The HW-TSC’s Simultaneous Speech Translation System for IWSLT 2022
Evaluation

Minghan Wang', Jiaxin Guo!, Yinglu Li', Xiaosong Qiao', Yuxia Wang?, Zongyao Li',
Chang Su', Yimeng Chen', Min Zhang', Shimin Tao', Hao Yang', Ying Qin'
"Huawei Translation Services Center, Beijing, China
2The University of Melbourne, Melbourne, Australia
{wangminghan,guojiaxinl, liyinglu,giaoxiaosong, lizongyao, suchang8
, chenyimeng, zhangminl86, taoshimin, yanghao30, ginying}@huawei.com
yuxiaw@student.unimelb.edu.au

Abstract

This paper presents our work in the partici-
pation of IWSLT 2022 simultaneous speech
translation evaluation. For the track of text-
to-text (T2T), we participate in three language
pairs and build wait-k based simultaneous MT
(SimulMT) model for the task. The model was
pretrained on WMT21 news corpora, and was
further improved with in-domain fine-tuning
and self-training. For the speech-to-text (S2T)
track, we designed both cascade and end-to-end
form in three language pairs. The cascade sys-
tem is composed of a chunking-based stream-
ing ASR model and the SimulMT model used
in the T2T track. The end-to-end system is
a simultaneous speech translation (SimulST)
model based on wait-k strategy, which is di-
rectly trained on a synthetic corpus produced
by translating all texts of ASR corpora into spe-
cific target language with an offline MT model.
It also contains a heuristic sentence breaking
strategy, preventing it from finishing the transla-
tion before the the end of the speech. We evalu-
ate our systems on the MUST-C tst-COMMON
dataset and show that the end-to-end system is
competitive to the cascade one. Meanwhile, we
also demonstrate that the SimulMT model can
be efficiently optimized by these approaches,
resulting in the improvements of 1-2 BLEU
points.

1 Introduction

Simultaneous speech/text translation
(SimulST/SimulMT) applications are widely
demanded in international communication

scenarios such as conferences or live streaming.
From the perspective of system architecture, re-
cent works on SimulST can be classified into cas-
cade and end-to-end forms. Cascade systems are
often composed of a streaming Automatic Speech
Recognition (ASR) module and a steaming text-
to-text machine translation module (MT). It might
also contains other correction modules. The inte-
gration of these modules can be challenging, but

the training of each can be beneficial from suf-
ficient data resources. End-to-end approach is
also a choice for SimulST, where translations can
be directly generated from a unified model with
the speech inputs, but bilingual speech translation
datasets are still scarce resources.

From the perspective of simultaneous strategy,
there is a fixed strategy which is represented by
wait-k (Ma et al., 2019) and a flexible strategy such
as monotonic attention (Arivazhagan et al., 2019).
The fixed strategy is easier to implement but with
inferior performance and the flexible one is more
robust to the speed of speech but can be non-trivial
in the implementation and training. Re-translation
is also a strategy proposed recently for SimulMT
system, which benefits from pre-trained M T mod-
els but often encounters with flicker (Arivazhagan
et al., 2020; Sen et al., 2021).

The IWSLT 2022 SimulST shared task (Anas-
tasopoulos et al., 2022) aims to provide a plat-
form for participants to evaluate their approaches
on both quality and latency. In this year, there
are two sub-tracks, i.e. speech-to-text (S2T) and
text-to-text (T2T), and three language directions in-
cluding En-Zh, En-De and En-Ja in the evaluation.
All submitted systems will be evaluated with the
SimulEval (Ma et al., 2020a) tool, where BLEU
(Papineni et al., 2002) and Average Lagging (AL)
(Ma et al., 2020a) are used as metrics for ranking.
Meanwhile, systems will be classified into three
latency regimes (low, medium, high) with their AL,
which are determined differently by the language
pairs. The SimulEval formulates the simultane-
ous translation as a process where an agent should
take "READ" or "WRITE" actions to control the
progress of translation. A "READ" action allows
the agent to get the latest source segments from
the server. A "WRITE" action enables the agent to
make prediction and send generated tokens back
to server for scoring. Participants are required to
implement their approaches under this framework.
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Dataset Number of Utterance Duration (hrs)
Librispeech 281,241 960.85
MuST-C 340,421 590.67
IWSLT 170,229 254.41
CoVoST 1362,422 1802.52
TEDLIUM3 268,214 453.42

Table 1: Data statistics of our ASR corpora

Language WMT Bilingual In-domain Text
En-De 9M 459K
En-Zh 96M 590K
En-Ja 42M 552K

Table 2: Data statistics of our MT corpora

In this paper, we present our work on the partici-
pation of all language directions for both S2T and
T2T sub-tasks. For the T2T task, we start by model-
ing with the original wait-k model and optimizing it
with in-domain fine-tuning and self-training (Gaido
et al., 2020), resulting in large improvements on
their performance. We experiment both cascade
and end-to-end systems for the S2T task and find
that the end-to-end one is quite competitive espe-
cially on the latency metric.

2 Method

2.1 Data Preparation & Pre-Processing

ASR Corpora We adopt exactly same data
pre-processing pipeline to our offline task sub-
mission.  Briefly, we combine 5 ASR (Lib-
riSpeech(Panayotov et al., 2015), MuST-C V2 (Cat-
toni et al., 2021), CoVoST (Wang et al., 2020),
TED-LIUM 3 (Hernandez et al., 2018) and IWSLT
official dataset) corpora and perform strict cleans-
ing based on absolute frame length (within 50 to
3000), number of tokens (within 1 to 150) and the
speed of speech (within u(7) = 4 x o(7), where

= #lramesy £ 9]] training utterances. There are

T = ¥tokens
basically 1% of noisy samples being filtered out.

MT corpora We follow the pipeline in (Wei et al.,
2021) to pre-process the WMT 21 news corpora as
well as the in-domain corpora (mixture of MUST-
C and IWSLT). Statistics of our MT corpora are
shown in Table 2.

2.2 ASR model

We adopt the U2 (Zhang et al., 2020) as the ASR
module in our cascade system. U2, a frame-

work that can be applied on standard Transformer
(Vaswani et al., 2017) or Conformer (Gulati et al.,
2020) architectures, is able to perform both stream-
ing and non-streaming ASR. The major difference
between U2 and other offline autoregressive ASR
models is that it supports streaming with the help
of the dynamic chunk training and decodes with
a CTC decoder on the top of the encoder. The
dynamic chunk training is achieved by dynami-
cally applying a causal mask with different chunk
size at the self-attention layer in the encoder. It
is similar to the self-attention of an autoregressive
decoder, but allowing the hidden representation to
condition on some look-ahead contexts within the
chunk. During inference, since the encoder hidden
states is monotonically encoded chunk by chunk,
the argmax decoding of CTC makes sure that to-
kens decoded in previous chunks are fixed, which
successfully achieves streaming. Besides the CTC
decoder, U2 also preserves the standard autoregres-
sive (AR) Transformer decoder, and can be jointly
trained with the CTC decoder to improve the sta-
bility of training. Originally, the AR decoder can
be used to re-score CTC generated texts if prefix
beam search is used to propose multiple candidates.
However, we don’t use the re-scoring in our system.

Since the decoding of arbitrary size of the chunk
is learned with the dynamic chunk training, the la-
tency of U2 can be freely determined by the chunk
size used in the inference. The chunk size is also
directly correlated to the performance, as it defines
the volume of look-ahead contexts used in the cur-
rent chunk.

2.3 Text to Text Model

Our T2T models are used in the T2T track and
also as the translation module in the cascade sys-
tem. It is a standard Transformer model with the
wait-k strategy (Ma et al., 2019) for simultaneous
decoding. For each language pair, we pre-train the
wait-k T2T model on the WMT 2021 news corpora
following similar settings as (Wei et al., 2021) to
acquire the model M. Then, we fine-tune it on the
mixture of MuST-C and IWSLT corpora denoted
as Cing, and obtain the domain adapted model M.
Although the domain transferring contributes some
improvements, we find that it is not able to solve
a key problem. Since the simultaneous decoding
is only conditioned on partially observed context,
there is a big gap between the training of offline
MT models and SimulMT models, in which the
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re-ordered translations from unseen context can be
significantly difficult for SimulMT models to learn.

To mitigate this problem, we propose to use self-
training (Liu et al., 2021; Kim and Rush, 2016).
Firstly, we translate the in-domain corpora Cipg
with My, and obtain C;,4’, then, we fine-tune Mo
on the mixture of Cjpg and Cjpg’ and obtain M3.
In this way, the self-distilled translations are more
monotonic and easier to learn.

2.4 Cascade Speech to Text Model

Algorithm 1 Decoding of Cascade System
Require: ASR, T2T, chunk size.k: ¢, M, N., k
Initialize: Speech buffer S « {}
Initialize: ASR buffer A < {}
Initialize: MT buffer H < {}
Initialize: Frame position p < 0
Initialize: MT Finish writing chunk e < true
while w is not </s> do
if |S| — p < N, and e and not finish reading
then
READ next input s
S« SU{s}
else
A < ¢(5): decode all texts with ASR
p < |S|: move frame position
if |A| — |H| > k then
decode with MT: w « M(A)
H «+ HU{w}
e (JA[ - [H| <k)
WRITE w
end if
end if
end while

Our cascade system is the integration of U2 and
wait-k T2T model. When evaluating with SimulE-
val, U2 makes decisions mainly based on whether
the input stream can fill a chunk, if not, it directly
calls READ, otherwise, it transcribes audio inputs
into English texts, and passes the entire sequence to
the T2T model. The T2T model takes the output of
U2 as inputs, and determines whether to read more
based on the length difference between source and
target sequence compared to k. Note that since U2
may decode several tokens in the latest chunk at
once, we need to distinguish the read action of T2T
model and ASR model. More specifically, when
tokens decoded in the latest chunk from U2 ex-
ceeds the length difference of £ for the T2T model,
we need to let the T2T model decode for several

steps instead of using the read action outputs by
T2T model to read more audio frames, this will
significantly increase the latency. Therefore, we
introduce a flag e, representing whether the T2T
model finishes its decoding process for all newly
input tokens from current chunk. Algorithm 1 and
Figure 1 describes the detailed process.

2.5 End-to-end Speech to Text Model

Besides the cascade system, we also explored the
end-to-end (E2E) system. A key disadvantage to
train an E2E system comes from the lack of large
scale speech translation corpora. Therefore, we
use the pre-trained MT model (trained on WMT21
News corpora) to create the knowledge distilled
data (Kim and Rush, 2016) by translating all ASR
corpora into required language, which significantly
increases the scale of the training set.

There are two reasons that we use an offline MT
model instead of our T2T model to generate the
KD data. 1) the T2T model has lower performance
compared to the offline model which may further
limit the performance upper bound of the student
model. 2) Decoding with T2T model is quite slower
than the offline MT model.

For the E2E S2T model, we use the Conv-
Transformer (Inaguma et al., 2020) with wait-k
strategy of different k for each language. More
specifically, we adopt similar configurations in
(Ma et al., 2020b), where a pre-decision module is
used to handle the large length gap between speech
frames and target sentence, so that the wait-k al-
gorithm can work properly with enough source
information. Here we use the fixed pre-decision
policy by pooling frames into a summarized feature
vector for the wait-k decision every fixed number
of frames (7 frames for all three models in our
experiments).

During the evaluation with SimulEval, we found
that E2E S2T model can easily predict the "</s>"
when there is a silence interval in the speech. Al-
though fed with more source inputs or applied with
EOS penalty, the model is still incapable of trans-
lating samples into multiple sentences.

We suspect that the model is only trained on
properly segmented utterances containing scarce
samples with more than one sentence, but evalu-
ated on samples with multiple sentences. This often
causes the agent to send an incomplete translation
to the server. To this end, we design a simple but
efficient sentence breaking strategy to prevent the
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Figure 1: This figure presents an example of decoding with our cascade system, in which the the chunk size of U2 is
set equivalent to 2s, the k for the wait-k T2T is set to 3. We plot the timeline of the real wall time and the speech
time for a more cleared description. To present the collaboration of two models, we assume that decoding with U2
needs no time but decoding with wait-k T2T requires 0.5s per token.

agent from early stopping. In detail, when the de-
coder predict "</s>" as the next token, we check
if the agent finishes reading source inputs. If it
does, the "</s>" is the true ending of the speech,
otherwise, it will be used as an ending of the sub-
sentence, meaning that the "</s>" won’t be sent
back to the server, and the agent should keep trans-
lating until the entire speech is processed. The
ending of a sub-sentence will also be used to clean
the source input buffer and target context buffer,
which means each sub-sentence is translated inde-
pendently by the agent. We find this approach may
in some extent introduce more latency since for
each sub-sentence, the agent needs re-wait-k steps
to start the generation, however, it is quite helpful
to improve the performance on samples that might
be mis-segmented with the original approach.

2.6 Domain Controlled Generation

As mentioned in section 2.1, we combine differ-
ent corpora with different data source to create the
united dataset, in which the domain and text style
can be various. Directly training the model on the
mixture of them can be harmful to the performance
since some of these differences can’t be easily cap-
tured from the speech inputs, so they should be con-
sidered as prior knowledge. Therefore, we reuse

the strategy from our last year’s work (Wang et al.,
2021) by providing a domain tag as a known condi-
tion to control the generation style. This strategy is
used in our E2E S2T model and ASR model. For
the S2T model, we add the domain tag as the first
token input to the decoder. For the ASR model,
since we only use the CTC decoding, domain in-
formation needs to be provided at the encoder side.
Therefore, we first encode the domain tag with the
word embedding layer of the decoder to acquire its
representation vector, then, we perform an element-
wise sum with the down-sampled input features
before feeding to encoder attention layers.

Since the test sets have similar distribution with
MuST-C corpora in previous years, we control the
model to generate MuST-C alike text by using the
domain tag "<MC>" during the inference process.

3 Experiments

We conduct experiments on three types of systems
including T2T, cascade S2T and E2E S2T. All sys-
tems are evaluated on the MuST-C tst-COMMON
dataset for all three languages.

3.1 Setup

We adopt same configuration recipe to our of-
fline submission on the training of the U2 model,
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Laneuage Quality Latency
guage BLEU | AL AL CA AP AP CA DAL DAL CA

k=3 2498 | 2.66 - 0.66 - 4.14 -

En-De k=6 3150 | 5.58 ; 0.78 - 6.53 -
k=15 3338 | 11.12 ; 0.93 - 11.87 ;
k=6 855 | 1.74 ] 0.67 - 570 ]

En-Ja k=10 1453 | 6.70 ; 0.85 - 8.53 ;
k=14 1426 | 9.75 ; 0.92 - 10.95 ;
k=6 2253 | 2.93 ] 0.71 - 5.40 ]

En-Zh k=10 2645 | 6.78 ; 0.85 - 8.29 ;
k=14 2754 | 953 ; 0.92 - 10.60 ;

Table 3: This table shows the results of our T2T models, where AL is computed with number of tokens.

Laneuage Quality Latency
guage BLEU | AL AL CA AP AP CA DAL DAL CA
k=3 1856 | 1959.58 267229 079  1.02 241161 3186.99
En-De k=6 2390 | 260847 349075 087 1.18 306746 4110.86
k=15 2478 | 402055 511626 096 132 431252 558231
k=6 728 | 221507 255588 0.80 092 262034 28527
En-Ja k=10 12.16 | 2867.81 326279 092 106  3343.08 3675.45
k=14 1157 | 3365.65 376464 095 109 3811.56 414238
k=6 1859 | 211971 24689 083 095 2603.03 2837.85
En-Zh k=10 2250 | 28388 3207.05 092 105 329246 3573.82
k=14  23.61 | 342494 378095 095 1.09  3782.05 40652

Table 4: This table shows the results of our cascade S2T models, where AL is computed with milliseconds.

where 80 dimensional Mel-Filter bank features
are extracted from raw waveform, and being aug-
mented with speed perturbation (Ko et al., 2015)
and spectral augmentation (Park et al., 2019).
The model is trained with the hyper-parameters
(n(encoder+decoder)_layers = 12 + 3, Npeads = 8,
dhidden = 512, dppn = 2048, ngup sampling=4) for
50 epochs on 8 V100 GPUs. All ASR texts are
tokenized with SPM (Kudo and Richardson, 2018)
with the vocab size set as 20000.

For the T2T model, we train three models with
different k for each language, where k=(3,6,15)
for En-De, k=(6,10,14) for En-Zh, k=(6,10,14) for
En-Ja. All of them are trained for 40 epochs with
similar hyper-parameters (n(encoder+decoder)_layers
=16 +4, npeads = 8, dhidden = 512, dppy =2048)
while pre-training and 10 epochs for fine-tuning
and self-training. For En-De and En-Ja, we use
SPM for tokenization with vocab size set to 32Kk,
and subword-nmt for En-Zh with vocab size set to
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30k. Note that the vocabularies for T2T models
are different from that for the ASR model, mean-
ing that the outputs of ASR model in the cascade
system need to be re-tokenized for T2T models.

Three S2T models are trained for each lan-
guage with k=7 for En-De, k=14 for En-
Zh and En-Ja. The hyper-parameters are:
(n(encoder—i—decoder)_layers =12 + 6, Npeads = 8,
Ahidden = 512, dppny = 2048) for all models. We
train them for 50 epochs on the knowledge distilled
dataset.

3.2 Results

T2T Table 3 shows the results of all T2T models,
which are evaluated with the SimulEval with the
oracle English texts as source inputs. We can see
that for all language pairs, a large improvements
can be obtained from low latency to medium la-
tency by increasing k from 3 to 6 (En-De) or from
6 to 10 (En-Zh/Ja), but when increasing the latency



Laneuage Quality Latency

guage BLEU | AL AL CA AP AP CA DAL DAL CA
En-De k=7  22.13 | 237454 2831.08 086 099 252352 2990
En-Ja k=14 12.82 | 184846 2369.75 094 1.09 337476 3796.14
En-Zh k=14 2038 | 175337 224023 094 109 3341.84 3762.65

Table 5: This table shows the results of our end-to-end S2T models, where AL is computed with milliseconds.

from medium to high, the profit is not that signifi-
cant, demonstrating that the upper bound of wait-k
models can be easily reached even with larger k.

Cascade S2T Table 4 presents result of our cas-
cade S2T models, evaluated with the SimulEval by
using utterance speech as inputs. Compared with
the oracle inputs of T2T model, the performance
of cascade S2T models often degrades 2-4 BLEU
points when using the same T2T model due to the
error propagation comes from the ASR model. We
also find that the latency of our cascade systems
are quite large although with relatively low k value.
This can be explained from the example in Figure
1 where the wait-k model has to wait until the U2
reads 4 times and completes the decoding of chunk
2 (output 3 tokens), since the wait-k model can
only decode when the the length difference satis-
fies the criteria of k. Unfortunately, this eventually
increases the delay of y; and y» when computing
the AL.

End-to-end S2T Table 5 are results from our
E2E S2T models. Compared with cascade S2T
models, the latency of E2E models can be better
controlled since the latency offset caused by the
collaboration of the ASR and T2T in the cascade
system is not necessarily existed in the E2E model.
Surprisingly, the performances of E2E models are
also competitive to cascade systems, demonstrating
that training the model on KD corpora is quite
effective.

3.3 Ablation Study

To further explore the effect of fine-tuning and self-
training on our T2T models, we present our exper-
imental results on MuST-C tst-COMMON evalu-
ated for the T2T task as described in Table 6. For
all language pairs, in-domain fine-tuning brings 2+
BLEU points and self-training brings additional 1+
points.

Approach En-De En-Ja En-Zh
Pre-training 2921  11.21 23.14
+Fine-tuning 32.05 13.08 25.73
+Self-Training 33.38 1426 27.54

Table 6: This table presents the improvements coming
from applying each strategy during the training of T2T
models. We only present results of models with k=15
for En-De, k=14 for En-Ja and En-Zh.

4 Conclusion

In this paper, we report our work in the IWSLT-
2022 simultaneous speech translation evaluation.
We explored 4 solutions with a cascade and end-to-
end system on two sub-tracks and three language
directions: 1) We evaluated the method of train-
ing a streaming ASR model U2 on the large scale
mixed training corpora and inference with the do-
main controlled generation. 2) We explored the op-
timization of wait-k T2T models with self-training,
and obtained positive results. 3) We tried to build
a cascade S2T system by integrating the stream-
ing ASR model with the wait-k T2T model, and
compared it with our end-to-end approach. 4) We
trained our end-to-end S2T model with knowledge
distillation and found it to be competitive to our
cascade approach.

In our future works, we will investigate more in
terms of simultaneous strategies, efficient using of
pretrained models, as well as better training schema
with limited ST dataset.
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