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Abstract

We propose a novel multitask learning method
for diacritization which trains a model to both
diacritize and translate. Our method addresses
data sparsity by exploiting large, readily avail­
able bitext corpora. Furthermore, transla­
tion requires implicit linguistic and seman­
tic knowledge, which is helpful for resolving
ambiguities in diacritization. We apply our
method to the Penn Arabic Treebank and re­
port a new state­of­the­art word error rate of
4.79%. We also conduct manual and automatic
analysis to better understand our method and
highlight some of the remaining challenges in
diacritization. Our method has applications
in text­to­speech, speech­to­speech translation,
and other NLP tasks.

1 Introduction

Arabic is typically written without short vowels
and other pronunciation indication markers,1 col­
lectively referred to as diacritics. A longstanding
task in Natural Language Processing (NLP) is to
take undiacritized text and add the diacritics, re­
ferred to as diacritization (see Figure 1). Diacrit­
ics indicate both how to pronounce the word and
resolve ambiguities in meaning between different
words with the same (undiacritized) written form.
Diacritic prediction is the dominant source of

errors in Arabic grapheme to phoneme conver­
sion (Ali et al., 2020), a crucial component in
many text­to­speech and speech­to­speech transla­
tion systems.
Diacritization also has applications in Auto­

matic Speech Recognition (ASR) (Vergyri and
Kirchhoff, 2004; Ananthakrishnan et al., 2005; Bi­
adsy et al., 2009), Machine Translation (MT) (Diab
et al., 2007) morphological analysis (Habash et al.,
2016), lexical recognition tests (Hamed and Zesch,

∗ Work done while at Apple.
1Notable exceptions include the Quran and many chil­

dren’s books.

ھیا لنذھب ا لنَِذْھَبْ ھَیَّ
[hjaː lnðhb] [hajːaː linaðhab]

Figure 1: Arabic diacritization is the task of adding di­
acritics (markings above and below characters, shown
in red) to Arabic text. Diacritics clarify how a word
is pronounced, including short vowels and elongation,
and disambiguate word meaning. Here, we show the
diacritization of لنذهب هيا (let’s go). The IPA pronun­
ciations below each word demonstrate that the diacrit­
ics are crucial for pronouncing each word: the undia­
critized form maps to an incorrect pronunciation, while
the diacritized form maps to the correct pronunciation
(the contributions the diacritics make to the pronuncia­
tion are also shown in red).

2018; Hamed, 2019), and homograph resolution
(Alqahtani et al., 2019a).
We focus on Modern Standard Arabic (MSA),

a standardized dialect of Arabic used in most aca­
demic, legal, and news publications, and an ob­
vious choice for Text­to­Speech (TTS) systems.
MSA is the 5thmost spoken2 language in theworld
with about 274M speakers (Eberhard et al., 2021).

1.1 Challenge #1: Data Sparsity

Arabic is a Morphologically Rich Language
(MRL), where significant information concerning
syntactic units and relations is expressed at word­
level. For example, a word like فاسٔقيناكموه is roughly
translated to: ‘and we gave it to you to drink’.
In this example, linguistic units that are typically
expressed by individual words in English such
as coordinating conjunctions and personal pro­
nouns are expressed within the word form in Ara­
bic. This fact results in Arabic having a large
vocabulary (by way of example, the number of
unique, undiacritized words in the Arabic bible
from Christodouloupoulos and Steedman (2015)

2“Speaker” is a bit of a misnomer: Most Arabic speakers
can understand MSA but would not typically produce it.
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is about 4.38x larger than the number of unique,
lower­cased words in the English equivalent.) Fi­
nally, high­quality diacritized datasets tend to be
quite small: The Penn Arabic Treebank (PATB)
training subset used in this work is only 15,789
lines, and data available in other dialects can be
substantially smaller. These factors result in Ara­
bic being quite data sparse, with diacritics models
typically needing to handle a large number of un­
seen words.

1.2 Challenge #2: Ambiguity

Many of the morphological variants in Arabic are
differentiated by only diacritics. This results in
un­diacritized Arabic having a huge number of ho­
mographs which must be resolved when adding di­
acritics. Furthermore, as mentioned above, Ara­
bic is a MRL, where information such as gen­
der (male, female), number (singular, dual, plu­
ral), case (nominative, accusative, genitive), as­
pect (perfect, imperfect), voice (active, passive)
and mood (indicative, imperative, subjunctive) is
expressed on the word­level, sometime with as lit­
tle as one diacritic. These factors result in undi­
acritized Arabic being highly ambiguous; Debili
et al. (2002) reported an average of 11.6 possible
diacritizations for every non­diacritized word in
Arabic. For example, the form كتب could be dia­
critized as كَتَبَ ‘he wrote’, كُتِبَ ‘it was written’, كُتِّبَ
‘it was written repeatedly’, كُتُبٌ ‘books’ (nomina­
tive case), or كُتُبٍ ‘books’ (genitive case).

1.3 Overview of Proposed Method

We propose a novel Multitask Learning (MTL)
(Caruana, 1997) based approach to improve the se­
mantic and linguistic knowledge of a diacritization
model. Specifically, we propose augmenting dia­
critics training data with bitext to train a model to
both diacritize Arabic and translate into and out of
Arabic.
Our approach addresses data sparsity by substan­

tially increasing the amount of training data seen
by the model. Our approach also enables the use
of large, readily available MT datasets, which are
available not only in Arabic but in many other lan­
guages with diacritics as well.3 In our experiments
on the PATB, adding bitext increases training data

3In contrast, prior MTL work in diacritization has used
hand­curated features such as Part of Speech (POS), gender,
and case (see §2.1), severely limiting both the size of available
data and the applicability to other languages, which may not
have such resources.

from 502k to 138M Arabic words, and decreases
the Out of Vocabulary (OOV) rate from 7.33% to
1.14%.
Our approach also addresses ambiguity, since

the task of translation requires (implicit) semantic
and linguistic knowledge. Training on bitext in­
jects semantic and linguistic knowledge into the
model which is helpful for resolving ambiguities
in diacritization (see Table 1).
These factors contribute to our method achiev­

ing a new State­of­the­Art (SOTA) Word Error
Rate (WER) of 4.79% on the PATB, vs 7.49% for
an equivalent baseline without MTL.

1.4 Main Contributions of This Work
The main contributions of this work are:

• We present a novelMTL approach for diacriti­
zation, which does not require a morpholog­
ical analyzer or specialized annotations (and
thus is likely extensible to other languages, di­
alects and domains).

• We achieve a new SOTA WER of 4.79% on
the PATB test set.

• We perform extensive automatic analysis of
our method to see how it performs on var­
ious conditions including different parts of
speech, genders, word frequencies, and sen­
tence lengths.

• We perform detailed manual error analysis
of our method, illustrating both issues in the
PATB dataset as well as the remaining chal­
lenges in Arabic diacritization.

2 Related Work

2.1 Diacritization
Many works have explored using neural networks
for Arabic diacritization (Zalmout and Habash,
2017, 2019; Alqahtani and Diab, 2019; Alqahtani
et al., 2019b).
Alqahtani et al. (2020) and Zalmout and Habash

(2020) both explore MTL regimes in which a
model learns to predict Arabic diacritics simulta­
neously with other features in the PATB. Alqahtani
et al. (2020) uses additional features of syntactic di­
acritization, word segmentation, and POS tagging,
while Zalmout and Habash (2020) use additional
features of lemmas, aspect, case, gender, person,
POS, number, mood, state, voice, enclitics, and
proclitics. By also report further improvements by
adding an external morphological analyzer. These
papers illustrate the potential of MTL, but they re­
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# Arabic Sentence English Sentence Diacritized Pronunciation Translation

0 اللون وابٔيض اخٔضر السعودية علم The flag of Saudi Arabia is green and white عَلَمُ [ʕalamu] flag
1 الفلك علم احٔب I love space science عِلمَ [ʕilma] science
2 السباحة احٔمد ناصر علم Nasser taught Ahmad how to swim عَلَّمَ [ʕalːama] taught

Table 1: Adding bitext to our training data improves the semantic and linguistic knowledge of our diacritization
model. For example, in order to correctly translate علم out of Arabic, the model must learn to implicitly perform ho­
mographic resolution to determine if the word is being used to mean “flag,” “science,” “taught,” or other meanings.
This knowledge is helpful for diacritization since diacritized forms are intrinsically linked with word meaning. The
model can also implicitly learn, for example, that علم in example #2 is being used as a causative past tense verb. This
can help the model diacritize this use of علم correctly ,(عَلَّمَ) even if عَلَّمَ does not appear in the diacritization training
data, since عَلَّمَ follows a common diacritization pattern for causative past tense verbs.

quire additional hand­curated features. This limits
both the datasets they can use (neither are able to
take advantage of large outside datasets) and the
languages they could be applied to.

2.1.1 Contextual Embeddings

Náplava et al. (2021) show that contextual embed­
dings can result in substantial improvements in di­
acritization error rates in several languages, but un­
fortunately they do not report results on Arabic.
Qin et al. (2021) start with a strong baseline built

on ZEN 2.0 (Song et al., 2021), an n­gram aware
BERT variant. Their BERT­based baseline outper­
forms prior work on PATB. They then claim even
stronger results on PATB with two methods that
incorporate multitask training with a second, aux­
iliary decoder trained to predict the diacritics pro­
duced by the Farasa morphological analyzer (Ab­
delali et al., 2016). We argue that their experi­
mental setup is fundamentally flawed, since Farasa
was trained on the PATB test set4 and can leak in­
formation about the test set to the model.5 They
also report results on the Tashkeela training/test
data (Zerrouki and Balla, 2017; Fadel et al., 2019),
which does not have a potential testset contami­
nation problem, and find that their method under­

4Farasa was trained on PATB parts 1, 2 and 3 in their en­
tirety, and then tested on a separate collection of hand curated
news articles (Abdelali et al., 2016).

5To understand how leakage from the test set can occur,
consider the word النجمة (the star; female). النجمة appears three
times in the training data, once without diacritics (likely an
error) and twice as النَّجْمَةِ . However, it appears 9 times in the
test set, each time diacritized as النَّجْمَة . Farasa is trained on
both the training and test data, so from it’s perspective, النَّجْمَة
is by far the most likely diacritization of النجمة . Thus when
the model sees النجمة in training, Farasa can artificially bias
the model toward producing the diacritized form in the test
set, despite that form never appearing in the training data.

performs a straightforward bidirectional LSTM,6
which supports the hypothesis that their strong
PATB results are due to training on a derivative of
the test set.

2.2 Character­Level and Multilingual MT
Multilingual MT (Dong et al., 2015) has been
shown to dramatically improve low­resource trans­
lation, including enabling transfer from higher re­
source language pairs to lower­resource language
pairs (Zoph et al., 2016; Nguyen and Chiang, 2017;
Neubig and Hu, 2018). In our case, we set up learn­
ing to encourage transfer from undiacritized Ara­
bic to much lower­resourced diacritized Arabic.
Most MT systems operate at the subword

(Sennrich et al., 2016; Kudo and Richardson,
2018); however, such approaches would result
in diacritized and undiacritized versions of the
same word having little to no overlap in sub­
words. We instead train a character­level encoder­
decoder model (Lee et al., 2017; Cherry et al.,
2018), to maximize the number of shared repre­
sentations between diacritized and undiacritized
words. Character­level diacritics models have also
been shown to outperform subword­level models
(Alqahtani and Diab, 2019).

3 Method

We train a single Transformer­based (Vaswani
et al., 2017) encoder­decoder model to both trans­
late and diacritize, with the hypothesis that the
translation task is complementary to diacritization.
To maximize the number of shared representations
between diacritized and undiacritized words, we
train our model at the character­level. Following

6Qin et al. (2021) claim to achieve state­of­the­art perfor­
mance on both datasets, but this is not supported by their re­
sults (see their Table 2, noting that bold does not denote the
best performing system).
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work in multilingual MT, we prepend a tag to each
output sentence to tell the model whether the out­
put is undiacritized Arabic, diacritized Arabic, En­
glish, French, or Spanish during training. At infer­
ence time we force decode the tag to request that
the model produce diacritized Arabic.

3.1 Decoding
In Arabic, simple rules dictate where diacritics can
be placed. During decoding, we enforce these
rules by keeping track of which input characters
the decoder has produced (i.e. copied from input to
output) and constrain the decoder as follows: If the
previous output is a non­diacritic Arabic character,
we restrict the decoder to produce any diacritic or
the next input character. If the previous output is
a shadda, we restrict the decoder to produce a non­
shadda diacritic or the next input character. Oth­
erwise, the model is forced to produce the next in­
put character. Without these restrictions, we found
that the model would occasionally produce minor
paraphrastic variations of the input.7

3.2 Long Sentence Handling
The computational complexity of Transformer lay­
ers is proportional to sequence length squared
(Vaswani et al., 2017), so we do not want to train or
evaluate on an arbitrarily long sequences of char­
acters. Instead, we limit the maximum input and
output sequence to 600. To diacritize a sentence
with more than 300 input characters, we take over­
lapping windows of 300 characters with a step size
of 100 characters. We predict diacritics indepen­
dently for each window, and reconstruct the orig­
inal sentence using the first 200 characters from
the first window, the input characters of the last
window excluding the first 100 characters, and the
middle 100 characters from any windows in be­
tween. This ensures that we only use output with at
least 100 characters of context. For the bitext data,
we simply discard sentence pairs with greater than
600 input or output characters.

4 Experiments

We train a character­level transformer encoder­
decoder model on both diacritics data and the
bitext. Our primary model performs diacritiza­
tion, translation from Arabic (Ar) to English (En),
French (Fr), and Spanish (Es), and translation from

7The tendency of a multilingual MT model to paraphrase
the input has been noted (and exploited) in Tiedemann and
Scherrer (2019) and Thompson and Post (2020b).

Name Form Sound [IPA]

Fatha ◌َ /a/
Fathatan ◌ً /an/
Kasra ◌ِ /i/
Kasratan ◌ٍ /in/
Damma ◌ُ /u/
Dammatan ◌ٌ /un/
Dagger Alif ◌ٰ /aː/
Maddah ◌ٓ /ʕaː/
Shadda ◌ّ Elongation (ː)
Sukun ◌ْ None

Table 2: Diacritics considered in this work.

Ar­En Ar­Es Ar­Fr Diacs

Global Voices 0.9 0.9 0.5 ­
CCAligned ­ 21.9 21.7 ­
News Commentary 5.0 5.0 4.3 ­
United Nations 20.7 19.9 19.5 ­
WikiMatrix 15.0 1.7 1.6 ­
PATB ­ ­ ­ 0.5

Total 40.8 48.4 47.1 0.5

Table 3: Size (millions of Arabic words) of training
datasets used in this work. Note that total bitext is about
275x larger than diacritics data.

English, French, and Spanish to Arabic. However,
we also perform ablations for analysis purposes,
leaving out (1) the Ar→{En,Fr,Es} data, (2) the
{En,Fr,Es}→Ar data, and (3) all of the bitext data.
Each model uses a single encoder and decoder for
all tasks.

4.1 Diacritics Data

We chose to use PATB part 1 v4.1 (LDC2010T13),
part 2 v3.1 (LDC2011T09) and part 3 v3.2
(LDC2010T08), following the train/dev/test splits
proposed by Diab et al. (2013). The PATB was
chosen because in addition to diacritics, it con­
tains many carefully annotated features which we
use to analyze the performance of our models (see
§6). We perform unicode NFKD normalization
on the text in order to (1) split Unicode charac­
ters which contain both a non­diacritic and dia­
critic (e.g. the Unicode character for alif with mad­
dah above (U+0622) is split into alif (U+0627) and
maddah (U+0653)) and (2) normalize the order of
characters (e.g. alif + high hamza + fatha and alif +
fatha + high hamza both render as أَ and are normal­
ized to alif + high hamza + fatha). The diacritics
considered in this work are shown in Table 2.
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Training Data OOV Rate (Undiacritized)

PATB 7.33%
PATB + Bitext 1.14%

Table 4: OOV rates (rate of seeing a word at infer­
ence time that was not seen in training), for the encoder,
which sees words without diacritics.

4.2 MT Data
We use Ar↔{En,Fr,Es} data from Wikimatrix
(Schwenk et al., 2019), Global Voices,8 United
Nations (Ziemski et al., 2016), and NewsCom­
mentary,9 and Ar↔{Fr,Es} data from CCAligned
(El­Kishky et al., 2020), after joining on English
urls. We filter out noisy sentence pairs (Khayral­
lah and Koehn, 2018) using the scripts10 pro­
vided by Thompson and Post (2020a), using more
aggressive thresholds of min_laser_score=1.06,
max_3gram_overlap=0.1 for the CCAligned data
and using values from Thompson and Post (2020a)
otherwise. We limit each dataset to 1M lines per
language pair, so that no one data type dominates
training. Data size are shown in Table 3. We up­
sample PATB by 20x when combining it with the
bitext, since it is much smaller than the bitext.
We filter out the (very infrequent) diacritics

from the MT data to ensure that any benefits ob­
served are due to MTL and not simply the result of
including more diacritized data in training.11
The impact that adding bitext has on the OOV

rate is shown in Table 4.

4.3 Models & Training
We train character­level Transformer models in
fairseq (Ott et al., 2019). Metaparameters are
tuned on the development set. The (non­MTL)
baseline has 6 encoder and decoder layers, encoder
and decoder embedding dimensions of 1024, en­
coder and decoder feed­forward network embed­
ding dimensions of 8192, and 16 heads. All embed­
dings are shared. The model is trained with learn­
ing rate of 0.0004, label smoothing of 0.1, dropout
of 0.4 with no attention or activation dropout, 40k
characters per batch, for 50 epochs. All MTLmod­
els have 6 encoder and decoder layers, encoder and
decoder embedding dimensions of 1280, encoder
and decoder feed­forward network embedding di­

8casmacat.eu/corpus/global­voices.html
9data.statmt.org/news­commentary/
10github.com/thompsonb/prism_bitext_filter
11In practice, there may be some benefit to retaining dia­

critics in the MT data, but this was not explored in this work.

mensions of 12288, and 20 heads. All embeddings
are shared. The model is trained with learning rate
of 0.0004, label smoothing of 0.1, dropout of 0.2
with no attention and activation dropout each set to
0.1, 40k characters per batch, for 20 epochs. We se­
lect the best performing model for each run using
WER on the development set.

5 Results

The word error rates for our method (main model,
both ablation models, and baseline) are shown in
Table 5, along with error rates reported by prior
work. Our main model achieves 4.71% WER
on the development set, a relative improvement of
22.8% over the previous best development set re­
sult from Zalmout and Habash (2020), who trained
a multitask model on PATB features and incorpo­
rated a morphological analyzer. On the test set, it
achieves 4.79% WER, a relative improvement of
18.8% over the best previously reported test set re­
sult from Qin et al. (2021), who trained a BERT­
based model.
Our ablation models also outperform all prior

work, with the model trained on Ar→{En,Es,Fr}
(denoted Ar→*) bitext outperforming the model
trained on {En,Es,Fr}→Ar (denoted *→Ar) bi­
text, but neither perform as well as the main model
trained on both Ar→* and *→Ar. (See §6 for
more detailed comparisons between the models
trained in this work.)
Finally, our baseline model, consisting of a

character­based Transformer with no augmenta­
tion or word embeddings, slightly outperforms
prior models from Alqahtani et al. (2019b) and
Alqahtani and Diab (2019), that also do not use
MTL, morphological analyzers, or contextual em­
beddings.

6 Automatic Analysis

6.1 Case Endings

We compute the Diacritic Error Rate (DER) for
all models trained in this work for several differ­
ent settings: all characters (including whitespace,
punctuation, and non­Arabic characters), Arabic
characters, Arabic case endings, and Arabic char­
acters excluding case endings: see Table 6. We use
POS tags to determine which words have case end­
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Multitask Morphological Word Dev Test
Analyzer Embeddings WER ↓ WER ↓

Alqahtani et al. (2019b) No No No 8.20%
Alqahtani and Diab (2019) No No No 7.60%
Alqahtani et al. (2020) PATB Features No fastText 7.51%
Zalmout and Habash (2019) PATB Features Train & Test fastText 7.30% 7.50%
Zalmout and Habash (2020) PATB Features Train & Test fastText 6.10%
Qin et al. (2021)† No No Zen 2.0 6.49% 5.90%‡

This word (baseline) No No No 7.46% 7.49%
This work (ablation) Translate *→Ar No No 5.60% 5.83%
This work (ablation) Translate Ar→* No No 5.24% 5.32%
This work Translate *→Ar & Ar→* No No 4.71% 4.79%

Table 5: Development and Test WER (lower is better) for our main system, ablation systems, and baseline, com­
pared to recent work. Our main system outperforms all prior work, as do both ablation systems. †:We exclude the
experiments of Qin et al. (2021) which use Farasa in training, as Farasa was trained on the test set (see §2.1.1).
‡:Mean of 5 runs with different random seeds.

Multitask Learning
Baseline *→Ar Ar→* Both

All 2.34% 1.85% 1.73% 1.52%
Arabic 2.97% 2.35% 2.21% 1.94%
Arabic CE 6.90% 4.71% 4.18% 3.61%
Arabic non­CE 2.48% 2.06% 1.96% 1.73%

Table 6: Diacritic error rate for all characters (including
whitespace and non­Arabic characters), Arabic charac­
ters only, Arabic case endings (CE), and Arabic charac­
ters excluding case endings (non­CE). We use POS tags
to determine which words contain case endings.

ings when computingDER.12 Comparing ourmain
model to the baseline, we see thatMTL training im­
proves case endings more than non­case endings:
case ending DER is improved by a 47.7% (3.61%
vs 6.90%) vs 30.2% (1.72% vs 2.48%) for non case
ending characters. Furthermore, comparing the ab­
lation models, the performance difference between
them is more pronounced on case endings, where
the *→Ar model is 12.7% worse than the Ar→*
model, while the difference is only 5.1% for non
case endings.

6.2 WER vs Sentence Length

We showWER as a function of sentence length (in
undiacritized characters) in Figure 2. We note that
while both the *→Ar and the Ar→* models tend
to improve with sentence length, the improvement
is much more pronounced for the Ar→* model.
In other words, the Ar→* model is benefiting

12Several prior works have reported DER of just the last
character as a stand­in for case­ending DER. However, this
analysis is muddied by the fact that not all words in Arabic
have case endings; in the PATB test set, for example, the POS
tags indicate that only about 46.8% of words have them.
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Figure 2: Word error rate vs (undiacritized) character
length. †:Sentences over 300 characters are processed
in overlapping windows of 300 characters (see §3.2).

much more from increased context than the *→Ar
model.
In conjunction with the DER results in §6.1, this

indicates that training the model to translate out of
Arabic is more helpful at injecting semantic and
linguistic knowledge into the model to address am­
biguity. The fact that the two translation direc­
tions are complementary suggests that training the
model to translate into Arabic is addressing data
sparsity issues in the model’s decoder, despite the
mismatch between the bitext being undiacritized
and the model needing to produce diacritized out­
put.
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Male Female Bias
# WER # WER

Pronoun 835 6.23% 641 8.11% 30.3%
Verb 3579 5.34% 2083 6.39% 19.6%
Suffix 901† 5.22% 10222 5.71% 9.5%

Table 7: WER for male and female pronouns, verbs,
and nouns/adjectives with gendered suffixes, along
with their counts in the test set. †:We include only suf­
fixes which are explicitly marked in the PATB for gen­
der, which tend to be female (see §6.3).

6.3 Gender Bias
Gender bias has been noted in many aspects of
NLP (Sun et al., 2019) but we are not aware of any
prior work looking at gender bias in diacritization.
We use the PATB POS tags to isolate three types
of gendered words: pronouns, verbs, and suffixes.
“Suffixes” refer to nouns and adjectives that have
a gendered suffix. Unsurprisingly, we find that the
model is better at diacritizing male words than fe­
male words in all three cases (see Table 7), with
words in the male categories being diacritized cor­
rectly 9.5% to 30.3% more often than their female
equivalents. We suspect that this bias is due at least
in part to representation within the data: Male pro­
nouns and verbs are 30% and 72% more common
than their female counterparts. Counts of suffixes
are complicated by the fact that that PATB only
marks certain nouns and adjectives for gender (in­
cluding those with taa marbuta, which tend to be
female). By manual inspection, the remainder ap­
pear to be male, but we were unable to confirm this
in the PATB annotation guidelines so we included
only those explicitly marked for gender.

6.4 WER vs POS
The PATB includes detailed POS tagging. We ex­
ploit this feature to examine how our model per­
forms on different parts of speech: see Table 8.
Note that the PATB has one or more POS tags per
word, with about 2.19 tags per word on average
in the test set. We do not attempt to split words
into their respective parts, as we find cases where
this is not straightforward. Instead, such words are
counted multiple times. As an example, الأَوَّلوُن (the
first) is both a determiner and cardinal adjective,
and contributes to the WER of both.
For parts of speech with at least 500 occurrences

in the test set, the worst performing POS for the
MTLmodel by far is proper nouns (count=5969) at
14.09%WER. This is followed by imperfect verbs

(count=2598) at 7.89%WER, possessive pronouns
(count=1609) at 6.60%, and adjectives (excluding
cardinal and comparative) (count=6106) at 6.49%.
Comparative adjectives, which are relatively in­

frequent (count=264) also have a high WER of
9.95%, but the worst POS considered by far is the
extremely infrequent (count=18) imperative verbs,
with aWER of 72.22%. Imperative verbs illustrate
the importance of domain; news data contains very
few imperatives, and imperative verbs are often
distinguished from from imperfect or perfect verbs
by diacritics alone. For example, الطريق على استمر can
be diacritized الطَّريِقِ عَلَى اسِتَمِر (Continue on the road)
or الطَّريِقِ عَلَى اسِتَمَرَّ (He continued on the road). This
results in the model choosing the much more com­
mon perfect or imperfect forms in the majority of
cases that should be imperative.

6.5 WER vs Word Frequency

MTL improves learning across all word frequen­
cies: see Table 9. The biggest improvements are
seen for words seen once and 2­4 times in training,
with relative improvements of 43.5% and 45.4%,
respectively.

7 Manual Analysis

To better understand the performance of our MTL
model, we manually annotate all differences be­
tween our model prediction and the gold test set for
a randomly selected 20% of the 1246 sentences in
the test set that contain at least one disagreement.
We find that approximately 66% of the disagree­

ments between the gold test set and the model are
the result ofmodel errors, whichwe denote as “true
errors”. Themajority of these errors are due to case
markings being either incorrect (38.6% of all true
errors) or missing (16.5% of all true errors), while
the rest of the word is correct.
However, we find that in approximately 32% of

disagreements the model output is, in fact, correct.
We denote such cases as “false errors.” About half
(50.3%) of the false errors were due to the test set
missing diacritics and another 31.2% of all false
errors were due to errors in the test set diacritics.
10.7% of the false errors were the result of valid
variations which did not change the meaning of the
sentence in any way (e.g. يُكْشِفْ vs يَكْشِفْ and وَليِ الدُّ
vs وْليِ .(الدَّ Another 4.4% of false errors were the
result of valid variations that changed the meaning
of the sentence while still resulting in a plausible
meaning. A very small number of words (3.4%
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Count Baseline MTL Rel. Examples
WER WER imprv.

Noun: Proper 5969 18.24% 14.09% 22.8% مَریَم (Mary); أَحمَد (Ahmed)
Noun: Numeric 1609 3.29% 2.11% 35.8% عَشَرةَ (ten); أَربَعَة (four)
Noun: Quantity 451 10.42% 5.32% 48.9% أَیَّة (any; fem); بَعض (some)
Noun: Other 22795 8.43% 5.03% 40.3% یَوم (day); دُوَیلَة (small country)
Pronoun: Possessive 1681 11.42% 6.60% 42.2% كِتابيَِ (my book); your)كِتابُكُن book; fem)
Pronoun: Demonstrative 601 0.00% 0.17% ­ هذٰا (this; male singular); هاتان (these, fem dual)
Pronoun: Other 1154 1.04% 0.52% 50.0% شاھَدَتنِي (she saw me); أَنتَ (you; male singular)
Verb: Inflected, Perfect 3273 9.53% 4.89% 48.7% ذَھَبَ (he went); قبُِلَ (it was accepted)
Verb: Inflected, Imperfect 2598 13.55% 7.89% 41.8% یَذھَبُ (he goes); تقُبَلُ (it is accepted)
Verb: Inflected, Imperative 18 83.33% 72.22% 13.3% اذِهَب (go; male); قِفِي (stop; fem)
Adverb 260 0.00% 0.38% ­ مَتَى (when); حِینَذاك (then)
Adjective: Cardinal 348 7.18% 4.31% 40.0% القَرن (19th century); الأَوَّلوُن (the first)
Adjective: Comparative 264 16.67% 9.85% 40.9% أَحرصَُ (more cautious); الأَحسَن (the best)
Adjective: Other 6106 10.87% 6.49% 40.4% تارخِِيٌّ (historic); یَھُودِيٌّ (Jewish)
Determiner 15337 8.72% 5.85% 32.9% التُونسِِي (the Tunisian); الیَومُ (the day)

Table 8: WER for our baseline and our main MTL model, for various parts of speech, and their associated count in
the test set. Note: many words have more than one POS and contribute to 2+ categories (see §6.4).

# Occur in Multitask Learning
PATB­train Baseline *→Ar Ar→* Both

0 30.93% 26.30% 23.20% 21.92%
1 17.63% 12.46% 10.33% 9.95%
2­4 11.94% 8.32% 7.56% 6.51%
5­16 8.78% 6.83% 6.50% 5.67%
17­64 7.80% 5.81% 5.50% 4.86%
65­256 6.33% 4.97% 4.55% 3.76%
257­1024 4.34% 3.28% 3.16% 2.94%
>1024 0.30% 0.20% 0.29% 0.22%

Table 9: WER vs number of times a word occurs in
PATB­train (ignoring diacritics), for all four models
trained in this work.

of false errors) had trivial diacritic variations that
do not change meaning or pronunciation (e.g. one
having a sakun while the other had no diacritic, or
one having a fatha before an alif while the other
did not).
Finally, about 2% of the disagreements are cases

where the input to the model is not a real word,
making the correct output undefined.

8 Conclusion

We demonstrate that training a diacritics model to
both diacritize and translate substantially outper­
forms a model trained on the diacritization task
alone. Adding translation data substantially in­
creases the amount of training data seen by the
model, addressing data sparsity issues in diacriti­
zation. The translation task also injects semantic
and linguistic knowledge into the model, helping

the model resolve ambiguities in diacritization.
Our method achieves a new state­of­the­art

word error rate of 4.79% on the Penn Arabic Tree­
bank datasets, using the standard data splits of
Diab et al. (2013).
Finally, we present extensive manual and au­

tomatic analysis which provides insight into our
method and highlights several challenges that still
remain in Arabic diacritization, including proper
nouns, female word forms, and case endings.
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