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Abstract

Incorrect labels in training data occur when hu-
man annotators make mistakes or when the data
is generated via weak or distant supervision. It
has been shown that complex noise-handling
techniques - by modeling, cleaning or filtering
the noisy instances - are required to prevent
models from fitting this label noise. However,
we show in this work that, for text classifica-
tion tasks with modern NLP models like BERT,
over a variety of noise types, existing noise-
handling methods do not always improve its
performance, and may even deteriorate it, sug-
gesting the need for further investigation. We
also back our observations with a comprehen-
sive analysis.

1 Introduction

For many languages, domains and tasks, large
datasets with high-quality labels are not available.
To tackle this issue, cheaper data acquisition meth-
ods have been suggested, such as crowdsourcing
or automatic annotation methods like weak and
distant supervision. Unfortunately, compared to
gold-standard data, these approaches come with
more labeling mistakes, which are known as noisy
labels. Noise-handling has become an established
approach to mitigate the negative impact of learn-
ing with noisy labels. A variety of methods have
been proposed that model the noise, or clean and
filter the noisy instances (Hedderich et al., 2021;
Algan and Ulusoy, 2021). Jindal et al. (2019) show
e.g. a 30% boost in performance after applying
noise-handling techniques on a CNN-based text
classifier.

In a recent work, Téanzer et al. (2021) showed
that BERT (Devlin et al., 2019) has an inherent
robustness against noisy labels. The generalization
performance on the clean distribution drops only
slowly with the increase of the mislabeled samples.
Also, they show that early-stopping is crucial for
learning with noisy labels as BERT will eventu-
ally memorize all wrong labels when trained long
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Figure 1: A typical training curve when learning with noise.
Learning without noise-handling (blue) will reach a peak accu-
racy before memorizing the noise. Early-stopping on a noisy
validation set (vertical grey line) is often sufficient to find such
a peak. Injected uniform noise of 40% on AG-News dataset.

enough. However, their experiments only focus on
a single type of noise and a limited range of noise
levels. It remains unclear if BERT still performs ro-
bustly under a wider range of noise types and with
higher fractions of mislabeled samples. Moreover,
they perform early-stopping on a clean validation
set, which may not be available under low resource
settings. Last but not least, they do not compare to
any noise-handling methods.

In this work, we investigate the behaviors of
BERT on tasks with different noise types and noise
levels. We also study the effect of noise-handling
methods under these settings. Our main results
include (1) BERT is robust against injected noise,
but could be vulnerable to noise from weak super-
vision. In fact, the latter, even at a low level, can
be more challenging than high injected noise. (2)
Existing noise-handling methods do not improve
the peak performance of BERT under any noise
settings we investigated; as is shown with further
analysis, noise-handling methods rarely render the
correct labels more distinguishable from the incor-
rect ones. !

'Our implementation is available on:
github.com/uds—-1sv/BERT-LNL.
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2 Learning with Noisy Labels

Problem Settings We consider a k-class classi-
fication problem. Let D denote the true data gen-
eration distribution over X x ) where X is the
feature space and ) = {1, ..., k} is the label space.
In a typical classification task, we are provided
with a training dataset S = {(x;, y;)!_, } sampled
from D. In learning with noisy labels, however, we
have no access to D. Instead, a noisy training set
S = {(zi,9;)?_,} sampled from a label-corrupted
data distribution D. The goal is to learn a classifier
that generalizes well on the clean distribution by
only exploiting S.

Injected Label Noise To rigorously evaluate
noise-handling methods at different noise levels, re-
searchers in this area often construct noisy datasets
from clean ones by injecting noise. This can, e.g.,
reflect annotation scenarios such as crowdsourcing,
where some annotators answer randomly or pre-
fer an early entry in a list of options. Modeling
such noise is achieved by flipping the labels of the
clean instances according to a pre-defined noise
level ¢ € [0,1) and a noise type. There are two
commonly used noise types: the single-flip noise
(Reed et al., 2015):

1—¢, fort =7
psiip (7 = Gly =4) = { &, forone ¢ # j
0, else

and uniform-flip (van Rooyen et al., 2015) noise

{

These noise generation processes are feature-
independent, i.e. p(:ly = i,x2) = p(-ly = 7).
Therefore, they can be described by a noise tran-
sition matrix 7" with T; := p(y = jly = 1). It
is usually assumed that the noise is diagonally-
dominant when generating the noisy labels, i.e.
Vi, Ty > maxj#Tij.

1—¢e, fori=j

fori # j

puni(g :j|y Z) = _e
=1

Label Noise from Weak Supervision Distant
and weak supervision (Mintz et al., 2009; Rat-
ner et al., 2016) have become essential methods
to acquire labeled data in low-resource scenarios.
The resulting noise, unlike injected noise, is often
feature-dependent (Lange et al., 2019). We eval-
uate our methods on two real-world datasets in
Hausa and Yoruba to cover this type of noise.
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Average Train Validation  Test Train

Classes Lengths Samples Samples Samples Noise Level

Dataset

IMDB
AG-News
Yorubd
Hausa

292
44

21246
108000
1340
2045

3754
12000
189
290

25000
7600
379
582

various
various
33.28%

2
4
7
5 50.37%

Table 1: Statistics of the text classification datasets. The train
noise level is the false discovery rate (i.e. 1-precision) of
the noisy labels in the training set. The original AG-News
has 120k training instances and no validation instances. We
therefore held-out 10% of the training samples for validation.

3 Early-Stopping on Noisy Validation Set

When trainied on noisy data without noise-
handling, BERT reaches a high generalization per-
formance before it starts fitting the noise. Then it
memorizes the noise and the performance on clean
distribution drops dramatically (the blue curve
in Figure 1). Hence, for models without noise-
handling, it is crucial to stop training when the
generalization performance reaches its maximum.

Ténzer et al. (2021) use a clean validation set
to find this point. However, a clean validation set
is often unavailable in realistic low-resource sce-
narios as it requires manual annotation. Therefore,
we use a noisy validation set for early-stopping in
all of our experiments and we attain models that
generalize well on the clean distribution.

In our example in Figure 1, we see that while
most noise-handling methods prevent BERT from
fitting the noise in the long run, their peak per-
formance is not significantly higher than a vanilla
model without noise-handling.

4 Experiments

Dataset Construction We experiment with four
text classification datasets: two benchmarks, AG-
News (Zhang et al., 2015) and IMDB (Maas et al.,
2011), injected with different levels of single-flip or
uniform noise; for the weakly supervised noise, we
make use of two news topics datasets in two low-
resource languages: Hausa and Yoruba (Hedderich
et al., 2020). Hausa and Yoruba are the second
and the third most spoken indigenous language
in Africa, with 40 and 35 million native speakers,
respectively (Eberhard et al., 2019). The noisy
labels were gazetteered. For example, to identify
texts for the class “Africa”, a labeling rule based
on a list of African countries and their capitals is
used. Note that while we can vary the noise levels
of injected noise, the amount of weak supervision



noise in Hausa and Yorubd is fixed. We summarize
some basic statistics of the datasets in Table 1.

Implementation We use of-the-shelf BERT mod-
els for our tasks. Specifically, we apply the BERT-
base model for AG-News and IMDB, and the
mBERT-base for Yorub4d and Hausa. The fine-
tuning approach follows (Devlin et al., 2019). In
all settings, we apply early-stopping on a noisy
validation set to mimic the realistic low-resource
settings, while the test set remains clean. For more
implementation details and a discussion on clean
and noisy validation sets, see Appendix B and E.

4.1 Baselines

We compare learning without noise-handling with
four popular noise-handling methods.?

Without Noise-handling Train BERT on the
noisy training set as it was clean. A noisy vali-
dation set is used for early-stopping.

No Validation For the sake of comparison, we
train the model without noise-handling and until
the training loss converges.

Noise Matrix A noise transition matrix is ap-
pended after BERT’s prediction to transform the
clean label distribution to the noisy one. A va-
riety of methods exists for estimating the noise
matrix, i.e. Sukhbaatar et al. (2015); Bekker and
Goldberger (2016); Patrini et al. (2017); Hendrycks
et al. (2018); Yao et al. (2020). To exclude the ef-
fects of estimation errors in the evaluation, we use
the ground truth transition matrix as it is the best
possible estimation. This matrix is fixed after ini-
tialization.

Noise Matrix with Regularization The previ-
ous state-of-the-art for text classification with noisy
labels (Jindal et al., 2019). Similar to Noise Ma-
trix, it appends a noise matrix after BERT’s output.
During training, the matrix is learned with an [2
regularization and is not necessarily normalized to
be a probability matrix. In the original implementa-
tion they use CNN-based models as backbone, we
switch it to BERT for fair comparison.

Co-teaching Han et al. (2018) Train two net-
works to pick cleaner training subsets for each other.
The Co-teaching framework requires an estimation

2refer to Appendix A for detailed noise distribution.
3For a fair comparison, early-stopping on a noisy valida-
tion set is applied to all four noise-handling methods.
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of the noise level. Similarly to NMat, we use the
ground truth noise level to exclude the performance
drop caused by estimation error.

Label Smoothing Label smoothing (Szegedy
et al., 2016) is a commonly used method to im-
prove model’s generalization and calibration. It
mixes the one-hot label with a uniform vector, pre-
venting the model from getting overconfident on
the samples. Lukasik et al. (2020) further shows
that it improves noise robustness.

4.2 Experimental Results

We evaluate our baselines on both injected noise
(on AG-News and IMDB) and weak supervision
noise (on Hausa and Yorubd). The test accuracy
is presented Figure 2. On injected noise, our re-
sults match and extend the findings by Tinzer et al.
(2021) that BERT is noise robust. For example,
the test accuracy drops only about 10% after in-
jecting 70% wrong labels (Figure 2(a)). However,
we find that BERT is vulnerable under weak su-
pervision noise. The performance can drop up to
35% in a dataset like Hausa with 50% weak super-
vision noise compared to training with clean labels
(Figure 2(c)). This indicates that the experience
on injected noise may not be transferable to weak
supervision noise.

We also observe that noise-handling methods are
not always helpful. For injected noise, the benefits
from noise-handling become obvious only under
high noise levels. But even then, there is no clear
winner, meaning that it is hard to decide beforehand
which noise method to apply - with the risk that
they may even perform worse than BERT without
noise-handling. The same applies to weak supervi-
sion noise. The maximal performance gap between
the best model and BERT without noise-handling
is less than 4% and 1.5% under injected noise and
weak supervision noise, respectively.

4.3 Analysis of Loss Distributions

To shed some light on why BERT is robust against
injected noise but not weak supervision noise, we
track the losses on correctly and wrongly labeled
samples during training. Figure 4 depicts typical
distributions of losses associated with correctly
and incorrectly labeled samples, respectively, when
early-stopping is triggered. We see that they have
minimal overlap, thus different behaviors through-
out the training, potentially allowing the model to
distinguish correctly and incorrectly labeled sam-
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Figure 4: Loss histogram at the training iteration when the
early-stopping is triggered. AG-News dataset with 70% uni-
form noise.

ples from each other. We could further quantify the
difference by their separability. Figure 3 presents
the receiver operating characteristic (ROC) curves
of a thresholds-based classifier. We observe that (1)
under injected noise, an area under curve (AUC) of
more than 90 can be easily achieved without noise-
handling (Figure 3(a)), supporting our observation
that injected noise has rather a low impact on BERT.
(2) Under weak-supervision noise, the AUC score
is significantly lower, which means the correct and
incorrect labels are less distinguishable. Therefore,
BERT fits both labels at similar rates. One reason

65

could be that the noise in weak supervision is of-
ten feature-dependent, it might become easier for
BERT to fit them, which in turn deteriorates the
generalization. (3) We do not observe a raise in
AUC scores when applying noise-handling meth-
ods, indicating that noise-handling methods rarely
enhance BERT’s ability to further avoid the nega-
tive impact of wrong labels. This is consistent with
the observation in Section 4.2 that noise-handling
methods have little impact on BERT’s generaliza-
tion performance.

5 Conclusion

On several text classification datasets and for dif-
ferent noise types, we showed that BERT is noise
resistant under injected noise, but not necessarily
under weak supervision noise. In both cases, the
improvement obtained by applying noise-handling
methods are limited. Our analysis on the separabil-
ity of losses corresponding to correct and incorrect
labeled samples provides evidence to this argument.
Our analysis offers both motivation and insights to
further improve label noise-handling methods and
make them useful on more realistic types of noise.



6 Broader Impact Statement and Ethics

Noisy labels are a cheaper source of supervision.
This could make it easier to use machine learning
for improper use cases. However, it also opens
up NLP methods for low-resource settings such as
under-resourced languages or applications devel-
oped by individuals or small organizations. It can,
therefore, be a step towards the democratization of
AL
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