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Abstract

In this paper, we describe our submission to
the Simultaneous Speech Translation at IWSLT
2022. We explore strategies to utilize an of-
fline model in a simultaneous setting without
the need to modify the original model. In our
experiments, we show that our onlinization al-
gorithm is almost on par with the offline setting
while being 3 faster than offline in terms of
latency on the test set. We also show that the
onlinized offline model outperforms the best
IWSLT2021 simultaneous system in medium
and high latency regimes and is almost on par
in the low latency regime. We make our system
publicly available.'

1 Introduction

This paper describes the CUNI-KIT submission
to the Simultaneous Speech Translation task at
IWSLT 2022 (Anastasopoulos et al., 2022) by
Charles University (CUNI) and Karlsruhe Institute
of Technology (KIT).

Recent work on end-to-end (E2E) simultaneous
speech-to-text translation (ST) is focused on train-
ing specialized models specifically for this task.
The disadvantage is the need of storing an extra
model, usually a more difficult training and infer-
ence setup, increased computational complexity
(Han et al., 2020; Liu et al., 2021) and risk of per-
formance degradation if used in offline setting (Liu
et al., 2020a).

In this work, we base our system on a robust mul-
tilingual offline ST model that leverages pretrained
wav2vec 2.0 (Baevski et al., 2020) and mBART
(Liu et al., 2020b). We revise the onlinization ap-
proach by Liu et al. (2020a) and propose an im-
proved technique with a fully controllable quality-
latency trade-off. We demonstrate that without any
change to the offline model, our simultaneous sys-
tem in the mid- and high-latency regimes is on par

"https://hub.docker.com/repository/
docker/polape7/cuni-kit—-simultaneous

with the offline performance. At the same time,
the model outperforms previous IWSLT systems in
medium and high latency regimes and is almost on
par in the low latency regime. Finally, we observe
a problematic behavior of the average lagging met-
ric for speech translation (Ma et al., 2020) when
dealing with long hypotheses, resulting in negative
values. We propose a minor change to the metric
formula to prevent this behavior.

Our contribution is as follows:

* We revise and generalize onlinization pro-
posed by Liu et al. (2020a); Nguyen et al.
(2021) and discover parameter enabling
quality-latency trade-off,

* We demonstrate that one multilingual offline
model can serve as simultaneous ST for three
language pairs,

* We demonstrate that an improvement in the
offline model leads also to an improvement in
the online regime,

* We propose a change to the average lagging
metric that avoids negative values.

2 Related Work

Simultaneous speech translation can be imple-
mented either as a (hybrid) cascaded system (Kolss
et al., 2008; Niehues et al., 2016; Elbayad et al.,
2020; Liu et al., 2020a; Bahar et al., 2021) or an
end-to-end model (Han et al., 2020; Liu et al.,
2021). Unlike for the offline speech translation
where cascade seems to have the best quality, the
end-to-end speech translation offers a better quality-
latency trade-off (Ansari et al., 2020; Liu et al.,
2021; Anastasopoulos et al., 2021).

End-to-end systems use different techniques to
perform simultaneous speech translation. Han et al.
(2020) uses wait-k (Ma et al., 2019) model and
metalearning (Indurthi et al., 2020) to alleviate
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the data scarcity. Liu et al. (2020a) uses a uni-
directional encoder with monotonic cross-attention
to limit the dependence on future context. Other
work (Liu et al., 2021) proposes Cross Attention
augmented Transducer (CAAT) as an extension of
RNN-T (Graves, 2012).

Nguyen et al. (2021) proposed a hypothesis sta-
bility detection for automatic speech recognition
(ASR). The shared prefix strategy finds the longest
common prefix in all beams. Liu et al. (2020a)
explore such strategies in the context of speech
recognition and translation. The most promising
is the longest common prefix of two consecutive
chunks. The downside of this approach is the in-
ability to parametrize the quality-latency trade-off.
We directly address this in our work.

3 Onlinization

In this section, we describe the onlinization of the
offline model and propose two ways to control the
quality-latency trade-off.

3.1 Incremental Decoding

Depending on the language pair, translation tasks
may require reordering or a piece of information
that might not be apparent until the source utterance
ends. In the offline setting, the model processes
the whole utterance at once, rendering the strategy
most optimal in terms of quality. If applied in
online mode, this ultimately leads to a large latency.
One approach to reducing the latency is to break
the source utterance into chunks and perform the
translation on each chunk.

In this paper, we follow the incremental decod-
ing framework described by Liu et al. (2020a).
We break the input utterance into small fixed-size
chunks and decode each time after we receive a
new chunk. After each decoding step, we identify
a stable part of the hypothesis using stable hypoth-
esis detection. The stable part is sent to the user
(“committed” in the following) and is no longer
changed afterward (i.e., no retranslation).? Our cur-
rent implementation assumes that the whole speech
input fits into memory, in other words, we are only
adding new chunks as they are arriving. This sim-
plification is possible because the evaluation of the
shared task is performed on segmented input, on in-
dividual utterances. With each newly arrived input
chunk, the decoding starts with forced decoding of

*This is a requirement for the evaluation in the Simultane-
ous Speech Translation task at IWSLT 2022.

the already committed tokens and continues with
beam search decoding.

3.2 Chunk Size

Speech recognition and translation use chunking
for simultaneous inference with various chunk sizes
ranging from 300 ms to 2 seconds (Liu, 2020;
Nguyen et al., 2021) although the literature sug-
gests that the turn-taking in conversational speech
is shorter, around 200 ms (Levinson and Torreira,
2015). We investigate different chunk sizes in com-
bination with various stable hypothesis detection
strategies. As we document later, the chunk size is
the principal factor that controls the quality-latency
trade-off.

3.3 Stable Hypothesis Detection

Committing hypotheses from incomplete input
presents a possible risk of introducing errors. To
reduce the instability and trade time for quality, we
employ a stable hypothesis detection. Formally, we
define a function prefix(W) that, given a set of
hypotheses (i.e., W, if we want to consider the
whole beam or W, , for the single best hypothesis
obtained during the beam search decoding of the
c-th chunk), outputs a stable prefix. We investigate
several functions:

Hold-n (Liu et al., 2020a) Hold-n strategy se-
lects the best hypothesis in the beam and deletes
the last n tokens from it:

preﬁX(Wbcest) = WO:max(0,|W|—n)a (D

where Wy, is the best hypothesis obtained in the
beam search of c-th chunk. If the hypothesis has
only n or fewer tokens, we return an empty string.

LA-n Local agreement (Liu et al., 2020a) dis-
plays the agreeing prefixes of the two consecutive
chunks. Unlike the hold-n strategy, the local agree-
ment does not offer any explicit quality-latency
trade-off. We generalize the strategy to take the
agreeing prefixes of n consecutive chunks.

During the first n — 1 chunks, we do not output
any tokens. From the n-th chunk on, we identify
the longest common prefix of the best hypothesis
of the n consecutive chunks:

preﬁX(Wbcest) =

if ¢ < n,
(2)

®7
{LCP(W;@S?H, s WE,), otherwise,
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where LC'P(-) is longest common prefix of the
arguments.

SP-n Shared prefix (Nguyen et al., 2021) strategy
displays the longest common prefix of all the items
in the beam of a chunk. Similarly to the LA-n
strategy, we propose a generalization to the longest
common prefix of all items in the beams of the n
consecutive chunks:

prefix(Wg;) =

a, if c < n,
We 1 W, .
LCP( bcear?l—g...B7 Tt bceam 1...B)? OtherWISe’

3)

i.e., all beam hypotheses 1, ..., B (where B is the
beam size) of all chunksc —n + 1, ..., c.

3.4 Initial Wait

The limited context of the early chunks might re-
sult in an unstable hypothesis and an emission of
erroneous tokens. The autoregressive nature of the
model might cause further performance degrada-
tion in later chunks. One possible solution is to use
longer chunks, but it inevitably leads to a higher
latency throughout the whole utterance. To miti-
gate this issue, we explore a lengthening of the first
chunk. We call this strategy an initial wait.

4 Experiments Setup

In this section, we describe the onlinization experi-
ments.

4.1 Evaluation Setup

We use the SimulEval toolkit (Ma et al., 2020). The
toolkit provides a simple interface for evaluation
of simultaneous (speech) translation. It reports the
quality metric BLEU (Papineni et al., 2002; Post,
2018) and latency metrics Average Proportion (AP,
Cho and Esipova 2016), Average Lagging (AL, Ma
et al. 2019), and Differentiable Average Lagging
(DAL, Cherry and Foster 2019) modified for speech
source.

Specifically, we implement an Agent class.
We have to implement two important functions:
policy(state) and predict (state),
where state is the state of the agent (e.g., read
processed input, emitted tokens, ...). The policy
function returns the action of the agent: (1) READ
to request more input, (2) WRITE to emit new
hypothesis tokens.

We implement the policy as specified in Al-
gorithm 1. The default action is READ. If there
is a new chunk, we perform the inference and
use the prefiz(WW°) function to find the stable
prefix. If there are new tokens to display (i.e.,
lprefix(We)| > |prefiz(We1)]), we return the
WRITE action. As soon as our agent emits an end-
of-sequence (EOS) token, the inference of the utter-
ance is finished by the SimulEval. We noticed that
our model was emitting the EOS token quite often,
especially in the early chunks. Hence, we ignore
the EOS if returned by our model and continue the
inference until the end of the source.’

Algorithm 1 Policy function

Require: state

if state.new_input > chunk_size then
hypothesis < predict(state)
if |hypothesis| > 0 then

return WRITE

end if

end if

return READ

4.2 Speech Translation Models

In our experiments, we use two different models.
First, we do experiments with a monolingual Model
A, then for the submission, we use a multilingual
and more robust Model B.*

Model A is the KIT IWSLT 2020 model for the
Offline Speech Translation task. Specifically, it
is an end-to-end English to German Transformer
model with relative attention. For more described
description, refer to Pham et al. (2020b).

4.2.1 Multilingual Model

For the submission, we use a multilingual Model
B. We construct the SLT architecture with the en-
coder based on the wav2vec 2.0 (Baevski et al.,
2020) and the decoder based on the autoregressive
language model pretrained with mBARTS50 (Tang
et al., 2020).

wav2vec 2.0 is a Transformer encoder model
which receives raw waveforms as input and gen-
erates high-level representations. The architec-
ture consists of two main components: first, a

3This might cause an unnecessary increase in latency, but
it might be partially prevented by voice activity detection.

*We also did experiments with a dedicated English-
German model similar to Model B (i.e., based on wav2vec and
mBART), but it performed worse both in offline and online
setting compared to the multilingual version.
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convolution-based feature extractor downsamples
long audio waveforms into features that have sim-
ilar lengths with spectrograms.After that, a deep
Transformer encoder uses self-attention and feed-
forward neural network blocks to transform the
features without further downsampling.

During the self-supervised training process, the
network is trained with a contrastive learning strat-
egy (Baevski et al., 2020), in which the already
downsampled features are randomly masked and
the model learns to predict the quantized latent
representation of the masked time step.

During the supervised learning step, we freeze
the feature extraction weights to save memory since
the first layers are among the largest ones. We
fine-tune all of the weights in the Transformer en-
coder. Moreover, to make the model more robust
to the fluctuation in absolute positions and dura-
tions when it comes to audio signals,we added the
relative position encodings (Dai et al., 2019; Pham
et al., 2020a) to alleviate this problem.’

Here we used the same pretrained model with
the speech recognizer, with the large architecture
pretrained with 53% hours of unlabeled data.

mBARTS0 is an encoder-decoder Transformer-
based language model. During training, instead of
the typical language modeling setting of predict-
ing the next word in the sequence, this model is
trained to reconstruct a sequence from its noisy
version (Lewis et al., 2019) and later extended
to a multilingual version (Liu et al., 2020b; Tang
et al., 2020) in which the corpora from multiple lan-
guages are combined during training. mBARTS50
is the version that is pretrained on 50 languages.

The mBARTS50 model follows the Transformer
encoder and decoder (Vaswani et al., 2017). Dur-
ing fine-tuning, we combine the mBARTS50 de-
coder with the wav2vec 2.0 encoder, where both
encoder and decoder know one modality. The cross-
attention layers connecting the decoder with the
encoder are the parts that require extensive fine-
tuning in this case, due to the modality mismatch
between pretraining and fine-tuning.

Finally, we use the model in a multilingual set-
ting, i.e., for English to Chinese, German, and
Japanese language pairs by training on the combi-
nation of the datasets. The mBARTS50 vocabulary
contains language tokens for all three languages

5This has the added advantage of better generalization
in situations where training and testing data are segmented
differently.

and can be used to control the language output (Ha
et al., 2016).

For more details on the model refer to Pham et al.
(2022).

4.3 Test Data

For the onlinization experiments, we use MuST-C
(Cattoni et al., 2021) t st —-COMMON from the v2.0
release. We conduct all the experiments on the
English-German language pair.

S Experiments and Results

In this section, we describe the experiments and
discuss the results.

5.1 Chunks Size

We experiment with chunk sizes of 250 ms, 500 ms,
1s, and 2 s. We combine the sizes of the chunks
with different partial hypothesis selection strategies.
The results are shown in Figure 1.

The results document that the chunk size param-
eter has a stronger influence on the trade-off than
different prefix strategies. Additionally, this en-
ables constant trade-off strategies (e.g., LA-2) to
become flexible.

I I I I 2000
0 M
B 25 —— LA-2 | |
= i SP-2
- —b— Hold-6
20 Offline
| | |

0 0.5 1 1.5 2 2.5 3
Average Lagging (seconds)

Figure 1: Quality-latency trade-off of different chunk
sizes combined with different stable hypothesis detec-
tion strategies. The number next to the marks indicates
chunk size in milliseconds.

5.2 Stable Hypothesis Detection Strategies

We experiment with three strategies: hold-n (with-
holds last n tokens), shared prefix (SP-n; finds the
longest common prefix of all beams in n consec-
utive chunks) and local agreement (LA-n; finds
the longest common prefix of the best hypothe-
sis in n consecutive chunks). For hold-n, we se-
lect n = 3,6,12; for SP-n, we select n = 1,2
(n = 1 corresponds to the strategy by Nguyen et al.
(2021)); for LA-n we select n = 2,3,4 (n = 2
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corresponds to the strategy by Liu et al. (2020a)).
The results are in Figures 2 and 3.

T et
30| T e
=) 5 » —e— 500 ms
- 20l /2 —&— 1000 ms | |
- / —A— 2000 ms
15 7 Offline ||
3 | \ \ \ \ \ \
0 0.5 1 1.5 2 2.5 3

Average Lagging (seconds)

Figure 2: Quality-latency trade-off of hold-n strategy
with different values of n. The number next to the marks
indicates n. Colored lines connect results with equal
chunk size.

Hold-n The results suggest (see Figure 2) that
the hold-n strategy can use either n or chunk size
to control the quality-latency trade-off with equal
effect. The only exception seems to be too low
n <= 3, which slightly underperforms the options
with higher n and shorter chunk size.

Local agreement (LA-n) The local agreement
seems to outperform all other strategies (see Fig-
ure 3). LA-n for all n follows the same quality-
latency trade-off line. The advantage of LA-2 is
in reduced computational complexity compared to
the other LA-n strategies with n > 2.

Shared prefix (SP-n) SP-1 strongly underper-
forms other strategies in quality (see Figure 3).
While the SP-1 strategy performs well in the ASR
task (Nguyen et al., 2021), it is probably too lax
for the speech translation task. The generalized
and more conservative SP-2 performs much better.
Although, the more relaxed LA-2, which considers
only the best item in the beam, has a better quality-
latency trade-off curve than the more conservative
SP-2.

5.3 Initial Wait

As we could see in Section 5.1, the shorter chunk
sizes tend to perform worse. One of the reasons
might be the limited context of the early chunks.®
To increase the early context, we prolong the first
chunk to 2 seconds.

The results are in Table 1. We see a slight (0.3
BLEU) increase in quality for a chunk size of 250

®1f we translated a non-pre-segmented input, this problem
would be limited only onetime to the beginning of the input.
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Initial wait Chunk size ‘ BLEU AL AP DAL
250 16.34 -35.97 0.66 1435.06

0 500 2540  727.55 0.73 1791.21
1000 30.29 1660.59 0.83 2662.18

250 16.60  358.35 0.74 2121.54

2000 500 2542  952.15 0.77 2142.53
1000 30.29 1654.77 0.83 2657.48

Table 1: Quality-latency trade-off of the LA-2 strategy
with and without the initial wait.

ms, though the initial wait does not improve the
BLEU and a considerable increase in the latency.

The performance seems to be influenced mainly
by the chunk size. The reason for smaller chunks’
under-performance might be caused by (1) acoustic
uncertainty towards the end of a chunk (e.g., words
often get cut in the middle), or (2) insufficient infor-
mation difference between two consecutive chunks.

This is supported by the observation in Figure 3.
Increasing the number of consecutive chunks (i.e.,
increasing the context for the decision) considered
in the local agreement strategy (LA-2,3,4), im-
proves the quality, while it adds latency.

5.4 Negative Average Lagging

Interestingly, we noticed that some of the strategies
achieved negative average lagging (e.g., LA-2 in
Section 5.1) with a chunk size of 250 ms has AL
of -36 ms). After a closer examination of the out-
puts, we found that the negative AL is in utterances
where the hypothesis is significantly longer than
the reference. Recall the average latency for speech
input defined by Ma et al. (2020):

' (1X])

Zd—d

1

4
70X 4)

ALspeech =

where d; = Zi:l T}, j is the index of raw audio
segment that has been read when generating y;,
Ty is duration of raw audio segment, 7/(|X]) =
min{i|d; = Z‘j)i'l T;} and df are the delays of an
ideal policy:

X

ZT /1Y,

where Y* is reference translation.

If the hypothesis is longer than the reference,
then d; > d;, making the sum argument in Equa-
tion (4) negative. On the other hand, if we use
the length of the hypothesis instead, then a shorter

;i =(—-1) (5
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BLEU
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/ 000

15 |- /
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SP-2 7
LA-2
LA-3
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Average Lagging (seconds)

Figure 3: Quality-latency trade-off of shared prefix (SP-n) and local agreement (LA-n) with different n and chunk

size.

hypothesis would benefit.” We, therefore, suggest
using the maximum of both to prevent the advan-
tage of either a shorter or a longer hypothesis:

X
d; = (i = 1) x 3. T; /maz([Y|,[Y*]). (6)
j=1

6 Submitted System

In this section, we describe the submitted system.
We follow the allowed training data and pretrained
models and therefore our submission is constrained
(see Section 4.2.1 for model description).

For stable hypothesis detection, we decided to
use the local agreement strategy with n = 2. As
shown in Section 5.2, the LA-2 has the best latency-
quality trade-off along with other LA-n strategies.
To achieve the different latency regimes, we use var-
ious chunk sizes, depending on the language pair.
We decided not to use larger n > 2 to control the
latency, as it increases the computation complexity
while having the same effect as using a different
chunk size. The results on MuST-C tst-=COMMON
are in Table 2. The quality-latency trade-off is in
Figure 4.

From Table 2 and Figure 4, we can see that the
proposed method works well on two different mod-
els and various language pairs. We see that an
improvement in the offline model (offline BLEU of
31.36 and 33.14 for Model A and B, respectively)
leads to improvement in the online regime.

"Ma et al. (2019) originally used the hypothesis length in

the Equation (5) and then Ma et al. (2020) suggested to use
the reference length instead.

—h
32 —
z —
5 30 =
m —e—  Model A

—&—  Model B ||
—eo— Best IWSLT21

e

| I
1 1.5 2 2.5 3 35
Average Lagging (seconds)

Figure 4: Quality-latency trade-off on English-German
tst-COMMON of our two models: a dedicated English-
German model trained from scratch (Model A) and
a multilingual model based on wav2vec and mBART
(Model B). We also include the best IWSLT 2021 sys-
tem (USTC-NELSLIP (Liu et al., 2021)).

Finally, we see that our method beats the best
IWSLT 2021 system (USTC-NELSLIP (Liu et al.,
2021)) in medium and high latency regimes using
both models (i.e., a model trained from scratch and
a model based on pretrained wav2vec and mBART),
and is almost on par in the low latency regime
(Model A is losing 0.35 BLEU and Model B is
losing 0.47 BLEU).

6.1 Computationally Aware Latency

In this paper, we do not report any computationally
aware metrics, as our implementation of Transform-
ers is slow. Later, we implemented the same onlin-
ization approach using wav2vec 2.0 and mBART
from Huggingface Transformers (Wolf et al., 2020).
The new implementation reaches faster than real-
time inference speed.
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Model Language pair Latency regime Chunksize | BLEU AL AP DAL
Tow - 2740 920 0.68 1420

Best IWSLT2I system | En-De  Medium ; 2068 1860 0.82 2650
High ; 3075 2740 0.90 3630

Tow 600 2705 947 0.76 1993

Medium 1000 | 3030 1660 0.84 2662

Model A En-De  tioh 2000 | 3141 2966 093 3853
Offline - 3136 5794 1.00 5794

Low 500 2693 945 0.77 2052

e | Medium 1000 | 3160 1906 0.86 2945

High 2500 | 3298 3663 096 4452

Offline ) 3314 5794 1.00 5794

Tow 1000 | 1684 2452 090 3212

Medium 2400 | 1699 3791 097 4296

Model B EnJa Hion 3000 | 1697 4140 098 4536
Offline - 1688 5119 1.00 5119

Tow 800 2360 1761 085 2361

by Medium 1500 | 2429 2788 093 3500

High 2500 | 2456 3669 097 4212

Offline - 2454 5119 1.00 5119

Table 2: Results of the older model used for the experiments (Model A) and the submitted system (Model B) on the
MuST-C v2 tst-COMMON. We also include the best IWSLT 2021 system (USTC-NELSLIP (Liu et al., 2021)).

7 Conclusion

In this paper, we reviewed onlinization strategies
for end-to-end speech translation models. We iden-
tified the optimal stable hypothesis detection strat-
egy and proposed two separate ways of the quality-
latency trade-off parametrization. We showed that
the onlinization of the offline models is easy and
performs almost on par with the offline run. We
demonstrated that an improvement in the offline
model leads to improved online performance. We
also showed that our method outperforms a dedi-
cated simultaneous system. Finally, we proposed
an improvement in the average latency metric.
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