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Abstract
SMCalFlow (Semantic Machines et al., 2020) is a large corpus of semantically detailed annotations of task-oriented natural
dialogues. The annotations use a dataflow approach, in which the annotations are programs which represent user requests.
Despite the availability, size and richness of this annotated corpus, it has seen only very limited use in dialogue systems
research work, at least in part due to the difficulty in understanding and using the annotations. To address these difficulties,
this paper suggests a simplification of the SMCalFlow annotations, as well as releases code needed to inspect the execution of
the annotated dataflow programs, which should allow researchers of dialogue systems an easy entry point to experiment with

various dataflow based implementations and annotations.
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1.

As in many other natural language processing tasks, di-
alogue systems have achieved impressive advances due
to the use of machine learning techniques. These tech-
niques typically require large amounts of high quality
annotated data in order to ensure that the resulting mod-
els will be able to generalize correctly to unseen input.
Since the models used by dialogue systems need to
also learn the effect of previous turns in the dialogue
context (as opposed to models which operate on iso-
lated sentences), even larger amounts of training data
are needed.

Training data for dialogue systems typically includes
the natural language utterances of the user (“request”)
and agent ("answer”), as well as some structured data
representing the state of the dialogue after the turn (in-
cluding any additional actions affected by the agent).
While the user input can be collected from naive users
(e.g. using crowd sourcing platforms), the agent re-
sponse (both natural language and structured data) need
skilled annotators which have been trained specifically
for the task.

Due to these difficulties, the number , and size, of avail-
able datasets for training dialogue systems has been
very limited - a few hundreds or thousands of dialogues
only, limiting the type of models which can be used.
MultiWOZ (Budzianowski et al., 2018)), with 10K di-
alogues and 70K turns was until recently the largest
available set, and is being widely used in many research
works.

More recently, SMCalFlow (Semantic Machines et al.,
2020) was released, comprising of more than 40K dia-
logues (totalling more than 155K turns) of natural (non-
scripted) task-oriented user-agent interactions in sev-
eral domains (calendar events, weather, places and peo-
ple), with semantically rich annotation.

The Dialogues were collected via a Wizard-of-Oz pro-
cess. At each turn, a crowdworker acting as the user
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was presented with a dialogue as context and asked
to append a new utterance. An annotator acting as
the agent labelled the utterance, and then selected a
natural-language response from a set of candidates pro-
duced by the language generation model. Annotators
were provided with detailed guidelines containing ex-
ample annotations and information about available li-
brary functions.

Despite the size of this dataset, and the high level of de-
tail given by the annotations, it was not adopted by the
dialogue systems research community. The assump-
tion in this paper is that this is the result, at least in
part, of the difficulty in understanding and using this
dataset by the research community. This difficulty is
due to two factors: 1) The annotation scheme is com-
plex, and lacks sufficient documentation to explain it,
and 2) tools to inspect and verify that the annotations
are correct.

This paper addresses these difficulties by 1) suggest-
ing a simplified annotation scheme, which, hopefully
is easier to understand, and 2) releasing the necessary
code to inspect the annotation results. It is hoped that
with these contributions, the research community will
be encourage to explore and exploit potential of this
rich dataset.

2. Dataflow Dialogues

SMCalFlow uses dataflow (DF) computational graphs,
composed of a rich set of both general and applica-
tion specific functions (see figures [T) and [), to repre-
sent the user requests as rich compositional (hierarchi-
cal) expressions. These computational graphs can be
executed, which results in manipulating the computa-
tional graphs, generating an answer (possibly an error
message), and optionally producing some side effects
through API’s to external services (e.g. updating the
user’s calendar appointments on an external database).
The prominent features of this paradigm are:



e The dialogue history is represented as a set of
graphs, where each computational graph typically
represents one user turn.

* It has a refer operation to search over the current
and previous computational graphs (as well as ex-
ternal resources) which allows easy look-up and
re-use of graph nodes which occurred previously
in the dialogue.

It has a revise operation which allows modifica-
tion and reuse of previous computations

¢ It has an exception mechanism which allows con-
venient interaction with the user (e.g. asking for
missing information, and resuming the computa-
tion once the information is supplied).

These features correspond to essential phenomena in
natural conversations (referring to previous turns, mod-
ifying previous requests, reacting to wrong informa-
tion, etc.), which allows the system to effectively han-
dle these kinds of user requests.

3. Simplifying SMCalFlow

In this work, a simplified annotation is presented, with
the motivation to reduce the effort on the annota-
tor/reader, without increasing the learning effort for the
machine translation models used to convert the users’
natural language requests to the target annotation for-
mat.

As described below, this simplification requires some
additional logic to be implemented in the execution en-
gine, as well as in the individual functions, but this ad-
ditional logic is typically trivial.

The starting point of this work is SMCalFlow, with its
original annotation style. Because of its size, and the
limited resources available in this work, manual modi-
fication of individual annotations were not feasible. In-
stead, the modifications had to be done fully automati-
cally, using a programmatic solution to do the conver-
sion. The consequences of this decision are:

* The new annotations are still tied to the original
ones, so some of the design decisions made by the
original annotators are difficult to change (as op-
posed to the case where the new annotation would
start from scratch).

* Specifically, any mistakes or anomalies in the
original annotations are carried over to the sim-
plified annotations.

e An automatic conversion mechanism had to be
created and configured to convert the annotations
correctly.

While DF is not inherently complicated, finding a good
design is a challenging task. A novel aspect of this
challenge is the need for the design to function cor-
rectly within the DF paradigm (e.g. use the refer and

revise operators). Indeed, one of the motivations of this
work is the hope that the community can suggest inter-
esting new designs, which can serve as templates for
further applications.

3.1. Simplification Mechanism

The simplification was performed by implementing a
set of tree transformation rules, which convert speci-
fied sub-trees of the original expressions into simpli-
fied sub-trees. The transformation code is part of the
release, and can be used to replicate the work reported
here.

The simplification is applied to the whole dataset, re-
sulting in a simplified dataset, which can then be fed
into the exact same machine translation training and
evaluation pipeline used in the original paper.

For convenience, the simplified format uses Python
style expressions (as opposed to the Lisp style S-
expressions in the original dataset), as this format is
generally more familiar (the released system itself is
written in Python).

3.2. Simplification Approach

The design principles for the simplifications were:

1. Retain only necessary information
2. Avoid explicit logical steps

3. Move logic from the annotation to the implemen-
tation of the individual functions

4. Group and reuse repeating sequences of functions
5. Relax strict type constraints

6. Reduce unnecessary compositions

Practically this means: Try to omit any information
which can be deterministically inferred - keep only
information which can not be inferred. Specifically,
logical steps which can be inferred from context, are
moved from the annotation into the implementation of
the functions. For example:

» Explicit type casts which are clear from the con-
text can be omitted.

* When needed information is missing in the user
input, but can be inferred from the computation,
the simplified annotation should leave the infer-
ence of the missing information to the function
implementation.

* The simplified annotation tries to avoid frag-
ments of the original annotation which serve
only “formal” purposes, and instead tries to
style the annotation to be closer to a more nat-
ural/comprehensible description of the user re-
quests (and in general be closer to the surface form
of the user request, as can be seen in the exam-
ples).

Below are examples of original vs. simplified annota-
tions.
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:name # (PersonName "John")))))))))))))))) D)
Figure 1: Example 1 - original annotation
3.2.1. Example 1

The user’s request is:

"Delete the meeting with John’s
supervisor tomorrow".

Figures [T]and 2] show the original and simplified anno-
tations for this request. Figure [3|show the annotations
as computational graphs.

This example illustrates a few of the simplification
ideas:

* Computational steps which always appear
together are bundled into one step: ’DeletePre-
flightEventWrapper’ and ’DeleteCommitEven-
tWrapper’ correspond to two sub steps of the act
of deleting an event. Here, they are simplify by
combining them into one step 'DeleteEvent’.

Relax strict type constraints in the annotation.
In the original annotation, 'DeletePreflightEven-
tWrapper’ can accept only an integer input (repre-
senting the unique id of the event to be deleted). In
the simplified version, the implementation of the
"DeletePreflightEventWrapper’ can handle addi-
tional types of input, by calling the necessary type
conversion, i.e.: if the input is an 'Event’ type,
then extract its "Event.id’ value, and if the input is
a set of events, then additionally invoke a call to
the ’singleton’ function.

Avoid explicit logical steps. In the original anno-
tation, the process of searching for a person is an
explicit part of the annotation (see the input to the
"FindManager’ function). In the simplified anno-
tation, this logic is added to the implementation of
"FindManager’ , so the annotation can be simply
"FindManager(John).

Avoid unnecessary compositions and annotations
which serve only “formal” purpose. In the orig-
inal annotation, 'RecipientWithNameLike’ imple-
ments a compositional pattern, where one of the
inputs is an empty constraint, which is dropped in
the simplified annotation (in this case, the whole
surrounding block is also removed).

Figure 3: Example 1 - original and simplified annota-
tions shown as graphs

3.2.2. Example 2

The user’s request is:

"I want John, Emily, John’s
supervisor and Bob to attend".

Figures [ and[5] show the original and simplified anno-
tations for this request.

This example illustrates some simplification ideas:

 Simplification of the assignment construct, avoid-
ing unnecessary assignments (which are used only
once) - in this example, variable x/ is used only
once, so it is substituted directly into the main ex-
pression.

* Reducing the use of compositions, in favour of
flatter expressions. In this example, instead of
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(let
(x0
(Execute
:intension (refer
(extensionConstraint
(RecipientWithNameLike
:constraint (Constraint[Recipient])
:name # (PersonName "John"))))))
(Yield
:output (Execute
:intension (ReviseConstraint
:rootLocation (roleConstraint #(Path "output"))
:oldLocation (Constraint[Constraint[Event]])
:new (Constraint[Event]

(andConstraint
(andConstraint
(AttendeeListHasRecipient
:recipient x0)
(AttendeeListHasRecipient
:recipient

:intens

(Rec > hNameLike
:constraint (Constraint[Recipient])
:name # (PersonName "Emily")))))))
(AttendeeListHasRecipient
:recipient (FindManager
:recipient x0)))
(AttendeeListHasRecipient
:recipient (Execute
:intension (refer
(extensionConstraint
(RecipientWithNameLike
:constraint (Constraint[Recipient])
:name # (PersonName "Bob"))))))))))))

Figure 4: Example 2 - original annotation

do (
Let (
x0,
refer (
Recipient? (#John))),
ModifyEventRequest (
AND (
with attendee (#Bob),
with attendee (
FindManager ($x0)),
with attendee ($x0),
with_attendee (#Emily))))

Figure 5: Example 2 - simplified annotation

chaining constraints using ’andConstraint’, the
simplified annotation uses a flat ’AND’ construct.

3.3. Executing Simplified Annotations

At execution time, an additional step transforms the
simplified annotation to a fully executable expression.
This is done, again, by implementing tree transforma-
tion rules (for each function), which can add determin-
istically inferable missing information/steps (e.g. cast-
ing input to the right type, or performing other conver-
sions/functions based on input type).

This step could be viewed, in principle, as the inverse
of the dataset simplification step, but in practice the
run-time transformation of the simplified annotation is
often quite different from the original annotation, due
to different design decisions and function implementa-
tions.

Figure [6] shows the result of transformation and execu-
tion of the simplified annotation for example dialogue 1
above. The transformed graph is clearly different from
the original annotation’s graph.
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Program Length
Original Annotation (11, 37, 58)
Simplified Annotation | (2, 11, 20)

Table 1: Program length of the two annotation styles.
Length is measured as number of seq2seq target tokens,
when translating user request to annotation. Showing
(.25, .50, .75) quantiles over the entire dataset.

1k 3k 10k 33k
Original | 30.2+3.6 | 41.8+7.9 | 55.7£7.0 | 72.8
Simplified | 35.9+4.2 | 47.7£7.0 | 62.1£1.9 | 73.8

Table 2: Translation accuracy (exact match) as func-
tion of training data size, showing average and std. (in
percent) over 7 randomly selected samples per size.

3.4. Simplification Results

Since the original code to execute SMCalFlow was not
released (and documentation not supplied), it is impos-
sible to verify that the suggested simplifications imple-
ment/execute the exact same logic (in fact this was one
of the motivations for this paper). It can only be left
to the readers to inspect the simplified annotations and
the code and draw their own conclusions.

Qualitative evaluation confirmed correct execution of
a sample of expressions, but further work is needed to
obtain more significant quantitative evaluation.

Table [T] shows the results of a comparison of the an-
notation lengths of the original and simplified annota-
tions, confirming that the simplification does make the
annotation significantly shorter.

The example annotations shown above should show
that the simplified annotations are not just significantly
shorter, but are also significantly simpler to understand,
which should reduce annotation efforts when creating
new training data.

Table 2] shows that the simplification did not reduce
(and maybe increased) the accuracy of machine trans-
lation of natural language user requests to dataflow ex-
pressions. Refinement of the simplification rules may
result in further improvements.

4. Further Work

The work presented in this paper is still in progress,
trying to improve the simplified annotation format and
the automatic simplification.

Accordingly, the implementation of the executable
functions will continue to evolve, to be able to correctly
execute modified annotation formats.

While the automatic simplification covers all of the
dataset, the implementation of functions has concen-
trated mostly (but not exclusively) on turns dealing
with the calendar domain (which is the most complex
domain in this dataset).
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Figure 6: The result of transforming and evaluating the simplified annotation for the request ”Delete the meeting
with John’s supervisor tomorrow”. Nodes from the simplified annotation are shown in gray. Yellow nodes indicate
nodes added automatically by expansion logic, green nodes indicate information extracted from external DB (the
result of searching for John and his manager, and for the event matching the requested constraints). Blue dashed
lines indicate execution results (some nodes are omitted to reduce clutter).

Further ideas and work on the simplified annotation
definition (and transformation process) from the com-
munity are encouraged. With the released code, re-
searchers should be able to experiment with new ideas
and share them with the community.

Additional areas of interest may include:

¢ Evaluation: in addition to the exact-match metric
for translation accuracy, other metrics can be used,
such as comparison of execution results, graph
structure similarity, etc.

Using the graph structure: the graph structure (at
different points of the execution) can be used by
prediction models.

Different design patterns which are beneficial to
specific parts of the system. For example, the exe-
cution of a computation graph could emit various
types of information which would then be useful
for subsequent prediction models.

5. Conclusion

A simplification of the SMCalFlow annotations has
been presented. Some simplification principles have
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been suggested, and an automatic conversion tool has
been implemented. Examples have been given to show
that the simplified annotations are significantly shorter,
as well as easier to understand, than the original anno-
tations.

The code for reproducing this workﬂ allows to run an-
notation simplification as well as executing these anno-
tations to inspect and verify they satisfy user requests,
and should lower the barrier of entry into Dataflow di-
alogue design for interested researchers, allowing them
to experiment with new ideas.
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