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Abstract
In this paper, we consider two of the currently popular semantic frameworks: Abstract Meaning Representation (AMR) -
a more abstract framework, and Universal Conceptual Cognitive Annotation (UCCA) - an anchored framework. We use a
corpus-based approach to build two graph rewriting systems, a deterministic and a non-deterministic one, from the former to
the latter framework. We present their evaluation and a number of ambiguities that we discovered while building our rules.
Finally, we provide a discussion and some future work directions in relation to comparing semantic frameworks of different
flavors.
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1. Introduction and Motivation
A number of frameworks for semantic annotation have
been proposed in the past decades. As each puts the
main focus on a different aspect of semantics, each is
fit for its purpose, has its set of adopters and there is
no one framework that is better than the rest. As a re-
sult, semantically annotated data, which is not easy to
come by in the first place and is laborious and time-
consuming to produce manually, is scattered across dif-
ferent frameworks. It would be useful if we can trans-
form annotations from one framework into another,
thus making more data available in various frame-
works.
In the current work, we focus on the comparison be-
tween two of the existing semantic frameworks, with
different relations to anchoring - one anchored and one
more abstract - and an experiment we carried out to
see how much of the former can be predicted from
the latter. These frameworks are Universal Concep-
tual Cognitive Annotation (UCCA) (Abend and Rap-
poport, 2013) and Abstract Meaning Representation
(AMR) (Banarescu et al., 2013).
In section 2, we give an overview of the two frame-
works that we consider in this work as well as the
shared task from which the data we use comes from. In
section 3, we describe the Graph Rewriting experiment
we carried out to transform AMR graphs into UCCA-
like structures. Then section 4 describes how our graph
rewriting system was evaluated and reports our results
and observations. In section 5 we present some of
the ambiguous cases we discovered when building out
rewriting systems. Finally, in section 6, we provide
a broader discussion on some of the points stemming
from this experiment and some future work directions.

2. Background
Our choice of frameworks is grounded in the current
popularity of the two we are considering - AMR is of-
ten discussed in the community, with proposals for po-

tential enhancements in many of the semantic work-
shops and conferences, and UCCA has increasingly
been gaining traction in the past years, with more data
being made available continuously and proposals for
extension layers being made too.
Additionally, AMR and UCCA are two of the frame-
works that were part of the 2019 and 2020 Meaning
Representation Parsing (MRP) shared tasks (Oepen et
al., 2019; Oepen et al., 2020) thanks to which there is
parallel annotated data for the two, even though only
a small amount (87 sentences from the WSJ corpus) is
freely available.

2.1. AMR
AMR was introduced in 2013. Broadly speaking, it
represents “who did what to whom” in a sentence.
AMR abstracts from the surface representation of a
sentence and is what (Koller et al., 2019) describe as
a flavor 2 semantic framework, where the “flavor” of
a framework stands for correspondence between sur-
face level tokens and graph nodes. In flavor 2 frame-
works, such as AMR, there is no direct correspondence
between the two - not all tokens are present as nodes
in the graph and not all graph nodes correspond to to-
kens. Thus, sentences that are different on the surface,
but have the same basic meaning are represented by the
same AMR. For example, the AMR in Figure 1 is the
representation of the sentence “The girl made adjust-
ments to the machine.”, but also of the sentences “The
girl adjusted the machine.” and “The machine was ad-
justed by the girl.” as shown in the official AMR spec-
ifications1 .
AMR relies heavily on predicate-argument struc-
ture and makes extensive use of PropBank predi-
cates (Palmer et al., 2005), trying to maximize their use
whenever possible in sentences. Predicates are used

1https://github.com/amrisi/
amr-guidelines/ (at the time of writing, this link
points to version 1.2.6 of the specifications)

https://github.com/amrisi/amr-guidelines/
https://github.com/amrisi/amr-guidelines/
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(a / adjust-01
:ARG0 (b / girl)
:ARG1 (m / machine))

Figure 1: AMR annotation of the sentences “The girl
made adjustments to the machine.”, “The girl adjusted
the machine.” and “The machine was adjusted by the
girl.” in Penman format (top) and as a graph (bottom).

not only to annotate the verbs in a sentence, but also
the nouns and adjectives whenever possible. As seen
with the example from Figure 1, the noun adjustment
and the verb adjust are both annotated with the Prop-
Bank predicate adjust-01. The arguments of Prop-
Bank predicates appear as core roles in AMR graphs.
In addition, non-core roles such as location, time,
purpose, etc. form the rest of the AMR relations.

In terms of graph features, AMR graphs are directed
acyclic graphs (DAGs) and singly-rooted. The acyclic-
ity and single-rootedness come at the cost of using in-
verse relations. Any role, core or non-core, can be re-
versed by adding -of to its name and changing the
direction of the relation. Apart from avoiding cycles,
inverse roles also serve to highlight the focus of a sen-
tence by making sure that the central concept is the root
of the AMR graph.

The AMR Bank is a manually-produced corpus of
AMR annotations in English. Only a portion of it
(namely the Little Prince corpus and the BioAMR cor-
pus) are freely available. The rest of the AMR Bank
can be obtained by a (paid) license from the Linguistics
Data Consortium. AMR was designed with English in
mind and does not aim to be a universal semantic repre-
sentation framework. That being said, there have been
attempts to use the framework for other languages, no-
tably Chinese, in the Chinese AMR (CAMR) Bank2.

While powerful in its ability to abstract from surface
representation, there are a number of phenomena that
the framework does not cover - tense, plurality, def-
initeness, scope, to name some of the more promi-
nent ones. Some of these issues have been addressed:
(Bos, 2020) proposes an extension to deal with scope
in AMR, while (Donatelli et al., 2018) proposes to aug-
ment AMR with tense and aspect. However, to the best
of our knowledge, no corpora exist that use the pro-
posed extensions yet.

2https://www.cs.brandeis.edu/˜clp/
camr/camr.html

[TheF girlC]A adjustedP [theF machineC]A

Figure 2: UCCA annotation of the sentence “The girl
adjusted the machine.” as a graph (top) and in textual
format (bottom).

2.2. UCCA
UCCA was introduced in 2013 as well, but has gained
more traction in recent years - a number of extension
layers have been proposed and the number of available
annotated datasets has been increasing.
Following (Koller et al., 2019)’s flavor classification,
UCCA is a flavor 1 framework, i.e. an anchored frame-
work - each token (or a group of tokens in the case of
named entities, such as proper names and dates) corre-
sponds to a leaf node in the graph, but additional nodes
are present in the graph too. UCCA organises processes
(actions) and states into scenes, where the central pro-
cess or state, its participants, temporal and adverbial in-
formation are labeled. Each of these may expand into
its own subgraph where elaborations, quantifiers, func-
tion and relation words are labeled. A sentence may
give rise to multiple scenes and these can be labeled
as well. UCCA offers 14 relation types in total. It al-
lows for re-entrances via the so-called “remote” edges.
As with AMR, UCCA graphs are also singly-rooted
DAGs.
Figure 2 shows the UCCA annotation of the sentence
“The girl adjusted the machine”. The process P at the
center of the scene is adjusted. That scene includes two
participants A, which are internally annotated further,
with the central concept (girl, machine) receiving the
label C and the function word the - F.
As the name suggests, UCCA is designed to be a uni-
versal semantics framework, i.e. it aims to work across
languages as opposed to being designed with a spe-
cific language in mind. Indeed, the currently available
UCCA datasets span across English, French, German
and Hebrew.
A number of extension layers have been proposed for
UCCA, such as adding semantic roles (Shalev et al.,
2019; Prange et al., 2019a), co-reference (Prange et
al., 2019b) and implicit arguments (Cui and Hersh-
covich, 2020). However, while small proof of concept
datasets exist for some of these, there is no parallel cor-
pus between any of the UCCA extension layers and

https://www.cs.brandeis.edu/~clp/camr/camr.html
https://www.cs.brandeis.edu/~clp/camr/camr.html
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other semantic frameworks, such as AMR. Therefore,
for this study we concentrate on the foundational layer
of UCCA.

2.3. MRP
The MRP 2019 and 2020 Shared Tasks are parsing
tasks, that have sentences annotated in a number of
semantic frameworks. AMR, UCCA, DM: DELPH-
IN MRS Bi-Lexical Dependencies (DM), Prague Se-
mantic Dependencies (PSD) and Elementary Depen-
dency Structures (EDS) were part of the 2019 task.
The 2020 task drops DM and PSD in favour of Prague
Tectogrammatical Graphs (PTG) and Discourse Rep-
resentation Graphs (DRG). All the sentences in these
datasets are in English. Both tasks use the same portion
of the WSJ corpus in the freely available sample3 of an-
notations and so for the purposes of comparing AMR
and UCCA, they are equivalent. The sample contains
an overlap of 87 annotated sentences for both AMR and
UCCA, which we have used for this study.
An evaluation tool, mtool4, was introduced for these
tasks as well and is what we make use of for our evalu-
ation.
It must be noted that the UCCA graphs are not entirely
consistent with the UCCA guidelines5. There are a
few small structural differences, which can easily be
adjusted, but our analysis, especially when discussing
the mtool evaluation scores, will be misleading without
highlighting these differences. These are (1) punctu-
ation is not annotated in the guidelines, but is in the
MRP dataset and (2) the root node from the UCCA
guidelines would not be the same as the one in the MRP
dataset.
The MRP graphs for AMR are generally consistent
with the AMR specifications. With that being said,
we have discovered on error in the annotations. The
AMR specifications state that “to represent conjunc-
tion, AMR uses concepts and, or, contrast-01,
either, and neither, along with :opx relations”.
We note that sentence #20003008 has not been anno-
tated in the best possible way because the annotation
uses and plus :polarity - (see Figure 5) when
neither is available and arguably a more appropri-
ate option.

3. Experiments
3.1. Data and Data Processing
As mentioned in subsection 2.3, we use the freely avail-
able sample of annotations from the MRP 2019 and
2020 Shared Tasks. The corpus has 87 sentences that
overlap between UCCA and AMR. We use the first 17

3http://svn.nlpl.eu/mrp/2019/public/
sample.tgz

4https://github.com/cfmrp/mtool
5https://github.com/

UniversalConceptualCognitiveAnnotation/
docs/releases) (at the time of writing this link points
to v2.1 of the guidelines

sentences (called the train set hereupon), which consti-
tute 20% of the corpus, to construct the rules for our
graph rewriting system. The remaining 70 sentences
are our test set, used for evaluation.
The data in the shared task is provided both in JSON
and in DOT format. PDF files with the graphs gener-
ated from the DOT files are also provided. We used
the aforementioned DOT files to produce images of the
two graphs (AMR and UCCA) for each sentence along-
side each other. The AMR graphs were then manu-
ally adjusted so that property-value pairs were turned
into edges and nodes, as in many cases the values di-
rectly corresponded to UCCA nodes and made it more
straightforward to draw parallels between the two rep-
resentations. For example, for sentence #20003007
(Figure 3a), the property-value pair polarity - of
node #0, was transformed to an edge polarity from
node #0 to a new node with label - and given the next
available ID number (#5). Comparing that with the
UCCA graph of the same sentence in Figure 3b, we
can see these new node and edge directly correspond to
node #2 labeled no and its incoming D edge.
We used these modified pictorial representations of the
graphs to make our first observations. For each sen-
tence, we manually identified the corresponding (over-
lapping) subgraphs between the AMR graph and the
UCCA graph. As a rule, we marked subgraphs as sets
of predicates along with their arguments and any prop-
erties of the arguments (e.g. opN, year, month). Fur-
thermore, clearly identifiable direct transformations be-
tween relations were marked. For example, in the ex-
ample in Figure 3, time and polarity can be di-
rectly linked to T and D respectively6. Through this we
made some initial observations about the most probable
correspondents for each AMR relation. We also noted
some observations about the differences in the generic
structure of the graphs. UCCA graphs, unsurprisingly,
tend to have more nodes than AMR graphs. In AMR,
predicates are parent nodes of their arguments, whereas
in UCCA, participants in a scene appear as siblings of
the process or state that is at the center of that scene.

3.2. Graph Rewriting
We use GREW7 for graph rewriting (Guillaume, 2021;
Bonfante et al., 2018) from AMR to an UCCA-like
structure. GREW allows us to define rules that match
patterns in a graph and apply commands to transform
the matched part of the graph.
We design two sets of rules. R1 is our initial set of
rules, which serves as a base line system with a di-
rect and deterministic set of rules. We then build R2
- an extended set of rules that tries to cover some of

6The coloured pictures for the 17 sentences
along with the code and data for the experiments
are available at https://gitlab.inria.fr/
semagramme-public-projects/resources/
amr2ucca

7https://grew.fr/

http://svn.nlpl.eu/mrp/2019/public/sample.tgz
http://svn.nlpl.eu/mrp/2019/public/sample.tgz
https://github.com/cfmrp/mtool
https://github.com/UniversalConceptualCognitiveAnnotation/docs/releases)
https://github.com/UniversalConceptualCognitiveAnnotation/docs/releases)
https://github.com/UniversalConceptualCognitiveAnnotation/docs/releases)
https://gitlab.inria.fr/semagramme-public-projects/resources/amr2ucca
https://gitlab.inria.fr/semagramme-public-projects/resources/amr2ucca
https://gitlab.inria.fr/semagramme-public-projects/resources/amr2ucca
https://grew.fr/
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(a) AMR with property-value pair polarity -
extracted as an edge and a node. (b) UCCA

Figure 3: AMR and UCCA annotations of the sentence “There is no asbestos in our products now.””
[#20003007] with corresponding subgraphs circled in matching colours.

the identified problems with R1, namely (a) more com-
plex structures and (b) ambiguous transformations, for
which we use a non-deterministic set of rules.

3.2.1. Initial set of rules - R1
We built a set of rules R1 based on our initial observa-
tions. R1 was constructed such that any core and non-
core AMR relation was rewritten to its most probable
correspondent based on the observation of the train set.
Additionally, the AMR root (usually a predicate) was
“pushed down” to the level of its arguments. Inverse
relations were not dealt with separately at this stage.
mtool runs only if all edges in a graph are valid rela-
tions from the framework being tested. Therefore, to
be able to apply it on the produced graphs, we added
a back-off rule, ensure ucca edges, that rewrites
any remaining non-UCCA edges to A (participant). We
chose A since this was the most frequent relation in the
UCCA train set and the relations affected by this rule
were mostly ARGx-of relations, where x is the argu-
ment number. This also ensures that if there are any re-
lations in the test set that were not present in our train
set, they will still be transformed into a valid UCCA
relation.
Figure 4a shows one of the rules in R1, time to T
which matches a pair of nodes that are linked via the
AMR relation time and the edge itself. If such a pat-
tern is found, the rule deletes the time relation and
adds a T relation from the parent to the child. In Fig-
ure 4b, highlighted in green, we can see the part of the
graph for sentence #20003008 of the corpus that has
been matched by this rule. In Figure 4c, we see the
resulting subgraph after the rewriting.
time to T is one of the 16 rules that constitute R1.
The first rule, push root down, is applied once at
the start. It puts the sentence in a parallel scene (H) in
order to comply with the dataset structure. Other rules
are then iterated as much as possible. Finally the back-

off rule rewrites any remaining non-UCCA edges to A.

3.2.2. Extended set of rules - R2
Next, we constructed R2 - an extension of R1, fol-
lowing a more systematic approach. Each of the
AMR relations, along with special AMR nodes (e.g.
have-org-role-91) present in the corpus8 was ex-
plored further and either (a) rules were written that ac-
count for each of the occurrences of that structure or
(b) a conclusion was reached that a specific structure is
too ambiguous to rewrite in a decisive manner.
R2 contains 44 rules, which, aside from treating the
relations from R1, also treat more complex construc-
tions such as conjunction and some special nodes such
as date-entity. Furthermore, for two pairs of
rules, (time to T, time to D) and (quant to D,
quant to Q), we apply a non-deterministic GREW
strategy. This means that whenever faced with a choice
between multiple ways to rewrite a relation, the system
produces a graph for each possible option and the rest
of the rules are applied to each of these, resulting in
multiple outputs for a single input graph.

4. Evaluation
We use mtool for the initial evaluation of R1 and R2, so
that our results are comparable to the systems that par-
ticipated in the MRP 2019 and 2020 tasks. We report
the results in Table 1. We use mtool’s mrp setting for

8There are 27 relations in the first 17 sentences of the
corpus: ARG0, ARG1, ARG2, ARG3, ARG4, ARG4, day,
month, year, domain, mod, name, time, prep-in,
location, op1, op2, op3, quant, purpose, decade,
part, duration, unit, polarity, topic, manner,
age and poss, consist-of, and seven reversed re-
lations: ARG0-of, ARG1-of, ARG2-of, quant-of,
polarity-of, part-of. Though, arguably, mod can be
considered as the reverse relation domain-of.
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rule time_to_T {
pattern {

e: X -[time]-> Y;
}
commands {

del_edge e;
add_edge X -[T]-> Y;

}
}

(a) (b) (c)

Figure 4: The rule time to T (a), the subgraph of the sentence “There is no asbestos in our products now.””
[#20003007] that it matches (b) and the resulting subgraph after rewriting (c).

--score which, for UCCA graphs, counts the num-
ber of anchors, edges, attributes (which in UCCA ac-
count for remote edges) and top nodes to compute pre-
cision, recall and F1-score.
In Table 1, we present the precision, recall and F1-score
for both the train and the test set. Since for R2, we
have multiple output graphs per sentence, the scores
presented there are the macro-average, i.e. for each
sentence, we compute the average value for each met-
ric across all outputs for that sentence, and then aver-
age that value across sentences. For the train set, we
get 4.05 output graphs per sentence on average, and for
the test set, 2.67.
While the results are low as such, it is still important
to note that they double for our train set and increase
significantly for our test set. It is interesting to note that
with the exception of precision for R2, our scores are
higher on the test set than on the train set. This seems
surprising, as one normally expects the opposite to be
true. However, with such a small dataset, it is difficult
to say whether this is a valid trend or simply due to a
non-uniform train-test split.
It must be noted, however, that despite giving us a ba-
sis to compare our results to those obtained during the
MRP tasks, mtool may not be well-suited to evaluate
our experiments. To get a better idea of how well our
system performs with respect to our goals, we evalu-
ate again with a number of modifications to the UCCA
gold data.
To comply with the official UCCA guidelines (see sub-
section 2.3), we evaluate against an updated version of
the dataset, where all the punctuation edges (U) have
been removed.
AMR annotations do not include anchors. Therefore,
without a mapping between the AMR graph and the
raw text, we know that producing any would be a
guessing game. However, mtool takes them into con-
sideration when evaluating UCCA graphs, giving each
anchor an equal weight as any edge or node. Thus,
anchors constitute a large part of the “points” given at
evaluation and our system is bound to get lower score

because of this. To get a better idea of how well our
system does only on nodes and edges, we run an addi-
tional evaluation without taking anchors into consider-
ation.
Finally, we put these two modifications together and
evaluate the graphs without punctuation and without
anchors.
Table 2 shows the results of these evaluations. As with
the R2 scores in Table 1, the R2 scores here are macro-
averages as well. As expected, we get higher scores
when punctuation, anchors or both are removed. As
seen with the unmodified evaluation, with the excep-
tion of precision for R2, we get higher scores on the
test set. The R2 scores on the train set are significantly
higher than those of R1 and higher, but by a smaller
margin for the test set.
Since with the non-deterministic set of rules, we get a
number of output graphs, which differ in at least one
edge label from each other, we know that there is one
that is closest to the UCCA representation and one that
is farthest from it. In Table 3, we show again the macro-
average of the F1-score of R2 and its modifications
on the train set and test set, alongside the average of
the minimum and the average of the maximum scores
for each sentence. In most of the cases, we observe a
difference between 0.01 and 0.02 on either side of the
macro-average.
Even though higher than those of R1, the results of
R2 are still rather low. This is partially due to fea-
tures of UCCA that cannot be predicted from the AMR
only, as we have seen with anchors. However, it is
also largely due to ambiguities in the transformation
task. We show some examples of these in section 5.
These ambiguities stem from the fact that, as one of the
six AMR slogans states, we cannot read off a unique
English sentence from an AMR9. Thus, producing an
UCCA-like representation from AMR is more simi-

9https://github.com/amrisi/
amr-guidelines/blob/master/amr.md#
amr-slogans

https://github.com/amrisi/amr-guidelines/blob/master/amr.md#amr-slogans
https://github.com/amrisi/amr-guidelines/blob/master/amr.md#amr-slogans
https://github.com/amrisi/amr-guidelines/blob/master/amr.md#amr-slogans
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Train Test
Precision Recall F1-score Precision Recall F1-score

R1 0.128 0.037 0.057 0.173 0.055 0.083
R2 0.249 0.079 0.119 0.239 0.091 0.131

Table 1: Results for mtool evaluation of R1 and R2.

Train Test
Precision Recall F1-score Precision Recall F1-score

R1 - No punct 0.128 0.040 0.061 0.179 0.062 0.092
R1 - No anchors 0.128 0.058 0.080 0.173 0.088 0.117
R1 - No punct + no anchors 0.128 0.063 0.084 0.179 0.097 0.126
R2 - No punct 0.280 0.100 0.147 0.255 0.108 0.151
R2 - No anchors 0.249 0.126 0.167 0.239 0.147 0.181
R2 - No punct + no anchors 0.280 0.155 0.198 0.255 0.173 0.204

Table 2: Results for mtool evaluation of the modifications.

lar to a generation task. The ambiguities that we de-
scribe in section 5 can be addressed by adding more
non-deterministic rules to the system. This will ensure
that we produce a correct graph, but it is not possible
to determine which one of the multiple ones produced
it is. As the number of output graphs grows exponen-
tially for each non-deterministic rule applied, the task
becomes even harder, the more non-deterministic rules
we add. This shows that the input graph does not con-
tain enough information to let us compute the correct
structure in a deterministic manner.

5. Ambiguities
In this section, we would like to highlight some of the
ambiguities that stem from the structural differences of
the two frameworks, that we encountered while explor-
ing the train set.
Figure 5 shows the AMR of sentence #20003008 of
the MRP corpus. This is an interesting example for a
number of reasons that we have outlined below.
Proper names. In AMR, the structure for annotating a
proper names is

(e / entity-type
:name (n / name

:op1 "..."
...
:opN "...")

where entity-type is the type of the entity whose name
is used, such as person, city, book10 and :op1 -
:opN point to each of the tokens in the proper name. In
the example in Figure 5, we have two such subgraphs -
one for Kent cigarettes and one for Lorillard, which is
a company. On the surface, however, these are realised
in different ways - for Kent cigarettes the entity type
cigarette is realised along with the name, while

10An exhaustive list of entity types available in AMR can
be found in the AMR specifications.

Figure 5: AMR of the sentence “Neither Lorillard
nor the researchers who studied the workers were
aware of any research on smokers of Kent cigarettes.”
[#20003008].

for Lorillard only the name is present11. Thus, in the
UCCA representation, the subgraphs for these two in-
stances will have different structures too. It is therefore

11Interestingly, this suggests that the AMR graph relies ei-
ther on context (previous sentences mentioning that Lorillard
is a company) or world knowledge. The latter seems to be
true for proper names in AMR in general, especially taking
into consideration we often include a :wiki relation when a
Wikipedia article for that entity is available.
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Train F1-scores Test F1-scores
Min Avg Max Min Avg Max

R2 0.107 0.119 0.137 0.121 0.131 0.138
R2 - No punct 0.132 0.147 0.167 0.143 0.151 0.159
R2 - No anchors 0.150 0.167 0.191 0.168 0.181 0.192
R2 - No punct + no anchors 0.179 0.198 0.225 0.193 0.204 0.215

Table 3: Minimum, average and maximum F1-scores across train and test set for R2 and its modifications.

not possible, from AMR only, without access to the sur-
face realisation of the sentence, to decide whether the
entity type should be included in the UCCA represen-
tation or not.
Nouns that invoke predicates. Another interesting
case is that of AMR’s nouns that invoke predicates. In
the example from Figure 5, we have three such nouns -
researchers, workers and smokers. In the AMR graph
they are all realised as

(p / person
:ARGx-of (p2 / PB predicate))

where PB predicate is the relevant PropBank predicate
and x is the relevant argument number, so e.g. a smoker
is annotated as a person who smokes. This can be ad-
dressed by our system by making use of GREW’s lexi-
cons. However, this structure too, is ambiguous. Apart
from the three annotations of the three nouns, we have
the same structure once more in the example sentence.

(p / person
:ARG0-of (s / study-01))

Here, however, this does not stand for the noun student,
but for [...] who studied.
Negation. In UCCA, depending on the surface re-
alisation of the sentence, negation can be syntacti-
cal (such as no asbestos in sentence #20003007),
but also morphological (such as nonexecutive in sen-
tence #20001001). In AMR, negation is marked as
:polarity - in both of these cases.
have-org-role-91. Sentences #20001001,
#20001002 and #20003005 all use the spe-
cial have-org-role-91 AMR role and the same
structure when speaking about the organisational
roles of specific people. The surface realisations,
however, are very different from each other in all three
cases - “Pierre Vinken [...] will join the board as a
nonexecutive director”, “Mr. Vinken is chairman of
Elsevier N.V.”, “A Lorillard spokeswoman”.

6. Conclusion
In this paper we presented a corpus-driven experiment
to transform AMR annotations into UCCA-like repre-
sentations, the evaluation of our experiment and some
of the ambiguous cases we discovered through it. Here
we present some of the discussion points stemming
from our work and further study directions.

Our work can also be viewed as a case study of seeing
how much of an anchored (flavor 1) semantic frame-
work can be predicted from a more abstract (flavor 2)
one and what it is that is missing from the latter in or-
der to produce the former. The difficulties in transfor-
mation we encountered were largely due to the differ-
ence in flavor of the frameworks. UCCA is grounded
in surface. As we have seen in section 5, many of the
ambiguities would be easier to address if there was a
link between AMR and surface as well. This would
also help us with predicting where features that are not
present in AMR, such as function words, should go in
the UCCA-like graph. It would be interesting to see if
similar ambiguities arise from comparing other pairs of
flavor 1 and 2 frameworks in a similar manner.
In section 4, we saw that there were a number of ad-
justments we had to make to the gold dataset in order
to get a better idea of how our system performs on the
task we set to tackle. Further ones could be made still
(such as removing function words). This suggest that
mtool may not be the most appropriate tool to do such
an evaluation. If more experiments in predicting flavor
1 from flavor 2 frameworks (and vice-versa) were to
be carried out, there will be the need to design a more
appropriate metric to evaluate this kind of task.
Finally, we consider an orthogonal to our task, but
equally important issue. Our choice of frameworks was
based on the current popularity of the frameworks, but
also on the availability of parallel data. Being limited
by the second constraint, highlights once again the need
for larger and freely available parallel corpora across
various semantic frameworks. The availability of a
common corpus would greatly enhance corpus-driven
comparison across the features and expressive power
of various frameworks. Furthermore, whenever a new
framework or framework extension is proposed, there
would already be a resource that would allow the study
of said framework (or extension) with respect to exist-
ing ones. Finally, currently the majority of semanti-
cally annotated data exists only in English. It would
be beneficial if more multi-lingual projects such as the
Parallel Meaning Bank (Abzianidze et al., 2017) ex-
isted, ideally with datasets that are parallel both across
frameworks and languages.

7. Acknowledgements
Part of this work has been funded by the Agence Na-
tionale de la Recherche (ANR, fr: National Agency for
Research), grant number ANR-20-THIA-0010-01. We



117

would like to thank the anonymous reviewers for the
time taken to review this paper and provide useful feed-
back.

8. Bibliographical References
Abend, O. and Rappoport, A. (2013). Universal con-

ceptual cognitive annotation (ucca). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238.

Abzianidze, L., Bjerva, J., Evang, K., Haagsma, H.,
van Noord, R., Ludmann, P., Nguyen, D.-D., and
Bos, J. (2017). The Parallel Meaning Bank: To-
wards a multilingual corpus of translations anno-
tated with compositional meaning representations.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 242–
247, Valencia, Spain, April. Association for Com-
putational Linguistics.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M.,
Griffitt, K., Hermjakob, U., Knight, K., Koehn, P.,
Palmer, M., and Schneider, N. (2013). Abstract
meaning representation for sembanking. In Pro-
ceedings of the 7th linguistic annotation workshop
and interoperability with discourse, pages 178–186.

Bonfante, G., Guillaume, B., and Perrier, G. (2018).
Application of Graph Rewriting to Natural Lan-
guage Processing. Wiley Online Library.

Bos, J. (2020). Separating argument structure from
logical structure in AMR. In Proceedings of the Sec-
ond International Workshop on Designing Meaning
Representations, pages 13–20, Barcelona Spain (on-
line), December. Association for Computational Lin-
guistics.

Cui, R. and Hershcovich, D. (2020). Refining implicit
argument annotation for UCCA. In Proceedings of
the Second International Workshop on Designing
Meaning Representations, pages 41–52, Barcelona
Spain (online), December. Association for Compu-
tational Linguistics.

Donatelli, L., Regan, M., Croft, W., and Schnei-
der, N. (2018). Annotation of tense and aspect
semantics for sentential AMR. In Proceedings of
the Joint Workshop on Linguistic Annotation, Mul-
tiword Expressions and Constructions (LAW-MWE-
CxG-2018), pages 96–108, Santa Fe, New Mexico,
USA, August. Association for Computational Lin-
guistics.

Guillaume, B. (2021). Graph matching and graph
rewriting: GREW tools for corpus exploration,
maintenance and conversion. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 168–175, Online, April. As-
sociation for Computational Linguistics.

Koller, A., Oepen, S., and Sun, W. (2019). Graph-
based meaning representations: Design and process-

ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 6–11, Florence, Italy, July.
Association for Computational Linguistics.

Oepen, S., Abend, O., Hajic, J., Hershcovich, D.,
Kuhlmann, M., O’Gorman, T., Xue, N., Chun,
J., Straka, M., and Uresova, Z. (2019). MRP
2019: Cross-framework meaning representation
parsing. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 1–27, Hong Kong, November. Association for
Computational Linguistics.

Oepen, S., Abend, O., Abzianidze, L., Bos, J., Hajic, J.,
Hershcovich, D., Li, B., O’Gorman, T., Xue, N., and
Zeman, D. (2020). MRP 2020: The second shared
task on cross-framework and cross-lingual meaning
representation parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1–22, Online, November.
Association for Computational Linguistics.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The
Proposition Bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106.

Prange, J., Schneider, N., and Abend, O. (2019a).
Made for each other: Broad-coverage semantic
structures meet preposition supersenses. In Pro-
ceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 174–
185, Hong Kong, China, November. Association for
Computational Linguistics.

Prange, J., Schneider, N., and Abend, O. (2019b). Se-
mantically constrained multilayer annotation: The
case of coreference. In Proceedings of the First In-
ternational Workshop on Designing Meaning Repre-
sentations, pages 164–176, Florence, Italy, August.
Association for Computational Linguistics.

Shalev, A., Hwang, J. D., Schneider, N., Srikumar,
V., Abend, O., and Rappoport, A. (2019). Prepar-
ing SNACS for subjects and objects. In Proceed-
ings of the First International Workshop on Design-
ing Meaning Representations, pages 141–147, Flo-
rence, Italy, August. Association for Computational
Linguistics.


	Introduction and Motivation
	Background
	AMR
	UCCA
	MRP

	Experiments
	Data and Data Processing
	Graph Rewriting
	Initial set of rules - R1
	Extended set of rules - R2


	Evaluation
	Ambiguities
	Conclusion
	Acknowledgements
	Bibliographical References

