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Abstract

This work describes the participation of the
MLLP-VRAIN research group in the two
shared tasks of the IWSLT 2022 confer-
ence: Simultaneous Speech Translation and
Speech-to-Speech Translation. We present our
streaming-ready ASR, MT and TTS systems
for Speech Translation and Synthesis from En-
glish into German. Our submission combines
these systems by means of a cascade approach
paying special attention to data preparation
and decoding for streaming inference.

1 Introduction

In this paper we describe the participation of the
MLLP-VRAIN research group in the shared tasks
of the 19th International Conference on Spoken
Language Translation (IWSLT). We participated in
two shared tasks: the Simultaneous Speech Trans-
lation and the (offline) Speech-to-Speech Transla-
tion tasks. The translation pair for both tasks was
English to German. Our submission follows the
cascade approach, with individual ASR, MT and
TTS components. We use common ASR and MT
models for both tasks, with additional latency re-
strictions for the Simultaneous task. In short, for
the Simultaneous S2T task our system comprises a
one-pass decoder ASR system based on the HMM-
DNN approach with a chunk-based BLSTM AM
combined with a Transformer LM, followed by a
multi-k Transformer-based MT system. Regard-
ing the S2S translation task, the aforementioned
systems are followed by a non-autoregressive
Conformer-based text-to-spectogram module, end-
ing with a multi-band UnivNet neural vocoder to
convert from the spectogram to the final audio
wave.

This paper is structured as follows. Section 2
describes our participation in the Simultaneous
Speech Translation (ST) task: the architecture and
design decisions of the ASR and MT components
in our cascade system, and the evaluation of the

individual components as well as the speech trans-
lation system as a whole. Section 3 describes our
participation in the Speech-to-Speech (S2S) Trans-
lation task, paying special attention to the speaker-
adaptive TTS system specifically developed for this
task. Our conclusions for the shared task are drawn
in Section 4.

2 Simultaneous Speech Translation

2.1 ASR System Description

The acoustic model (AM) was trained using 3649
hours from resources listed in Table 4 in Ap-
pendix A. The evaluation sets were those provided
with MuST-C v2.0: tst-HE, tst-COMMON and
dev, for the English-German language pair. To
train the AM we follow our training recipe for the
DNN-HMM model, thoroughly described in Jorge
et al. (2022). After this training pipeline we end up
with a BLSTM network with 8 bidirectional hidden
layers and 512 LSTM cells per layer and direc-
tion, with 10861 output labels (sub-phonetic units),
trained with TensorFlow (Abadi et al., 2015). Dur-
ing inference, to enable streaming recognition, we
perform a chunking-based processing of the input
to carry out both feature normalization and feature
scoring, as also described in Jorge et al. (2022).

Regarding the language model (LM), we trained
a count-based model (n-gram) and a neural-based
model (Transformer LM, TLM). For the former,
we trained a 4-gram LM with KenLM (Heafield,
2011) using 1.3G sentences and 17G of running
words (see Table 5 in Appendix A for a complete
list of resources). For the latter, in order to alle-
viate the training time for this neural model, we
selected a subset with the WIT3, MuST-C, and a
random sample from the rest of the data up to 1G
words. This TLM was trained using an adapted ver-
sion of the FairSeq toolkit (Ott et al., 2019). The
architecture is based on a 24-layer network with
768 units per layer, 4096-unit feed-forward neural
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network, 12 attention heads, and an embedding of
768 dimensions. These models were trained until
convergence with batches limited to 512 tokens.
Parameters were updated every 32 batches. During
inference, Variance Regularization was applied to
speed up the computation of TLM scores (Baquero-
Arnal et al., 2020). Regarding the selected vocabu-
lary, it comprises 300K words, with an OOV rate
of about 0.3% on the selected dev sets. Lastly, we
combined these acoustic and language models to
perform a one-pass streaming recognition with our
internal decoder implemented in TLK (del Agua
et al., 2014).

2.2 MT System Description
The MT system must be ready to translate unpunc-
tuated, lowercase ASR transcriptions. To prepare
the MT system for this, the source side of the train-
ing data is pre-processed using the same approach
as that applied to the LM training data (Iranzo-
Sánchez et al., 2020a). Subword segmentation is
based on the SentencePiece described in Kudo and
Richardson (2018). Internally, 40k BPE operations
are used, jointly learned on the source and target
data, and the white-space sentence word separator
symbol is used as a suffix to ease the decoding.

Most of our efforts this year have been focused
on data preparation, selection and filtering. We
have considered the following setups for training
our models:

• Baseline data setup: For this configuration,
we use all of the WMT20 news translation
task data (Barrault et al., 2020), Europarl-
ST (Iranzo-Sánchez et al., 2020b), MuST-C
v2 (Di Gangi et al., 2019) and the TED cor-
pus (Cettolo et al., 2012a), for a total of 48M
sentence pairs used for training.

• WMT21: We use WMT21 news translation
task (Akhbardeh et al., 2021) data instead of
WMT20, for a total of 97M sentence pairs
used for training.

• OpenSubtitles: Add the OpenSubtitles
2018 (Lison and Tiedemann, 2016) to the
training data. This adds an additional 22M
sentence pairs to the training data.

• Bicleaner: We use the Bicleaner and Bifixer
tools (Ramírez-Sánchez et al., 2020) to filter
the training data. We use the v1.4 pre-trained
model published by the Bitextor team to score

the sentences, and we do not run the LM com-
ponent during filtering. We filter the sentences
using two values for the filtering threshold, 0.3
and 0.5, so sentences with a score lower than
the threshold are discarded before training.

• Clean ups.: In order to increase the propor-
tion of clean data used by the model during
training, we take those parallel corpora that
contain document-level information (TED,
news-commentary, Wikititles, rapid, Europarl,
Europarl-ST and MuST-C), and upsample
them by a factor of 5. Our expectation is that
corpora which contain entire documents can
be more reliable that sentence pairs extracted
from other sources.

• [ASR]-half : Using this configuration, we
prepend a new special token [ASR] to the
source text sequence to be translated during
inference. Additionally, during training, only
half of the data is pre-processed following the
ASR recipe, and we append the special [ASR]
tag to it. The other half of the data keeps
its original casing and punctuation. Ideally,
this would allow the model to learn how to
translate ASR output, while at the same time
having access to some information about cap-
italization and casing during training. This
setup is inspired in Zhao et al. (2021), but
the authors used a different pre-processing
schema.

All our models are based on the Transformer
BIG architecture (Vaswani et al., 2017). We use
the Adam optimizer, learning rate 5e-4 with an
inverse square root decay, and train for a total of 1M
batches of 16k tokens each. After training finishes,
we carry out domain adaptation by finetuning on
the MuST-C train data for 5000 updates or until the
dev perplexity stops improving.

For training simultaneous MT models, we use
the multi-k approach (Elbayad et al., 2020), be-
cause it achieves competitive results while at the
same time provides us with the flexibility of ad-
justing the latency at inference time. By default, a
random k is used for each batch, sampled between
1 and the length of the longest sentence included in
the batch. We also tried training with a smaller k
upper bound to check whether the quality improves
in low-latency scenarios.

During decoding, we use beam search with a
beam size of 6 for the offline model, whereas we
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Table 1: PPL and WER figures for the dev and tst-
HE/CO(MMON) sets with 4-gram model and TLM.

dev tst-HE tst-CO

PPL
4-gram 117 117 106
TLM 54 54 55

WER
4-gram 7.8 7.2 9.5
TLM 5.8 5.3 7.3

use speculative beam-search (Zheng et al., 2019)
with a beam size of 4 for simultaneous models.
Higher beam values significantly increased decod-
ing costs for a negligible increase in quality. In
order to speed-up decoding, we first compute how
many w words we need to generate based on the
wait-k policy. Then, we carry out speculative beam-
search by generating hypothesis with a maximum
length of w · a + b + 1 subwords, where a and
b are two hyperparameters optimized on the dev
set. If this first search does not generate the w
words we need, we carry out a second search with
a maximum hypothesis length of 150 subwords.

2.3 ASR System Evaluation
First, we carried out a comparative evaluation in
terms of perplexity (PPL) and Word Error Rate
(WER) between the 4-gram model and the TLM
on the MuST-C.v2 dev set dev and the test sets,
tst-HE and tst-COMMON. Table 1 shows PPL and
WER figures on dev and test sets having validated
and fine-tuned hyperparameters on the dev set. It
is worth noting how roughly halving perplexity
involves a consistent WER reduction of about 23-
25%.

Next, with the best setup from the previous ex-
periment (using TLM) we performed another set
of evaluations to explore the impact of the size of
the window for the acoustic look-ahead context on
WER. For this comparison, we considered values
of 250, 500, 1000, and 1500 ms of future context
for the chunk-based BLSTM. Table 2 illustrates
the resulting WER when the look-ahead context
is modified. As expected, providing more future
context allows the model to deliver more accurate
scores, reducing the WER. Indeed, increasing this
context results in a WER reduction of about 20%
the cost of increasing the latency from 250 to 1000
ms.

2.4 MT System Evaluation
As in the ASR system, we also use the MuST-C.v2
dev set in order to validate and fine-tune hyperpa-

Table 2: WER figures varying the window size (in ms)
of the look-ahead context of the chunk-based BLSTM.

look-ahead window 250 500 1000 1500
dev 6.9 5.8 5.6 5.6
tst-HE 6.6 5.3 5.1 5.0
tst-COMMON 9.3 7.3 7.0 7.1

rameters. Additionally, we report results on the
MuST-C.v2 tst-COMMON set, as well as on the
IWSLT 2015 and 2018 test sets, using the BLEU
score (Papineni et al., 2002).

Table 3 shows BLEU figures of a conventional
offline system and a range of simultaneous multi-
k systems trained on the data setups described in
Section 2.2. These results correspond to the fine-
tuned models using the in-domain MuST-C data,
which results in a consistent improvement across all
training setup. For the sake of comparison on the
Baseline data setup between the offline and simul-
taneous system, the simultaneous multi-k system
was evaluated when running inference in offline
mode (k = 100). The ranking of training data se-
tups for multi-k systems with k ∈ {1, 3, 6, 15} on
inference time was the same.

As observed in Table 3, the unidirectional en-
coder used for training the multi-k system (system
#2) results in a small quality degradation when
compared with the offline model (system #1), simi-
larly to what was observed in (Iranzo-Sánchez et al.,
2022). Adding OpenSubtitles to the data (system
#3) shows some improvements across the evalua-
tion sets. The use of the [ASR]-half pre-processing
scheme (system 4) shows a promising 1.7 BLEU
increase on MuST-C tst-COMMON, but it does
not convey to other evaluation sets. Other tentative
configurations using the [ASR]-half approach did
not improve over non-[ASR]-half results.

With regards to systems using WMT21 data (sys-
tems #5-7), it is surprising to see that the additional
data does not seem to improve results across the
board, even if we use filtering, when compared to
the baseline data configuration. Additional experi-
ments are needed on this regard, but a possible ex-
planation is that the smaller baseline dataset is more
in-domain than the larger WMT21 set, perhaps due
to the speech corpora being a bigger portion of the
training data.

Based on our intuition behind the results pro-
vided by systems #5-7, we ran an additional experi-
ment combining the WMT21 with data upsampling
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Table 3: BLEU scores of offline and multi-k MT systems for different training data setups on MuST-C.v2 dev and
tst-CO(MMON), and IWSLT 2015 and 2018 test sets.

# System dev tst-CO tst2015 tst2018
1 Offline Baseline 33.0 33.8 33.4 31.6
2 Multi-k Baseline 32.2 32.8 32.3 30.7
3 + OpenSubtitles 32.3 33.3 33.2 30.7
4 + [ASR]-half 31.4 34.5 30.4 28.8
5 + WMT21 31.9 32.6 32.5 30.2
6 + Bicleaner (tr=0.3) 31.7 32.6 32.5 31.0
7 + Bicleaner (tr=0.5) 31.8 32.3 32.8 30.9
8 + Clean ups. & OpenSubtitles 32.2 32.9 32.6 31.1

and the OpenSubtitles2018 corpora (system #8, see
Section 2.2). This configuration obtained better
results than systems #4-7, and even outperformed
system #2 on tst2018. Based on the results on the
dev set, we selected systems #3 and #8 for further
experimentation.

The default implementation of the multi-k sys-
tem samples a random k each batch, with a maxi-
mum k value of the longest sentence in the batch.
In our case, we discard before training all sentences
longer than 100 words. This means that the model
trains across multiple latency regimes, and in some
batches is actually training with the same restric-
tions as an offline model. Thus, it might be bene-
ficial to train with a smaller upper value of k, in
order to encourage better translation quality for
low-latency regimes. We trained a new system
#3 with a maximum k of 20 subwords and study
its trade-off between latency measured as Average
Lagging (AL) (Ma et al., 2019) and BLEU com-
pared with the conventional system #3 (maximum
k=100) in Figure 1. As shown, no performance
improvement at low latency when training with a
smaller k threshold is observed, and therefore we
decided not to use the multi-k system trained with
maximum k = 20.

2.5 Simultaneous S2T System Evaluation

Based on the previously described ASR and MT
systems, we now move into optimizing the decod-
ing hyper-parameters of the joint cascade system.
For the ASR component, we optimized the prun-
ing parameters, that is, the grammar scale factor,
the beam and the number of active hypotheses at
both sub-phonetic and word level, as well as the
recombination limit and the look-ahead acoustic
context. As described before all experiments were
carried out using the TLM model, since no differ-
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Figure 1: BLEU versus AL for maximum values of k ∈
{20, 100} for multi-k system #3 measured on MuST-
C.v2 tst-COMMON.

ences on computational AL were found between
both language models. For the MT component, we
optimized the inference time k, and the a and b
hyperparameters of the speculative beam search.

The goal is to obtain the best hyperparameter
combination that satisfies the AL thresholds de-
fined in the simultaneous task, 1000, 2000, and
4000. Our cascade systems operates approximately
at Real-Time Factor of 0.5, so we first run a wide
hyperparameter sweep using tst-HE, which is a
smaller dataset than tst-COMMON. The results are
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shown in Figure 2.
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Figure 2: BLEU vs AL for different hyperparame-
ter configurations of our simultaneous ST system mea-
sured on MuST-C.v2 tst-HE.

It can be observed how the choice of hyperpa-
rameters is critical in order to maximize the quality
of the system, as there are differences of up to 4
BLEU points between systems that have the same
latency. We found it significantly hard to obtain a
system with AL≤ 1000, as our ASR decoder with
a TLM takes a long time to consolidate hypothesis.
We came up with a strategy in order to be able to
submit a low-latency system, so that every time
a new transcribed word is consolidated, we also
send the unconsolidated part of the top scoring hy-
pothesis to the MT system. Using this strategy, our
hope is that if the unconsolidated hypothesis do not
show a lot of variation, the latency of the cascade
system can be significantly reduced in exchange
for a small degradation of translation quality. We
tested this strategy as well as our best performing
systems (#3 and #8) on tst-COMMON, and report
BLEU versus AL in Figure 3.

Figure 3 shows how we were able to stay below
the AL= 1000 threshold thanks to using the ASR
unconsolidated hypothesis. Based on these results,
our final submission to the shared task are shown in
Figure 3 as filled points, with system #8 submitted
as System 1, Primary, and system #3 submitted as
System 2, Contrastive.
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Figure 3: BLEU vs AL for different configurations of
simultaneous ST systems measured on MuST-C.v2 tst-
COMMON. Filled points were included in our submis-
sion to the shared task.

3 Speech-to-Speech Translation

In this section we describe our submission to the
Speech-to-Speech translation track, in which we
include a speaker-adaptive TTS module to our pre-
viously described cascaded Speech Translation sys-
tem. Thus, we reuse the ASR and MT models de-
veloped for the Simultaneous Speech Translation
task, though imposing a less restrictive pruning
setup. This involves, in brief, more look-ahead
context and a wider search space for the ASR sys-
tem described in Section 2.1, and using the offline
MT system instead of the simultaneous multi-k MT
system referred to in Section 2.2. Therefore, the
remaining of this section will describe the addi-
tional TTS module included to carry out the final
text-to-audio conversion of the S2S pipeline.

3.1 TTS System Description

In the context of the S2S translation task, for many
applications the TTS module should not only be
able to produce high quality natural sounding syn-
thetic speech in a predefined set of voices, but ide-
ally also be capable of mimicking the voice char-
acteristics of the original speaker in the target lan-
guage (e.g. male or female). To that end, our
proposed TTS model follows the transfer learning
approach to zero-shot speaker adaptation or multi-
speaker TTS (Doddipatla et al., 2017; Jia et al.,
2018; Cooper et al., 2020; Casanova et al., 2021),
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where an auxiliary speaker encoder model trained
on a speaker classification task is leveraged to com-
pute speaker embeddings from reference utterances
both during training and inference.

Our speaker encoder model follows the modi-
fied ResNet-34 residual network architecture (He
et al., 2016) from Chung et al. (2018), which is be-
ing widely used for speaker recognition tasks with
excellent results (Xie et al., 2019; Chung et al.,
2020b). However, similar to Chung et al. (2020a)
we halve the number of filters in each residual block
with respect to the original ResNet-34 architecture
to reduce computational costs and avoid over-fitting
when trained on relatively small datasets. The
model is trained on a speaker classification task
on the TED-LIUM v3 dataset (Hernandez et al.,
2018), which contains 452 hours of transcribed
speech data from 2351 TED conference talks given
by 2028 unique speakers. To reduce class imbal-
ance, we limit the number of audio segments per
speaker to 50. We trim leading and trailing si-
lence, apply a pre-emphasis filter with a coefficient
of 0.97 and extract 64-dim log-mel spectrograms
from training samples. During training, we also
perform on-the-fly audio data augmentation such
as randomly adding Gaussian noise, reverberations,
dynamic range compression and frequency mask-
ing in order to help generalization to different audio
recording conditions. Mean and variance normal-
ization is performed by adding an instance normal-
ization layer to the spectrogram inputs. The model
is trained to minimize the Angular Prototypical
loss (Chung et al., 2020b), in which we set M = 2
where M is the number of samples per speaker in
each mini-batch. We use the Adam optimizer with
a fixed learning rate of 0.0005 and train the model
for 100K steps using a mini-batch size of 300 sam-
ples (150 different speakers), each comprising 2.5
seconds.

Our TTS model follows the two-stage approach
to end-to-end neural text-to-speech. It is comprised
of a non-autoregressive Conformer-based text-to-
spectrogram network and a spectrogram-to-wave
multi-band UnivNet (Jang et al., 2021; Yang et al.,
2020) neural vocoder. We extract phoneme dura-
tions by means of a forced-aligner auto-encoder
model trained on the same data as in de Martos
et al. (2021). The Conformer encoder and decoder
blocks follow the modifications proposed in Liu
et al. (2021). First, the Swish activation function
is replaced with ReLU for better generalization,

particularly on long sentences. Second, the depth-
wise convolution is placed before the self-attention
module for faster convergence. Finally, the lin-
ear layers in feed-forward modules are replaced by
convolution layers.

Figure 4: Speaker-adaptive Conformer text-to-
spectrogram network architecture.

Figure 4 depicts the speaker-adaptive text-to-
spectrogram network architecture. The encoder and
decoder modules consist of 6 Conformer blocks
with attention dimension 384 and a kernel size of
1536 for convolutional feed-forward modules. The
speaker encoder model is used to extract 256-dim
speaker embeddings which are linearly projected
and added to the encoder hidden states. The vari-
ance adaptor modules (duration, pitch and energy
predictors) follow the convolutional architecture
in Ren et al. (2021) with 2, 5 and 2 layers, respec-
tively. The pitch prediction is done similarly as
in Łańcucki (2020), where frame-wise F0 values
are first converted to the logarithmic domain and
averaged over every input symbol using phoneme
durations. Then, predicted (ground truth during
training) phoneme-level pitch values are projected
and added to the encoder hidden states by means
of a 1-D convolution.

The text-to-spectrogram model is trained on
the LibriVoxDeEn dataset (Beilharz et al., 2020),
comprising 547 hours (487 hours after silence
trimming) of sentence-aligned audios from Ger-
man audio books. We down-sample all audios
to 16kHz and compute 100-bin log-mel spectro-
grams with Hann windowing, 50ms window length,
12.5ms hop size and 1024 point Fourier transform.
Phoneme sequences are extracted from normal-
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ized text transcriptions using the eSpeak NG1 tool.
Frame-wise pitch (F0) values are estimated using
the WORLD vocoder toolkit (MORISE et al., 2016;
Morise et al., 2009). The model is optimized to
minimize a combination of the `1 loss and the
SSIM (Structural SIMilarity index measure) (Wang
et al., 2004) between reference and predicted spec-
trograms. Additionally, auxiliary `1 losses are used
also for the duration, pitch and energy variance pre-
diction modules between reference and predicted
values. An auxiliary `1 loss between standard devi-
ation values of target and predicted pitch contours
(F0 values) is used to encourage the pitch predic-
tor produce less flattened prosody as the result of
training on a huge variety of speakers. We train the
model using the Adam optimizer for 500K steps
on a NVIDIA RTX 3090 GPU with a batch size of
12 and a learning rate of 0.0001 with a linear ramp
up for the first 5000 steps.

Finally, a 4-band UnivNet vocoder is trained to
generate 24kHz audios from 16kHz spectrograms.
UnivNet is a recent GAN-based vocoder that has
been shown to produce high quality speech of com-
parable quality to best performing GAN vocoders
such as HiFi-GAN (Su et al., 2020) while bring-
ing an improved inference speed of about 1.5×.
The model is trained on the LibriVoxDeEn 16kHz
ground truth spectrograms and 22kHz original au-
dios (up-sampled to 24kHz for simplicity) with
a batch size of 64 distributed along 4 GPUs for
1M steps. Then, the text-to-spectrogram model is
used to compute ground truth aligned spectrograms
using reference phoneme durations, pitch and en-
ergy values, and the vocoder model is fine-tuned on
the predicted spectrograms for an additional 100K
steps.

4 Conclusions

The MLLP-VRAIN research group has partici-
pated in the Simultaneous Speech Translation and
Speech-to-Speech Translation tasks using our state-
of-the art streaming-ready cascade systems. Under
the cascade approach, each individual component
has been described and evaluated, as well as the
joint cascade system.

The results show that the cascade approach re-
mains a flexible and powerful solution for ST tasks,
yet at the same time there is a great deal of hyper-
parameter optimization that needs to be carried out
in order to properly integrate the different compo-

1http://espeak.sourceforge.net

nents. The use of unconsolidated ASR hypothe-
sis has enabled very low-latency translation in ex-
change for a small decrease in quality. In terms of
future work, we would like to further study the use
of partial hypothesis by the MT system and other
downstream components, as a means of improving
the quality-latency tradeoff.
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A Appendix: ASR resources

Table 4: Transcribed speech resources, with the sets
used and total hours per set and globally. (tr=train,
d=dev, t=test, v=val, do/to=dev-other/test-other)

Set Hours
CommonVoice 6.1
(Mozilla, 2022) (v) 1668.0
Librispeech(tr+do+to)
(Panayotov et al., 2015) 970.1
MuST-C v2.0(tr en-{de,ja,zh})
(Di Gangi et al., 2019) 608.2
How2
(Sanabria et al., 2018)(tr+v+d) 304.5
Europarl-ST v1.1 (tr+d+t)
(Iranzo-Sánchez et al., 2020b) 98.7
Total 3649.6

Table 5: Text resources used to train the ngram LM.

Set Sent (K) Words (M)
News discussions 635117.8 8317.1
News crawl (new) 274930.0 6029.9
Open Subs 18
(Lison and Tiedemann, 2016) 439507.3 2429.2
WikiMatrix v1
(Schwenk et al., 2021) 19422.8 2107.5
UN Parallel Corpus V1.0
(Ziemski et al., 2016) 14517.5 308.4
Europarl v10
(Koehn, 2005) 2317.3 56.3
News Commentary
(Tiedemann, 2012) v1 646.8 14.1
LibriSpeech 287.0 9.5
CommonVoice 6.1 613.5 6.3
MuST-C v2.0 389.3 6.3
How2 191.6 3.4
Europarl-ST v1.1 36.0 0.9
WIT3
(Cettolo et al., 2012b) 14.6 0.2
Total 1387991.6 17522.1
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