybrid Multi-Decoder
outperforms the ASR Mixing Cascade by 1.3 and
0.9 BLEU on test1 without and with dialectal trans-
fer respectively. Both models are boosted by the
use of ROVER. The benefit of ROVER for models
without dialectal transfer (0.3 BLEU) was larger
than for models with dialectal transfer (0.1 BLEU),
showing some diminishing returns from isolated
improvements of the ASR component of the overall
ST task. Posterior combination provided boosts in
the range of 0.5-0.8 BLEU across the models. Fi-
nally, the Minimum Bayes Risk Ensembling yielded
additional gains of 0.6-1.3 BLEU. The differences
between the final Minimum Bayes Risk Ensembling
systems and the best single systems without any
external model integration are 1.5 and 1.3 BLEU
without and without dialectal transfer respectively.

5.2 Ablation Studies

To show the individual contributions of our var-
ious methods, we present in this section several
ablations. First, we show in figure 4 the impact
of dialectal transfer from MGB2 data on ASR (as
described in §3.1.3) and on E2E ST (as described
in §3.2.2). As subset of MGB2 data selected via the
cross-entropy filter outperformed a randomly se-
lected subset, although both were better than when
no MGB2 data was included. Since the IWSLT22-
Dialect utterances were shorter than the MGB2 ut-
terances on average, one effect of the cross-entropy
filter was the removal of long utterances which ap-
peared to benefit the model. We found that using
up to 25% of the MGB2 data was best for ASR. For
ST, both 25% and 50% of the MGB2 data with MT
SeqKD yielded 0.5 BLEU gains, which is slightly
less than the 0.8 BLEU gains that our cascaded
systems obtained from dialectal transfer. This sug-
gests some that there our MT SeqKD method may
be improved in the future.

Next, in figure 5 we show the results MT and ST
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Child Dialect test1 test2

ID Type Model Name System(s) Transfer BLEU(↑) BLEU(↑)

C1 Cascade ASR Mixing Cascade A1,B1 ✗ 16.4 -
C2 Cascade + ASR Rover Comb. A2,B1 ✗ 16.7 -
C3 Cascade + MT Posterior Comb. A2,B2 ✗ 17.5 18.6
C4 Cascade ASR Mixing Cascade A3,B3 ✓ 17.3 -
C5 Cascade + ASR Rover Comb. A4,B3 ✓ 17.4 -
C6 Cascade + MT Posterior Comb. A4,B4 ✓ 17.9 19.4

D1 E2E ST Hybrid Multi-Decoder - ✗ 17.7 -
D2 Mix + ROVER Intermediates A2 ✗ 18.1 19.1
D3 Mix + ST/MT Posterior Comb. A2,B5 ✗ 18.7 19.7
D4 E2E ST Hybrid Multi-Decoder - ✓ 18.2 -
D5 Mix + ROVER Intermediates A4 ✓ 18.3 19.5
D6 Mix + ST/MT Posterior Comb. A4,B5 ✓ 18.9 19.8

E1 Mix Min. Bayes-Risk Ensemble C3,D3 ✗ 19.2 20.4
E2 Mix Min. Bayes-Risk Ensemble C6,D6 ✓ 19.5 20.8

Table 3: Results of our cascaded, E2E, and integrated cascaded/E2E systems as measured by BLEU score on
the blind test2 and provided test1 sets. Dialect Transfer indicates the use of either MGB2 or OPUS data. Rover,
posterior combinations, and minimum bayes-risk ensembling were applied to both cascaded and E2E systems, with
Child System(s) indicating the inputs to the resultant systems combinations.

test1

Task MGB2 Training Data WER(↓)

ASR none 53.1
ASR 8% w/ random select 52.7
ASR 8% w/ CE filter 52.4
ASR 25% w/ CE filter 52.4
ASR 50% w/ CE filter 53.0
ASR 75% w/ CE filter 53.5

BLEU(↑)

ST none 16.6
ST 25% w/ CE filter + MT SeqKD 17.1
ST 50% w/ CE filter + MT SeqKD 17.1

Table 4: Ablation study on the effects of additional
MGB2 data on ASR and ST performance as measured
by WER and BLEU on the test1 set respectively.

systems trained with and without ASR mixing (as
described in §3.1.2), both in the cascaded setting
and using ground-truth source sentences. Over-
all we see that ASR mixing helps improving the
cascaded system. Surprisingly this also improves
results for the translating from ground-truth source
sentences. We hypothesise that ASR mixing acts
as a form of regularization for the orthographic in-

test1

Model Name ST BLEU(↑) MT BLEU(↑)

MT Transformer 16.2 20.9
+ ASR Mixing Training 16.7 21.8

Table 5: Ablation study on the effects of ASR mixing
on ST and MT as measured by BLEU on the test1 set.

consistencies in the source transcriptions due to the
conversational nature of Tunisian-Arabic.

In table 6, we show the effects of the ASR
CTC Sampling, Hierarchical Encoder, and Joint
CTC/Attention ST Decoding modifications to the
original Multi-Decoder (as described in §3.2). We
found that each of these techniques boosts the over-
all performance and we also found their effects
to be additive. Table 6 also shows the perfor-
mance of a vanilla encoder-decoder for compar-
ison, which performed significantly worse than the
Multi-Decoder. Due to time limitations, we did
not submit the Multi-Decoder with hierarchical en-
coder, joint CTC/Attention ST decoding, and ASR
CTC sampling for shared task evaluation, but this
was our strongest single system as evaluated on the
test1 set.

Finally, Figure 7 shows the results for the two
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test1

Model Name BLEU(↑)

Encoder-Decoder 16.0

Multi-Decoder 17.1
+ ASR CTC Sampling 17.6
+ Hierarchical Encoder 17.9
+ Joint CTC/Attn ST Decoding (D4) 18.2
+ ASR CTC Sampling 18.4

Table 6: Ablation study on the effects of ASR CTC
sampling, hierarchical encoder, and joint CTC/Attn ST
decoding as measured by BLEU on the test1 set.

MBR Dialect test1 test2

Model Name Method Transfer BLEU(↑) BLEU(↑)

MBR Ensemble True ✗ 19.0 20.1
MBR Ensemble (E1) Joint ✗ 19.2 20.4

MBR Ensemble True ✓ 19.3 20.7
MBR Ensemble (E2) Joint ✓ 19.5 20.8

Table 7: Comparison of the true vs. joint methods for
minimum bayes-risk ensembling as measured by BLEU
on the test1 and test2 sets.

different settings for system combination through
MBR (as described in §3.3.2). Using the Joint set-
ting where the hypothesis from both system are
considered as both candidates/samples leads to the
best translations compared to the True setting. Fig-
ure 8 shows that while effective for maximizing
BLEU score, MBR did not improve according to
human evaluation.6

6 Conclusion

In this paper, we have presented CMU’s dialect
speech translation systems for IWSLT 2022. Our
systems encompass various techniques across cas-
caded and E2E approaches. Of the techniques
we presented, the hierarchical encoder and joint
CTC/Attention ST decoding modifications to the
Multi-Decoder and the minimum bayes-risk ensem-
bling were amongst the most impactful. In future
work, we seek to formalize these methods with
additional theoretical and experimental backing, in-
cluding extensions to other corpora and tasks such
as pure MT.

6Human evaluation methodology is detailed in (Anasta-
sopoulos et al., 2022)

test2

Model Name BLEU(↑) DA Ave. / z-score(↑)

Hybrid Multi-Decoder (D6) 19.8 66.5 / 0.119
MBR Ensemble (E2) 20.8 66.5 / 0.114

Table 8: Human evaluation results, as measured by DA
average and z-score, showing the impact of maximizing
BLEU score via minimum bayes-risk ensembling.

Acknowledgements

Brian Yan and Shinji Watanabe are supported by
the Human Language Technology Center of Ex-
cellence. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE)
(Towns et al., 2014), which is supported by Na-
tional Science Foundation grant number ACI-
1548562; specifically, the Bridges system (Nys-
trom et al., 2015), as part of project cis210027p,
which is supported by NSF award number ACI-
1445606, at the Pittsburgh Supercomputing Cen-
ter. We’d also like to thank Soumi Maiti, Tomoki
Hayashi, and Koshak for their contributions.

References
Ahmed Ali, Peter Bell, James Glass, Yacine Messaoui,

Hamdy Mubarak, Steve Renals, and Yifan Zhang.
2016. The mgb-2 challenge: Arabic multi-dialect
broadcast media recognition. In 2016 IEEE Spoken
Language Technology Workshop (SLT), pages 279–
284. IEEE.

Antonios Anastasopoulos, Luisa Bentivogli, Marcely Z.
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