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Abstract

This paper describes Amazon Alexa AI’s sub-
mission to the IWSLT 2022 Offline Speech
Translation Task. Our system is an end-to-
end speech translation model that leverages
pretrained models and cross modality transfer
learning. We detail two improvements to the
knowledge transfer schema. First, we imple-
mented a new loss function that reduces knowl-
edge gap between audio and text modalities
in translation task effectively. Second, we in-
vestigate multiple finetuning strategies includ-
ing sampling loss, language grouping and do-
main adaption. These strategies aims to bridge
the gaps between speech and text translation
tasks. We also implement a multi-stage seg-
mentation and merging strategy that yields im-
provements on the unsegmented development
datasets. Results show that the proposed loss
function consistently improves BLEU scores
on the development datasets for both English-
German and multilingual models. Addition-
ally, certain language pairs see BLEU score
improvements with specific finetuning strate-
gies.

1 Introduction

Multilingual Spoken Language Translation (SLT)
enables translation of audio into text in multiple
languages. Traditionally, SLT is solved by cas-
cading automatic speech recognition (ASR) mod-
els, which convert audio to transcribed text, with
text-to-text translation models. End-to-end (E2E)
models, such as FAIR Speech Translation System
(Tang et al., 2021a), allow a single model to trans-
late from speech to text. Recent advances in E2E
models show comparable results with cascaded ar-
chitectures (Anastasopoulos et al., 2021; Ansari
et al., 2020).

Our baseline end-to-end speech translation sys-
tem leverages large-scale pretrained models on dif-
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ferent data modalities following the approach pro-
posed by Tang et al. (2021a). We adopt dynamic
dual skew divergence (DDSD) loss function (Li
et al., 2021b) to replace cross entropy (CE) for
effective knowledge transfer from pretrained text-
to-text (T2T) translation model to speech-to-text
(S2T) translation model through joint task training.
We observe that DDSD consistently outperforms
CE across all language directions.

Our multilingual model supports translation of
English (en) audio to German (de), Japanese (ja)
and Chinese (zh). We find that finetuning this
model based on language groups can improve the
performance of the model. Additionally, we find
that finetuning models by considering alternate
translations can lead to subtle improvements in the
overall performance of the models. While work-
ing with unsegmented data, we show that using a
custom audio segmentation strategy can improve
the translation performance by around +2.0 BLEU
points. On IWSLT 2022 blind test sets, our sys-
tem achieves 22.6, 15.3, and 30.4 BLEU score for
en→de, en→ja, and en→zh respectively. On the
progression test set, our E2E speech translation sys-
tem performs on par with IWSLT 2021 winning
cascaded system (Anastasopoulos et al., 2021).

2 Base Model

We adopt the end-to-end speech translation system
proposed by Tang et al. (2021a), which takes both
text and speech as input for translation task. The
model’s encoder consists of a text encoder and a
speech encoder for each input data modality, re-
spectively. The text encoder is a 12 layer trans-
former architecture initialized from the pretrained
mBART encoder (Tang et al., 2020). The speech
encoder is a 24 layer transformer architecture in
which we initialize the speech feature extractor and
first 12 layers from pretrained Wav2Vec 2.0 model
(Xu et al., 2020). The remaining 12 layers of the
speech encoder share weights with the text encoder.
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Between the speech encoder and text encoder, an
adaptor (Li et al., 2021a) of 3 1-D convolution lay-
ers with a stride of two are inserted to compress
the speech encoder output by a factor of eight. The
model’s decoder is initialized from mBART de-
coder and is shared by two data modalities. We
alter the original model architecture to decoupled
the mBART output layer and embedding layer in-
stead of using a shared projection layer.

2.1 Pretrained models
We use two state-of-the-art pretrained models —
Wav2Vec 2.0 and mBART — for speech and text
data, respectively. Both models were trained in-
dependently with self-supervised tasks and then
finetuned with the corresponding ASR and MT
tasks using labeled data.

Wav2Vec 2.0 Wav2Vec 2.0 is a powerful trans-
former based framework pretrained on self-
supervised tasks with large amount of unlabeled
speech data (Baevski et al., 2020). There are three
main modules in Wav2Vec 2.0 model. The feature
encoder is a convolution neural network, which
takes wave-form audio as inputs and converts them
into a sequence of continuous feature vectors. Then
the quantization module learns the latent discrete
speech features from the continuous embeddings by
sampling from Gumbel softmax distribution (Jang
et al., 2017) using two codebooks of size 320. Fi-
nally, a transformer based context encoder extracts
high quality contextual speech representations from
the features. By finetuning on speech data with
transcriptions, Wav2Vec 2.0 achieves outstanding
performance on ASR task.

In this work, we adopt the Wav2Vec large model
finetuned for ASR task ("wav2vec-vox-960h-pl")
(Xu et al., 2020). The context encoder in the model
has 24 transformer layers with 16 attention heads,
and the hidden dimension is 1024. The model was
pretrained on Librispeech and LibriVox audio cor-
pus and then finetuned on 960 hours of transcribed
Librispeech data (Panayotov et al., 2015), Libri-
light data (Kahn et al., 2020a), and pseudo-labeled
audio data (Kahn et al., 2020b).

mBART mBART is a sequence-to-sequence
encoder-decoder architecture pretrained on large-
scale multilingual unlabeled text corpus (Liu et al.,
2020). During pretraining, mBART is trained as
a denoising auto-encoder which reconstructs the
corrupted input text to its original form. The pre-
trained mBART was fintuned with paralleled ma-

chine translation data and achieved significant per-
formance gains on multilingual machine translation
(MT) task. For this work, we used the mBART-
large-50-one-to-many model, which consists of a
12-layer transformer encoder and a 12-layer trans-
former decoder. The model was pretrained on 50
languages and finetuned to translate English to the
other 49 languages (Tang et al., 2020).

2.2 Multimodal training objectives
During training, both S2T translation and T2T
translation tasks are performed using an online
knowledge distillation process that mitigates the
speech-text modality gap with the following loss
function:

l = lst + lt_guide + lmt + lcross_attn (1)

where lst and lmt are cross entropy loss between
ground truth and hypothesis from speech and text
inputs respectively, lt_guide is the cross entropy
loss between hypothesis from speech and text, and
lcross_attn is the cross attention regularization from
two input data modalities (Tang et al., 2021b).

2.2.1 Dynamic Dual Skew Divergence
To improve the text-guided learning in joint task
training, we replace the cross-entropy based text
guide loss from eq. 1 with a loss based on Kullback-
Leibler divergence that considers S2T translation
errors from (1) generating an unlikely hypothesis
and (2) not generating a plausible hypothesis when
compared with the T2T translation. In previous
studies, similar approaches have shown promising
results when applied to machine translation task
(Li et al., 2021b) and measuring text generation
performance (Pillutla et al., 2021).

Kullback-Leibler Divergence Kullback-
Leibler (KL) divergence measures the divergence
of probability distributions S(x) from T (x):

D(T ||S) =
∑

T (x) log
T (x)

S(x)
(2)

We denote T (x) as the translation hypothesis prob-
ability distribution from the text input and S(x) as
the probability distribution from the speech input.
D(T (x)||S(x)) is an asymmetric distance metric
that measures the deviation of S2T distribution
with the T2T distribution (type II error). If we
switch the sides of T (x) and S(x), minimizing
D(S(x)||T (x)) emphasizes errors caused by hy-
potheses generated from the S2T task that are not
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Figure 1: A) Depending on the dominant error types,
higher or lower value of β tilts the dual skew diver-
gence curve and providing a steeper slope of the loss
curve for current training state. X axis represents S2T
output, T2T output is set to 0.4 in this example. B)
Value of β dynamically changes based on the values of
type I and type II skew divergence

likely to be generated from the T2T task (type I
error).

Dual Skew Divergence The definition of KL di-
vergence holds when the observed distribution (e.g.
S(x) in the case ofD(T ||S)) is non-zero. However,
during training, the probabilities of some tokens
can go towards zero due to the large vocabulary
size of mBART. To mitigate this issue, in dual di-
vergence, we replace the KL divergence with the
skew divergence:

Ds(T ||S) = D(T ||αT + (1 − α)S) (3)

where α is a hyperparameter. In this study, we set
α to 0.01 for all experiments.

To mitigate the modality gap between speech
and text inputs, we consider both types of errors
with dual skew KL divergence in training:

Dds(T, S) = βDs(S||T )+(1−β)Ds(T ||S)
(4)

where β is a weight to balance the two types of
errors. When using dual skew divergence as a
loss function during training, the value of β af-
fects convergence depending on the dominant error
type at the current step. When S2T task under-
generates the probability distribution output by T2T
task (higher type II error), a lower value of β mo-
tivates faster learning with higher magnitude of
gradient. While type I error dominates, a higher
value of β is favored by training instead (Figure
1A).

Dynamic Weight As the dominant error type
could change during training, we dynamically tune

the value of β in eq. 4 based on the values of two
dual skew divergence components at each training
step. We first normalize the skew divergence to
achieve a value bounded between 0 and 1.

M(S||T, β) = log(1 + βDs(S||T ))
(1 + log(1 + βDs(S||T )))

(5)

And then we solve for the value of β that max-
imizes the product of two measures derived with
above equation:

β = argmax
(
(M(S||T, β)∗M(T ||S, 1−β)

)

(6)

This logic ensures that β is constantly updated
based on type I and type II skew divergence to
achieve the preferred dual skew divergence for the
current training step (Figure 1B).

3 Finetuning Approaches

To avoid overfitting and moderate generalization,
we finetune the base model with a proposed sam-
pling loss algorithm. In addition, we experiment
with the effect of finetuning on languages with sim-
ilar linguistic typology or vocabulary to see if there
is negative transferring with the multilingual set-
ting. Finally, we test the consequence of using
in-domain data.

The motivation for sampling loss comes from a
hypothesis that the ground truth translations may
lack diversity. We can make the translation model
more robust and increase end-phrase diversity by
training with alternate translations to supplement
the ground truth translations. To achieve this, we
clone the T2T components from the trained base
model and use beam search as a mechanism to
generate the alternate translations to guide the S2T
components. During the beam search, the target
probabilities of all the nodes visited are considered
during loss computation as illustrated in Figure 2.
We reuse the dynamic dual skew divergence loss
to train the student model, and this is the only loss
applied during our sampling loss finetuning. We
recognize that other sampling strategies could also
generate alternative translations.

A similar approach is explored in mixed cross
entropy loss(Li and Lu, 2021). While mixed cross
entropy loss achieves the same effect as sampling
loss, sampling loss considers the complete target
distribution as ground truth while training the stu-
dent model.
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Figure 2: Sampling loss example with beam width=3.
All target distributions are considered for loss computa-
tion.

3.1 Sampling Loss
3.2 Language Grouping
Several studies (Prasanna, 2018; Sachan and Neu-
big, 2018; Tan et al., 2019; Fan et al., 2021) have
suggested that multilingual MT models benefit
from training models with languages sharing sim-
ilar linguistic features. In this work, we experi-
ment with two grouping strategies. One is based
on linguistic typology where German and Chinese
are considered as subject–verb–object (SVO) lan-
guages1 while Japanese is a subject–object–verb
(SOV) language. The other is based on vocabulary
sharing. Japanese kanji was derived from Chinese
characters, and most of the time the meaning are
the same or very similar. For this reason, we con-
sider Japanese and Chinese as a shared-vocabulary
group.

3.3 Domain Adaption
Finetuning is a popular approach for domain adap-
tion in MT to boost model performance (Freitag
and Al-Onaizan, 2016; Luong and Manning, 2015).
As the IWSLT 2022 task uses TED talks as the
test data, we evaluate the effect of finetuning our
base model using the MuST-C V2 (Di Gangi et al.,
2019) dataset, a multilingual speech translation
corpus comprising English audio recordings from
TED talks.

4 Experimental Setup

In this section, we first describe the datasets and
hyperparameters settings used in our model train-
ing experiments, followed by a brief introduction
of our audio segmentation approach that improves
our model performance on unsegmented datasets.

1There is a small part of German is SOV.

4.1 Data

We train our models using MuST-C V2 (Di Gangi
et al., 2019), CoVoST v2 (Wang et al., 2020)
and Europarl-ST V1.1 train-clean dataset (Iranzo-
Sánchez et al., 2020). The entire corpus con-
tains paired audio-text samples for Speech Transla-
tion, including transcriptions of the source audios.
MuST-C supports en-to-14 languages, including
en→de, en→ja and en→zh. CoVoST supports en-
to-15 languages, again including en→de, en→ja
and en→zh. However, as Europarl-ST provides
translation data between six European languages,
only en→de is supported. Table 1 presents statis-
tics on the datasets. We discard short audio clips
of less than 50ms and long audio clips of greater
than 30s. We hold out 1% of the data as the devel-
opment set. Additionally, we evaluate our models
using the unsegmented test set released for IWSLT
2019 and IWSLT 2020.

4.2 Training Details

We use the fairseq2 library to train our models. For
the base model using the cross-entropy as the text-
guided loss, we set the loss weights of lst, lt_guide,
lmt, and lcross_attn as 0.2, 0.8, 1.0, and 0.02, re-
spectively. When training using the DDSD text-
guided loss, we reduce lmt to 0.2. For the fine-
tuning experiments, the beam size is set to 1 for
the sampling loss algorithm. We set dropout to
0.3. We use the Adam optimizer (Kingma and Ba,
2017) and inverse square root scheduler with an
initial learning rate of 1e-8. We set the warm-up
phase to 5000 steps and the training batch size to a
maximum of three for both the base and finetuned
models. The model parameters are updated every
four batches; the maximum number of iterations
is set to 120,000 for the base models, while we
train the finetuned models until convergence with
the early stopping strategy when the loss on the
validation set increases for three consecutive eval-
uations. Each model is trained on eight NVIDIA
V100 GPUs for around 24 to 48 hours.

4.3 Speech Segmentation

Previous years’ IWSLT results show that the seg-
mentation approach has significant impact on
the performance of end-to-end speech translation
(Ansari et al., 2020; Anastasopoulos et al., 2021).
We use the WebRTCVAD3 toolkit to split the unseg-

2https://github.com/pytorch/fairseq
3https://pypi.org/project/webrtcvad
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MuST-C CoVoST Europarl-ST
en → de en → ja en → zh en → de en → ja en → zh en → de

Samples (in thousands) 238.0 314.0 343.9 289.0 289.0 289.0 31.3
Average audio length (s) 6.3 5.8 5.8 5.4 5.4 5.4 8.5
Average source text length (tokens) 27.2 25.5 25.5 17.8 17.8 17.8 31.4
Average target text length (tokens) 27.9 24.2 22.9 18.3 19.2 15.7 36.5

Table 1: Dataset statistics

Stage Length threshold (s)
WebRTCVAD

A FD(ms) ST
1 0 1 10 0.9
2 21 3 30 0.9
3 30 3 10 0.5
4 21 - - -

Table 2: Parameter used at each stage of speech seg-
mentation. We pick 21 seconds and 30 seconds as
length thresholds as they represent the 99.5% per-
centile and max of the audio length of our training
data. (A: aggressiveness, FD: frame duration, ST: si-
lence threshold)

Seg. BLEU #Seg. Seg. Length
Stage (P25/P50/P75)

IWSLT

S1 23.21 2384 2.29/4.12/7.90

2019

S2 23.27 2881 2.32/4.06/7.43
S3 23.27 2909 2.31/4.05/7.41
S4 25.00 963 14.96/17.80/19.58

IWSLT

S1 23.61 2071 2.40/4.21/7.74

2020

S2 24.42 2408 2.38/4.19/7.22
S3 24.38 2464 2.37/4.16/7.22
S4 26.58 811 15.07/17.78/19.68

Table 3: Speech translation performance on unseg-
mented development sets at each segmentation stage.
All results are based on the DDSDde model.

mented audio data with a multi-stage segmentation
and merging strategy. In each of the first three
stages, we split audios that are longer than a cor-
responding threshold with gradually increased ag-
gressiveness. In the last stage, we merge the short
audios from left to right until the merged audio
reaches a certain length Table 2. This strategy gen-
erates audio segments that are neither too long to
be processed by the end-to-end speech translation
model nor too short to convey enough contextual
information. Throughout this paper we refer to this
as our ’own’ segmentation.

5 Results and Analyses

In this section, we present our experimental results
and analyses. All the reported results are obtained
from a single run using one of the following model
settings:

• CE: This is our baseline model which uses
cross-entropy as the text-guided loss .

• DDSD: This model uses the DDSD described
in Section 2.2.1 as the text-guided loss.

• DDSD+DDSD: This is a finetuned model
where both of the base and finetuning training
are using the DDSD as the text-guided loss.

• DDSD+SL: This is a finetuned model where
the text-guided loss of the base and the fine-
tuning training are the DDSD and the sam-
pling loss algorithm explained in Section 3.1,
respectively.

The corpora and target languages used in a model
training are denoted in superscript and subscript,
respectively. If no superscript or subscript appears,
all the available corresponding corpora or target
languages have been used. For example, DDSDde
means a bilingual en→de model trained using all
the corpora mentioned in Section 4.1.

As for the evaluation datasets, if our model can
directly handle the size of a given audio clip, such
as the audio in the MuST-C dataset, we directly use
the provided data. Otherwise, we use the algorithm
described in Section 5.1 to split audio clips into
smaller chunks.

5.1 Effect of Speech Segmentation
We tune the speech segmentation algorithm de-
scribed in Section 5.1 using the IWSLT 2019 and
IWSLT 2020 development sets. Table 3 summa-
rizes the performance of the DDSDde model at each
segmentation stage. Since few segments have audio
lengths longer than 30 seconds, Stage 3 only results
in a minimal change to the number of segments and
the audio length distribution. After merging short
audio clips in Stage 4, the model performance im-
proves by +1.73 and +2.20 BLEU points for the
IWSLT 2019 set and IWSLT 2020 set respectively.
We hypothesize that this improvement is the result
of the model’s ability to access more contextual
information, and therefore generate better transla-
tions. For the rest of the experiments, we report
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Model IWSLT 2019* IWSLT 2020* Must-C COMMON
en → de en → de en → de en → ja en → zh

CEde 23.98 26.02 29.71 - -
DDSDde 25.00 (+1.02) 26.58 (+0.56) 30.59 (+0.88) - -

CE 23.25 24.44 28.46 16.27 25.41
DDSD 24.20 (+0.95) 25.67 (+1.23) 30.25 (+1.79) 16.77 (+0.5) 26.69 (+1.28)

Table 4: Comparison of results using cross-entropy (CE) and the DDSD text-guided loss. Numbers in parentheses
show the BLEU difference between models using DDSD and CR losses. * indicates own segmentation.

finetuning Approach Model IWSLT 2019* IWSLT 2020* Must-C COMMON
en → de en → de en → de en → ja en → zh

Sampling Loss DDSDde+SLde +0.13 +0.33 -0.43 - -
DDSD+SL +0.07 +0.02 -0.07 +0.13 +0.03

Language Grouping: DDSD+DDSDde,zh -0.15 -0.03 +0.13 - +0.02
Linguistic Typology DDSD+DDSDja - - - +0.3 -
Language Grouping: DDSD+DDSDja,zh - - - +0.44 -0.10
Vocabulary Sharing DDSD+DDSDde +0.22 +0.17 +0.3 - -

Sampling Loss + DDSD+DDSDja,zh+SLja,zh - - - +0.48 +0.02
Vocabulary Sharing DDSD+DDSDde+SLde -0.03 +0.34 +0.36 - -
Domain Adaption DDSD+DDSDMust-C +0.08 +0.25 +0.00 +0.27 -0.03

Table 5: Relative results of using different finetuning approaches compared with their base model, where numbers
in bold mean the finetuned model has a higher BLEU score compared with its base model. * indicates own
segmentation

results using segments generated at Stage 4 for the
IWSLT 2019 and IWSLT 2020 development sets.

5.2 Effect of the DDSD

We train en→de translation models as well as
one-to-many multilingual models using the cross-
entropy loss or the DDSD loss as the text-guided
loss, with the evaluation results presented in Ta-
ble 4. From our experiments, en→de models al-
ways outperforms the multilingual models. How-
ever, the DDSD loss effectively reduces the quality
gap between the bilingual and multilingual models
from an average of -1.19 BLEU to -0.68 BLEU.
Models with DDSD loss consistently outperform
those with cross-entropy text-guided loss on all
the tested language arcs for both en→de and mul-
tilingual models. The BLEU score improvement
is in the range of +0.5 to +1.8, where the small-
est +0.5 BLEU improvement is observed for the
multilingual model’s en→ja arc.

5.3 Effect of finetuning

We study three types of finetuning modifications:
using the sampling loss, finetuning with language-
based groupings and domain adaptation. Since
DDSD has consistently improved BLEU metric
values, all of our finetuning experiments use mod-
els initialized from those trained with the DDSD
text-guided loss in the previous section. Table 5
summarizes the change in BLEU score of the pro-

posed approaches comparing to the respective base
model trained with DDSD text-guided loss.

Sampling Loss We experiment with the pro-
posed sampling loss algorithm from Section 3.1
and report the results at the first two rows of Ta-
ble 5. We observe mixed results when comparing
DDSDde and DDSD models in Table 4. One expla-
nation is that the base model has been trained with
enough data diversity, and therefore the sampling
loss has limited influence.

Language Grouping For the linguistic-
typology-based finetuning, the finetuned
DDSD+DDSDde,zh model (SVO languages)
behaves almost the same as the base DDSD model.
On the other hand, the vocabulary-sharing-based
finetuned model, DDSD+DDSDja, zh, achieves a
moderate +0.44 BLEU improvement on the en→ja
arc while having a small degradation of -0.10
BLEU on the en→zh arc. These results suggest
that the en→zh arc which is included in both
of the language groups is not affected by either
of the language grouping strategies. However,
it is worthy to note that the result of en→ja
finetuning (+0.3 BLEU) falls behind the en→ja+zh
multilingual finetuning (+0.48 BLEU). We also
consider finetuning the vocabulary-sharing-based
models using the sampling loss where we don’t
observe consistent improvements in this set of
results.
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Model Test set Language Segmentation BLEU ref2 BLEU ref1 BLEU both

DDSDde+SLde

IWSLT 2022 en→de own 22.6 20.1 31.5

IWSLT 2021 en→de own 24.4 20.6 34.5
given 21.9 17.9 30.1

DDSD+DDSDja,zh+SLja,zh IWSLT 2022 en→ja own 15.3 16.2 25.3
en→zh own 30.4 30.8 37.9

Table 6: Performance of the submitted systems on IWSLT 2022 test sets and progression test set.

Domain Adaption We finetune the base model
only using the Must-C dataset and report the re-
sults in the last row of the Table 5. Apart from
increases of +0.27 and +0.25 BLEU score on the
en→ja Must-C testset and en→de IWSLT 2020
testset respectively, there is little-to-no effect on
the other testsets. One possible explanation is that
the base model has been trained using a fair amount
of the representative data, and therefore, the model
cannot benefit from further finetuning on the Must-
C dataset.

5.4 Submission
Based on the results obtained from the IWSLT
development datasets and Must-C COMMON
test sets, we submitted DDSDde+SLde and
DDSD+DDSDja,zh+SLja,zh as our primary systems
for en→de and en→ja+zh with our own segmenta-
tion.

We present the results on the IWSLT 2022 and
IWSLT 2021 test sets in Table 6. Our systems
achieved 22.6, 15.3, and 30.4 BLEU scores on the
IWSLT 2022 en→de, en→ja and en→zh blind test
sets, respectively. On the en→de progression test
set (IWSLT 2021), our system scored 24.4 with our
own segmentation and 21.9 with the provided seg-
mentation. Note that the IWSLT 2021 best BLEU
scores on same test sets were 24.6 and 21.8 for own
segmentation and provided segmentation, respec-
tively, and both results were from cascaded systems
(Anastasopoulos et al., 2021).

6 Conclusion

In this paper, we adapt and improve the existing
dual skew divergence loss by dynamically balanc-
ing the model’s quality and diversity via the DDSD
text-guided loss. The DDSD text-guided loss out-
performs the baseline cross-entropy loss on all the
experimented language arcs. We observe that for
CE and DDSD loss, one-to-one models always
outperform one-to-many multilingual models, how-
ever DDSD reduces the performance gap between
them. We also consider three different finetuning
approaches: sampling loss, language grouping, and

domain adaption. Overall, mixed results are ob-
served and none of the finetuning strategies stand
out from the others. In addition, the results of the
segmentation experiments indicate that the trans-
lation quality can be boosted by presenting audios
that are longer than the majority of the training
data since more context can be taken into consider-
ation. Our submitted end-to-end speech translation
system achieves on par performance with the best
cascaded system from IWSLT 2021.
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