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Abstract

This paper describes USTC-NELSLIP’s sub-
missions to the IWSLT 2022 Offline Speech
Translation task, including speech translation
of talks from English to German, English to
Chinese and English to Japanese. We de-
scribe both cascaded architectures and end-to-
end models which can directly translate source
speech into target text. In the cascaded con-
dition, we investigate the effectiveness of dif-
ferent model architectures with robust training
and achieve 2.72 BLEU improvements over
last year’s optimal system on MuST-C English-
German test set. In the end-to-end condition,
we build models based on Transformer and
Conformer architectures, achieving 2.26 BLEU
improvements over last year’s optimal end-to-
end system. The end-to-end system has ob-
tained promising results, but it is still lagging
behind our cascaded models.

1 Introduction

This paper describes the submission to IWSLT
2022 Offline Speech Translation task by National
Engineering Laboratory for Speech and Language
Information Processing (NELSLIP), University of
Science and Technology of China, China.

For years, Spoken Language Translation (SLT)
has been addressed by cascading an Automatic
Speech Recognition (ASR) and a Machine Trans-
lation (MT) system. The ASR system processes
source speech into source text and the MT sys-
tem translates ASR output into text in target lan-
guage independently. Recent trends rely on using
a single neural network to directly translate the
speech in source language into the text in target
language without intermediate symbolic represen-
tations. The end-to-end paradigm shows an enor-
mous potential to overcome some of the cascaded
systems’ problems, such as higher architectural
complexity and error propagation (Duong et al.,

2016; Berard et al., 2016; Weiss et al., 2017). Last
year’s results of IWSLT 2021 have confirmed that
the performance of end-to-end models is approach-
ing the results of cascaded solutions. The best
end-to-end submission (under the same segmenta-
tion and training data conditions) is 2 BLEU points
(22.6 vs 24.6) below the top-ranked system (Anas-
tasopoulos et al., 2021).

In this work, we build machine translation sys-
tems with techniques like back translation (Sen-
nrich et al., 2016a), domain adaptation and model
ensemble, which have been proved to be effec-
tive practices in IWSLT and WMT (Akhbardeh
et al., 2021). Besides, we further improve cas-
caded speech translation system performance with
methods of self-training (Kim and Rush, 2016; Ren
et al., 2020; Liu et al., 2019), speech synthesis
(Shen et al., 2018), Supervised Hybrid Audio Seg-
mentation (SHAS) (Tsiamas et al., 2022), etc.

In end-to-end condition, we initialize the en-
coder with the corresponding component of ASR
models and the decoder with that of MT models
respectively (Le et al., 2021). Methods used in cas-
caded systems and as much semi-supervised data
as possible are utilized to improve end-to-end mod-
els’ performance. Furthermore, we try to obtain a
better performance with ensemble of cascaded and
end-to-end models, which may accelerate the appli-
cation of end-to-end models in industrial scenarios.

The remaining of the paper proceeds as follows.
Section 2 describes speech recognition, speech-
to-text translation (S2T for short) and text-to-text
translation (T2T for short) data used in our exper-
iments. Section 3 and Section 4 present our cas-
caded and end-to-end systems respectively, where
the details about model architectures and tech-
niques for training and inference will be described.
The experimental settings and final results are
shown in Section 5.
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2 Datasets and Preprocessing

2.1 Speech Recognition Data
The speech recognition datasets used in our ex-
periments are described in Table 1, in which Lib-
rispeech, MuST-C(v1, v2), TED Lium3, Europarl,
VoxPopuli and CoVoST are available and used. Af-
ter extract 40 dimensional log-mel filter bank fea-
tures computed with a 25ms window size and a
10ms window shift, we train a baseline ASR model
and filter training samples with WER> 40%. Then
we augment the speech data with speed perturba-
tion, and over-sample TED/MuST-C corpus with
the ratio used last year (Liu et al., 2021), which
finally generate almost 8k hours of speech recogni-
tion corpora.

Corpus Duration(h) Sample Scale

Librispeech 960 1
Europarl 161 1
MuST-C(v1) 399 3
MuST-C(v2) 449 3
TED-LIUM3 452 3
CoVoST2 1985 1
VoxPopuli 1270 1

Table 1: Statistics of ASR Corpora.

We further extend two data augmentation meth-
ods: First, Adjacent voices are concatenated to gen-
erate longer training speeches; Second, we train
a Glow-TTS (Casanova et al., 2021) model with
MuST-C datasets and generate 24k hours of audio
feature using sentences from EN→DE text trans-
lation corpora. The final training data for ASR is
described in Table 2.

Data Duration(h)

Raw data 8276
+ concat 16000

+ oversampling 32000
+ TTS 56000

Table 2: Overall training data for ASR.

2.2 Text Translation Corpora
We participate in translation of English to German,
Chinese and Japanese. All available bilingual data
and as much monolingual data as possible are used
for training our systems. We apply language iden-
tification to retain sentences predicted as desired
language, remove sentences longer than 250 tokens

and with a source/target length ratio exceeding 3,
filter sentences with lower scores based on baseline
machine translation models. We use LTP4.01(Che
et al., 2020) for Chinese tokenization, MeCab mor-
phological analyzer2 for Japanese tokenization and
moses for English tokenization. Then subwords
are generated via Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016b) with 30k merge operations for
each language direction. Table 3 lists statistics of
parallel and monolingual data used for training our
systems. The details are as follows.

EN→DE The bilingual data includes Com-
monCrawl, CoVoST2, Europarl, MuST-C(v1,
v2), Librivox, News Commentary, Opensubtitles,
Parawcrawl(v3, v5.1), Rapid, Wikimatrix-v1 and
Wikititles-v2. A total of 151 million sentence pairs
are available, 120 million pairs of which are re-
served for training. The monolingual English and
German data are mainly from News Commentary
and News crawl.

EN→ZH Almost 50 million sentence pairs col-
lected from CCMT Corpus, News Commentary,
ParaCrawl, Wiki Titles, UN Parallel Corpus, Wiki-
Matrix, Wikititles, MuST-C and CoVoST2 are used
for training EN→ZH text MT. 50 million mono-
lingual Chinese sentences are randomly extracted
from News crawl and Common Crawl for Back
Translation.

EN→JA We use 16 million sentence pairs from
MuST-C, CoVoST2, TED Talk, JESC-v2, News
Commentary, Paracrawl, Wikimatrix and Wikiti-
tles. 20 million Japanese monolingual sentences
from News Commentary, News crawl and Common
Crawl are randomly extracted for Back Translation.

Parallel Monolingual

EN-DE 120M 180M
EN-ZH 50M 50M
EN-JA 15.75M 20M

Table 3: Overall training data for text MT.

2.3 Speech Translation Corpora
The speech translation datasets used in our experi-
ments are described in Table 4. MuST-C and CoV-
oST2 are available for speech translation (speech,
transcription and translation included) in all three

1https://github.com/HIT-SCIR/ltp
2https://github.com/uenewsar/mecab
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language directions, while Europarl is specifically
available in EN→DE speech translation track.

We further extend two data augmentation meth-
ods: First, transcriptions of all speech recognition
datasets are sent to a text translation model to gener-
ate text y′ in target language, which is similar with
sentence knowledge distillation. The generated y′

with its corresponding speech are directly added to
speech translation dataset (described as KD Corpus
in Table 4). Second, we use the trained Glow-TTS
model to generate audio feature from randomly
selected sentence pairs from EN→DE, EN→ZH
and EN→JA text translation corpora. The gener-
ated filter bank features and their corresponding
target language text are used to expand our speech
translation dataset (described as TTS Corpus in
Table 4).

Corpus Duration(h) Sample
Scale

EN-DE

Europarl 161 2
MuST-C 449 2
CoVoST2 1094 2

KD 16000 2
TTS 24000 1

EN-ZH

MuST-C 593 2
CoVoST2 1092 2

KD 16000 2
TTS 27000 1

EN-JA

MuST-C 282 2
CoVoST2 988 2

KD 16000 2
TTS 13000 1

Table 4: Statistics of Speech Translation Corpora

3 Cascaded Speech Translation

3.1 Automatic Speech Recognition

Voice Activity Detection We use Supervised Hy-
brid Audio Segmentation (SHAS) (Tsiamas et al.,
2022) to split long audios into shorter segments.
SHAS is originally propsed to learn the optimal
segmentation for speech translation. Experiments
on MuST-C and mTEDx show that the translation
of the segments produced by SHAS approaches the
quality of the manual segmentation on 5 languages
pairs. Hence, we use SHAS for both Voice Activ-
ity Detection in ASR and segmentation in Speech
Translation, which means that we have no more

segmentation operations and ASR outputs are di-
rectly sent to text machine translation component.

Besides, we propose a semantic VAD method as
follows: 1) train a text segmentation model based
on transformer; 2) re-segment ASR results into new
sentences with complete semantic information; 3)
use Force Alignment to align speech time stamp
and ASR results; 4) re-segment voices into new
fragments. We hope to seek a more friendly seg-
mentation for machine translation.

Model Architecture We think representations
sent to ASR encoder component are important,
so we use three model architectures in ASR:
VGG-Transformer (Mohamed et al., 2019), VGG-
Conformer (Gulati et al., 2020) and GateCNN-
Transformer (Dauphin et al., 2017) implemented
on Fairseq, described as follows:

• VGG-Conformer: 2 layers of VGG and 12
layers of Conformer in encoder, 6 layers of
Transformer in decoder. The embedding size
is 512, the hidden size of FFN is 2048, and
the attention head is 8.

• VGG-Transformer: 2 layers of VGG and 16
layers of Transformer in encoder, 6 layers of
Transformer in decoder. The embedding size
is 512, the hidden size of FFN is 4096, and
the attention head is 8.

• GateCNN-Conformer: 6 layers of GateCNN
and 12 layers of Conformer in encoder, 6 lay-
ers of Transformer in decoder. The embedding
size is 512, the hidden size of FFN is 2048,
and the attention head is 8.

The Specaugment technique (Park et al., 2019)
is used to improve robustness, and Connectionist
Temporal Classification (CTC) is added to make
models converge better. Other training details are
as follows: 1) We apply BPE to the transcripts with
30000 merge operations; 2) Arabic numerals are
converted into corresponding English words; 3)
Punctuation marks and uppercase are remained for
fitting text machine translation; 4) We use Adam
optimizer and adopt the default learning schedule
in fairseq; 5) Model is trained on 32 Tesla V100
40G GPUs within 2 days; 6) We use ensemble
decoding of several models with beamsize of 15 to
produce final transcriptions; 7) Other parameters
are default in Fairseq.
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3.2 Neural Machine Translation

The machine translation models are based on Trans-
former (Vaswani et al., 2017) implemented on the
Fairseq toolkit (Ott et al., 2019). Each single model
is carried out on 16 NVIDIA V100 GPUs with de-
fault settings. Important techniques used in our
experiments are: Back Translation, Sentence-level
Knowledge Distillation, Domain Adaptation and
Ensemble.

Back Translation Back-Translation (Sennrich
et al., 2016a) is an effective way to improve
the translation performance by translating target-
side monolingual data to generate synthetic sen-
tence pairs, which has been widely used in re-
search and industrial scenarios. We train NMT
models with bilingual data, and translate Ger-
man/Chinese/Japanese sentences to English ones.

Knowledge Distillation Sentence-level Knowl-
edge Distillation (Kim and Rush, 2016)(also
known as self-training) is another useful tech-
nique to improve performance. We augment train-
ing data by translating English sentences to Ger-
man/Chinese/Japanese using a trained NMT model.

Domain Adapatation As high-quality and
domain-specific translation is crucial, fine-tuning
the concatenation system on in-domain data shows
the best performance (Saunders, 2021). To improve
in-domain translation while do not decrease the
quality of out-domain translation, we fine-tune the
NMT model on a mix of in-domain data (MuST-C,
TED-LIUM3, etc.) and random selected out-of-
domain data until convergence. The speech recog-
nition training data are also used as augmented
in-domain self-training data by translating the la-
belled English sentences.

We also use Denoise-based approach (Wang
et al., 2018) to measure and select data for domain
MT and apply them to denoising NMT training.
Denoising is concerned with a different type of
data quality and tries to reduce the negative impact
of data noise on MT training, in particular, neural
MT (NMT) training.

Ensemble For each language direction, we train
4 variants based on Transformer big settings and
the final model is the ensemble of the 4 models:

• E12D6: 12 layers for the encoder and 6 layers
for the decoder. The embedding size is 1024,
FFN size is 8192 and attention head is 16. All

available corpora including bilingual, BT and
FT data are used.

• E15D6: 15 layers for the encoder, 10% train-
ing data are randomly dropped and a different
seed is set.

• E18D6: 18 layers for the encoder and 10-30%
training data with lower machine translation
scores are dropped.

• Macaron: A model with macaron architecture
(Lu et al., 2019) based on data of E18D6. 36
layers for the encoder and FFN size is 2048.

3.3 Robust MT Training
To address the error propagation problem in cas-
caded ST, we propose a ASR output adaptation
training method for improving MT model robust-
ness against ASR errors. English transcriptions
of all speech translation datasets are sent to a
trained ASR model to generate text x

′
in source

side, paired with the target side labels. We use
3 approaches to improve MT model’s robustness
detailed as follows: 1) We use the synthetic data
to fine-tune MT model; 2) While fine-tuning, we
add KL loss to prevent over-fitting; 3) we distill
the model both by clean input and ASR output as
showed in Figure 1.

Figure 1: Overview of Robust MT Training.

4 End-to-End Speech Translation

As regards model architecture, we investigate 4
variants in end-to-end speech translation.

• VGG-C: The encoder is VGG-Conformer, ini-
tialized by ASR VGG-Conformer architecture.
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The decoder is 6 layers of Transformer with
embedding size of 1024, attention head of 16
and FFN size of 8192.

• VGG-C-init: The encoder is VGG-Conformer,
initialized by ASR VGG-Conformer architec-
ture. The decoder is 6 layers of Transformer,
initialized by NMT E15D6 variant.

• VGG-T: The encoder is VGG-Transformer,
initialized by ASR VGG-Transformer archi-
tecture. The decoder is 6 layers of Trans-
former with embedding size of 1024, attention
head of 16 and FFN size of 8192.

• VGG-T-init: The encoder is VGG-
Transformer, initialized by ASR VGG-
Transformer architecture. The decoder is 6
layers of Transformer, initialized by NMT
E15D6 variant.

5 Experiments

All our experiments are conducted using Fairseq
toolkit (Ott et al., 2019). We use word error rate
(WER) to evaluate the ASR models and report case-
sensitive SacreBLEU scores for machine transla-
tion. Results of MuST-C tst-COMMON (tst-COM),
IWSLT tst2018/tst2019/tst2020 are listed together,
which can be compared as baselines for other re-
searchers and participants in the future. We also
present results of IWSLT 2022 testsets in the Ap-
pendix.

5.1 Automatic Speech Recognition

The overall experimental results about ASR is de-
scribed in Table 6. We use SHAS as a segmenta-
tion tool in default for all testsets. We compare the
results of different model architectures with and
without TTS augmented training data, showed in
line 1-6. In our experiments, TTS augmented data
has consistent improvements in all three architec-
tures, and an absolute gain of 0.42% accuracy is
observed in GateCNN-Conformer, which makes
GateCNN-Conformer with TTS augmented data
performs best as a single model.

In line 7, we ensemble all 6 single models to
gain a best result, where the WER is at an average
of 5.32, and 0.69 lower than the best single model.
For comparison with other works, we list the result
of tst-COM with official segments in line 8, which
performs better than concatenating the segments
and using SHAS. In line 9, we present results with

semantic SHAS (described in Sec. 3.1) based on
the ensemble models, which shows that semantic
SHAS is slightly worse and lagging behind SHAS
by 0.13 in accuracy. In our final submissions, line
7 serves as the ASR part of our cascaded primary
system, and line 9 serves as part of a contrastive
system.

5.2 Speech Translation
For text machine translation, we use the Adam op-
timizer with β1 = 0.9 and β2 = 0.98. To speed
up the training process, we conduct training with
half precision floating point (FP16). We set max
learning rate to 7e-4 and warmup-steps to 8000. To
improve model robustness, we set bpe dropout to
0.05, and mask 15% words in source and target in-
puts in accord with BERT. When fine tuning on in-
domain datasets, we add KL loss with weight=1.0
to avoid over-fitting.

For end-to-end ST, the segmentation tool used
is SHAS (to our knowledge, using semantic SHAS
will not be considered as end-to-end). All available
training data including TTS augmented data and
knowledge distillation data described in Sec. 2.3
are used. We also fine-tune models on in-domain
corpus for further improvements.

For tst-COM, we report results of both official
segmentation and SHAS segmentation. Sacrebleu
scores are computed by using automatic resegmen-
tation of the hypothesis based on the reference
translation by mwerSegmenter.

Effectiveness of Robust MT Training The ex-
periment is conducted based on EN→DE cascaded
speech translation track. We generate 1.38M sen-
tences from 1500h speech translation datasets. Ex-
perimental results are described in Table 5. By
comparing line 3 and line 6, our method can fur-
ther gain 0.55 and 0.75 BLEU in tst-COM and
tst2018 regardless of the impact of domain adapta-
tion. Robust MT Training is adopted for training
all our following systems.

EN→DE Experimental results are described in
Table 7. In the first group of text MT results, line
2-5 show the effectiveness of model size, data clean
and fine-tuning on in-domain datasets. We ensem-
ble 4 different variants described in Sec. 3.2 and
constitute results in line 6, which makes our text
MT outperforming Volctrans’s ensemble results
(Zhao et al., 2021) by 1.85 BLEU in tst-COM.

In the second group of cascaded ST results, we
present final results produced with ensemble ASR
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# tst-COM tst2018

1 text MT 36.21 32.14
2 ASR→text MT 33.34 26.20
3 +finetune 34.11 28.41

4 Robust Training 34.21 27.62
5 +KL Loss 34.61 28.69
6 +KD Loss 34.66 29.16

Table 5: Experimental results of Robust MT Training.

in Table 6 and ensemble text MT in line 6 by SHAS
and semantic SHAS respectively. By comparing
line 8 and line 9, SHAS performs better in tst-COM
and tst2018, while semantic SHAS performs bet-
ter in tst2019 and tst2020. Results of tst-COM
for speech translation contained in parenthesis are
based on official segmentation, which means our
cascaded system outperforms Volctrans’s cascaded
results (Zhao et al., 2021) by 2.72 BLEU in tst-
COM. We observe more improvements in cascaded
ST than text MT due to our better ASR system.

Regards end-to-end ST, we compare the results
of different model architectures with and without
TTS augmented training data, showed in line 11-
16. From line 11-14, TTS augmented data has im-
provements by 0.43 BLEU in VGG-Conformer-init,
while decrease the BLEU scores (0.09) in VGG-
Conformer. Using NMT decoder for initialization
brings consistent improvements with or without
TTS data. In line 17, we ensemble all 6 single
models with outperforming best single model by
an average of 0.97 BLEU, but it is still lagging be-
hind cascaded systems by 1.36 BLEU in tst-COM.
Our end-to-end system outperforms KIT’s end-to-
end results (Nguyen et al., 2021) by 2.26 BLEU in
tst-COM.

To investigate the effectiveness of ensemble of
cascaded and end-to-end systems, we present the
results in line 18 and 19 with SHAS and semantic
SHAS respectively. We observe consistent and
slight improvements in all testsets except tst-COM
using SHAS. We submit systems of #8, #9, #17,
#18, #19, with #8 as primary system in cascaded
condition and #17 as primary system in end-to-end
condition.

EN→ZH Experimental results are described in
Table 8. Regards text MT, line 1-3 show the effec-
tiveness of model size and data clean. We further
improve performance with fine-tuning models on
MuST-C and TED Talk corpus in line 4. Line 5

shows results of ensemble MT from 4 fine-tuned
variants described in Sec. 3.2. In the second group
of cascaded ST results, we present final results
produced with ensemble ASR in Table 6 and en-
semble text MT by SHAS and semantic SHAS
respectively. Results of tst-COM for speech trans-
lation contained in parenthesis are based on of-
ficial segmentation. Regards end-to-end ST, we
train 4 different models based on conclusions from
EN→DE end-to-end experiments. In line 12, we
ensemble 4 single models and get 28.92 BLEU in
tst-COM within official segmentation. Our final
end-to-end ST result on tst-COM is still lagging
behind cascaded system by 0.89 BLEU.

Same with EN→DE translation track, we present
the ensemble results of cascaded systems and end-
to-end systems in line 13 and 14 with SHAS and
semantic SHAS respectively, which brings slight
improvements comparing with cascaded system.
We submit systems of #6, #7, #12, #13, #14, with
#6 as primary system in cascaded condition and
#12 as primary system in end-to-end condition.

EN→JA The overall experimental results is de-
scribed in Table 9. Regards text MT, line 1-3 show
the effectiveness of model size and data clean. We
further improve performance with fine-tuning mod-
els on MuST-C and TED Talk corpus in line 4.
Line 5 shows results of ensemble models from 4
fine-tuned variants described in Sec. 3.2. Line 6-7
present cascaded ST results with ASR outputs from
ensemble models, which only decrease 0.25 BLEU
on dev and 0.48 BLEU on tst-COM compared with
text MT. The reason might be partly attributed to
the fact that text MT BLEU is relatively lower and
ASR errors have a smaller portion of all factors
affecting the performance. While MuST-C training
data and tst-COM have no punctuations in Japanese
side, We think punctuations help people understand.
We train a punctuation model based on transformer
encoder, and add punctuations for translations. The
performance decreases because of the mismatch be-
tween references and translations in punctuations.

Regards end-to-end ST, we train 4 different mod-
els based on conclusions from EN→DE end-to-end
experiments. In line 12, we ensemble 4 models and
get 18.61 BLEU in tst-COM with official segmen-
tation. Our final end-to-end ST result on tst-COM
is still lagging behind cascaded system by 2.89
BLEU. We submit systems of #6, #7, #8, #9, #12,
with #6 as primary system in cascaded condition
and #12 as primary system in end-to-end condition.
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# System tst-COM tst2018 tst2019 tst2020 avg

1 VGG-Conformer (w/ TTS) 3.66 8.56 5.28 7.23 6.18
2 VGG-Conformer (w/o TTS) 3.70 8.55 5.34 7.54 6.28
3 VGG-Transformer (w/ TTS) 3.31 8.39 5.58 7.43 6.18
4 VGG-Transformer (w/o TTS) 3.34 8.50 5.85 7.76 6.36
5 GateCNN-Conformer (w/ TTS) 4.06 7.87 5.14 6.98 6.01
6 GateCNN-Conformer (w/o TTS) 4.35 8.12 5.74 7.52 6.43

7 ensemble (1, 2, 3, 4, 5, 6, SHAS) 3.36 7.30 4.59 6.03 5.32

8 7 (w/o SHAS) 3.49 - - - -
9 7 (w/ semantic SHAS) 3.54 7.26 4.89 6.10 5.45

Table 6: Overall experimental results of ASR. We present WER performance of tst-COM, tst2018, tst2019 and
tst2020, and hope it can be compared as baselines in other works. For tst-COM, we concatenate the audios and
segment with SHAS except for line 8.

# Systems tst-COM tst2018 tst2019 tst2020

Text MT
1 Volctrans(ensemble) (Zhao et al., 2021) (36.7) - - -
2 base 32.65 29.02 26.90 -
3 clean+big 36.21 32.03 29.64 -
4 text MT 36.84 32.65 30.02 -
5 4+finetune 38.20 34.56 31.86 35.54
6 ensemble MT 38.55 34.89 31.82 36.08

Cascaded ASR→MT
7 Volctrans(ensemble) (Zhao et al., 2021) (33.3) - - -
8 ensemble ASR→6+SHAS 34.73(36.02) 30.02 29.25 32.15
9 +semantic SHAS 34.36*(36.02) 29.59 29.40 32.44

End-to-End ST
10 KIT (ensemble) (Nguyen et al., 2021) (32.4) - - -
11 VGG-C (w/o TTS) 31.81(33.37) 28.47 26.48 28.82
12 VGG-C-init (w/o TTS) 31.79(33.48) 28.44 26.70 29.17
13 VGG-C (w/ TTS) 31.58(32.78) 29.00 26.47 28.69
14 VGG-C-init (w/ TTS) 32.39(33.74) 28.98 27.03 29.59
15 VGG-T (w/ TTS) 31.37(32.72) 28.54 26.17 28.42
16 VGG-T-init (w/ TTS) 31.21(32.81) 28.68 26.23 28.67
17 Ensemble (11-16) 33.23(34.66) 29.93 28.20 30.57

Ensemble of cascaded and e2e systems
18 Ensemble(8, 17) 33.58(36.05) 30.93 29.57 32.15
19 Ensemble(8, 17)* +semantic SHAS 34.47*(36.13) 30.19 29.41 32.50

Table 7: Overall experimental results of EN→DE translation track. Results of tst-COM for speech translation
contained in parenthesis are based on official segmentation which are comparable with previous works. Results with
* are based on semantic SHAS, and others are based on SHAS. Weights of models in line 18 and 19 are different.
We submitted 5 systems in EN→DE track with system ID in bold.
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# Systems tst-COM

Text MT
1 base 23.26
2 clean+big 26.92
3 text MT 27.49
4 3+finetune 30.19
5 ensemble MT 31.03

Cascaded ASR→MT
6 ensemble ASR→5+SHAS 29.68(29.81)
7 +semantic SHAS 29.23(29.81)

End-to-End ST
8 VGG-C (w/ TTS) 28.34(28.60)
9 VGG-C-init (w/ TTS) 28.51(28.71)
10 VGG-T (w/ TTS) 27.91(28.41)
11 VGG-T-init (w/ TTS) 27.85(28.23)
12 Ensemble (8,9,10,11) 28.78(28.92)

Ensemble of cascaded and e2e systems
13 Ensemble(6, 12) 29.80(29.79)
14 +semantic SHAS 29.41(29.79)

Table 8: Overall experimental results of EN→ZH trans-
lation track. Results in parentheses are with official
segmentation.

# Systems tst-COM

Text MT
1 base 15.44
2 clean+big 17.43
3 text MT 18.72
4 3+finetune 21.78
5 ensemble MT 22.02

Cascaded ASR→MT
6 ensemble ASR→5+SHAS 21.25(21.50)
7 +semantic SHAS 21.11(21.50)
8 6+punctuation model 19.29(18.81)
9 7+punctuation model 19.84(18.81)

End-to-End ST
8 VGG-C (w/o TTS) 17.72(17.71)
9 VGG-C-init (w/o TTS) 17.66(17.76)
10 VGG-C-init (w/ TTS) 17.97(18.20)
11 VGG-T-init (w/ TTS) 17.60(17.66)
12 Ensemble (8,9,10,11) 18.62(18.61)

Table 9: Overall experimental results of EN→JA trans-
lation track. Results in parentheses are with official
segmentation.

6 Conclusion

This paper summarizes the results of IWSLT 2022
Offline Speech Translation task produced by the
USTC-NELSLIP team. We investigate various
model architectures and data augmentation ap-
proaches to build strong speech translation systems,
both in cascaded condition and end-to-end con-
dition. In our experiments, we demonstrate the
effectiveness of Back Translation, Knowledge Dis-
tillation, Domain Adaptation, Ensemble, elegant
segmentation. Our end-to-end model surpasses the
last year’s best system by 2.26 BLEU, but it is still
lagging behind our cascaded model by an average
of 1.73 BLEU scores on MuST-C test sets. As a
note for future work, we would like to investigate
the effectiveness of speech data augmentation and
multi-modal representations in end-to-end speech
translation.
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A Appendix

We present results of official test sets and progress
test sets. For En→DE translation track, end-to-end
model is lagging behind cascaded model by 1.4
BLEU on tst2022 and 1.8 BLEU on tst2021. Our
best result surpasses the last year’s best system by
4.4 BLEU, which means performant systems built
with classical approaches are strongly competitive.
In English to Japanese track, results with punctu-
ations added performs better in ref2 and worse in
ref1, mostly because of reference annotations.

# ref2 ref1 both

8 26.7 23.9 37.6
9 26.3 23.7 37.1

17 25.3 22.9 35.7

18 26.6 23.8 37.4
19 26.2 23.7 37.0

Table 10: Offical BLEU results of IWSLT tst2022 in
EN→DE speech translation track.

# ref2 ref1 both

HW-TSC 24.6 20.3 34.0

8 28.9 24.1 40.3
9 29.0 23.8 40.1

17 27.2 23.0 38.4

18 29.0 23.9 40.3
19 28.8 23.7 39.8

Table 11: Offical BLEU results of IWSLT tst2021 in
EN→DE speech translation track.

# ref2 ref1 both

6 35.8 35.7 44.1
7 35.5 35.3 43.7

12 33.8 34.1 41.9

13 36.1 36.0 44.5
14 35.7 35.5 44.0

Table 12: Offical BLEU results of IWSLT tst2021 in
EN→ZH speech translation track.

# ref2 ref1 both

6 21.6 20.1 33.4
7 21.2 19.8 32.8

8 24.9 18.3 35.2
9 23.8 18.4 34.3

12 20.5 17.4 30.5

Table 13: Offical BLEU results of IWSLT tst2021 in
EN→JA speech translation track.
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