
Proceedings of the Third Workshop on Insights from Negative Results in NLP, pages 38 - 45
May 26, 2022 ©2022 Association for Computational Linguistics

What Do You Get When You Cross
Beam Search with Nucleus Sampling?

Uri Shaham Omer Levy
The Blavatnik School of Computer Science

Tel Aviv University

Abstract

We combine beam search with the probabilis-
tic pruning technique of nucleus sampling to
create two deterministic nucleus search algo-
rithms for natural language generation. The
first algorithm, p-exact search, locally prunes
the next-token distribution and performs an ex-
act search over the remaining space. The sec-
ond algorithm, dynamic beam search, shrinks
and expands the beam size according to the
entropy of the candidate’s probability distribu-
tion. Despite the probabilistic intuition behind
nucleus search, experiments on machine trans-
lation and summarization benchmarks show
that both algorithms reach the same perfor-
mance levels as standard beam search.

1 Introduction

The standard approach to natural language genera-
tion uses a search algorithm, guided by an autore-
gressive (conditional) language model, to search
through the space of possible strings. Since this
search space is immense, pruning techniques have
been introduced to facilitate tractable text genera-
tion. Beam search (Reddy, 1977) is a deterministic
algorithm that prunes the search space according
to the relative rank of each prefix, keeping only the
top b prefixes at every step. Although rank-based
pruning has no probabilistic justification – it is
mainly motivated by its ability to limit memory con-
sumption – beam search is an effective approach for
generation tasks such as machine translation and
summarization. Nucleus sampling (Holtzman et al.,
2020), on the other hand, is a stochastic algorithm,
which prunes the bottom percentile of the model’s
next-token distribution, thus eliminating bad candi-
dates while retaining some degree of randomness,
which is important for free-form generation. What
if we were to replace beam search’s rank-based
pruning mechanism (top k) with the probabilistic
mechanism of nucleus sampling (top p)?

We experiment with two variants of this hypo-
thetical nucleus search. The first algorithm, p-exact
search, locally prunes the search space by retaining
only the top p of every next-token distribution that
the underlying language model produces. It then
performs an exact search over the remaining space,
guaranteeing the most probable sequence under the
local pruning assumption. The second algorithm,
dynamic beam search, selects the top p beams at
each step, according to their normalized probabili-
ties (rather than top k, by rank). This method can
shrink or enhance the number of beams to match
the current step’s low or high entropy, respectively.

We evaluate both algorithms on three conditional
generation benchmarks: subword-level transla-
tion (WMT’14 EN-FR), character-level translation
(IWSLT’14 DE-EN), and summarization (XSUM).
While we observe that both nucleus search algo-
rithms produce competitive results with standard
beam search, we do not find any empirical advan-
tage to our probabilistically-motivated approach.

We further analyze the algorithms by isolating
the impact of dynamically expanding or shrinking
the number of candidates. Experiments show that
expanding the beam, even when entropy is high,
tends to decrease performance. Pruning candidates,
on the other hand, appears to have no adverse ef-
fects, and may even have a marginal positive effect
in certain cases, which possibly cancels out with
the negative effects of beam expansion.

2 Background

Natural language generation can be defined as a
search problem in the space of possible sequences
over a token vocabulary V , where the goal is to
find an optimal sequence Y = (y1, ..., yn) ∈ V ∗

according to some cost function. Typical search
algorithms explore this infinite space via sequence
prefixes, starting with the empty sequence, and

38

appending one potential token yt at a time. Search
terminates by returning a sequence (or a sequences
set) that ends with a special token that indicates the
end of the sequence (EOS).

The cost function is based on an underlying lan-
guage model that, given a prefix Y<t, induces a
probability distribution over V , which we denote
P (yt|Y<t).1 The probability of a sequence (or pre-
fix) Y is computed as the product of its tokens
probabilities:

P (Y) =
∏

t

P (yt|Y<t) (1)

In practice, it is common to use the negative log
probability instead:

− logP (Y) =
∑

t

− logP (yt|Y<t) (2)

This defines a monotonic additive cost function,
where appending each token yt adds a positive cost
− logP (yt|Y<t) to the total cost of the sequence.

2.1 Beam Search

In many natural language generation tasks, beam
search (Reddy, 1977) is the algorithm of choice. It
extends the simple greedy algorithm by consider-
ing k possible prefixes {Y i

≤t}ki=1 at each timestep.
The beam size k is constant throughout the search,
guaranteeing a limit on memory consumption.

At every step t, beam search ranks all the pos-
sible single-token extensions of the current k pre-
fixes, and then keeps only the best k extensions
according to their total cost (Equation 2). Once
a prefix is appended with EOS, it is considered a
complete sequence, and remains fixed as long as
its cost is among the best k prefixes; if k (or more)
better prefixes are found, it is discarded. The algo-
rithm terminates when either the final token of all
top k sequences is EOS, or when t exceeds the pre-
defined maximum number of steps. In both cases,
it returns all sequences in the beam that end with
EOS.2

Assuming the models are tuned, results should
improve as the beam size k increases. However,
this assumption does not hold for contemporary

1The underlying model is often a conditional language
model P (yt|Y<t, X), which takes an additional sequence X
as part of its input. For brevity, we omit X from our notation.

2Typically, the system selects the top sequence in the set, or
chooses an alternative sequence via some reranking criterion.

models; in practice, text quality deteriorates when
using large values of k (Koehn and Knowles, 2017).
Furthermore, decoding with exact search (Dijkstra,
1959) reveals that translation models often rank
the empty string as the most probable sequence
(Stahlberg and Byrne, 2019). Perhaps unintention-
ally, searching with small beam sizes mitigates this
flaw.3

2.2 Nucleus Sampling

Deterministic search algorithms, such as beam
search, try to generate the most probable sequence.
This is a desirable property when we have many
constraints regarding the target output, as in trans-
lation or question answering. However, tasks that
require more creativity and diversity in language
may benefit from stochastic algorithms.

Holtzman et al. (2020) show that sampling from
a language model’s raw distribution P produces
degenerate text, and instead, suggest to sample
only from the nucleus, Sp: the smallest set of to-
kens whose sum of probabilities is larger than some
hyperparameter p. Specifically, nucleus sampling
prunes P by assigning zero probability to every
token outside of Sp, and renormalizes the probabil-
ities to get a new distribution Pp:

Pp(y|Y<t) =

{ P (y|Y<t)∑
y′∈Sp

P (y′|Y<t)
y ∈ Sp

0 y /∈ Sp

Here, we refer to this mechanism as tail pruning.
Sampling from Pp results in less degenerate and
more human-like text than both full-distribution
sampling and top-k sampling (Fan et al., 2018),
which do not account for the distribution’s entropy.

3 Nucleus Search

We combine beam search with tail pruning, produc-
ing two variants of nucleus search: p-exact search
and dynamic beam search.

3.1 p-Exact Search

Stahlberg and Byrne (2019) show that exact search
(Dijkstra, 1959) often produces extremely short
and even empty sequences because the underlying
model assigns a non-zero probability to the EOS to-
ken at each step. We use tail pruning (Section 2.2)

3a.k.a. the “blessing” of beam search (Meister et al., 2020).

39

to round all near-zero probabilities (whether be-
longing to EOS or any other token) to zero. We
apply exact search over the pruned space, guaran-
teeing the most probable sequence that contains
only top-p tokens at each step.

Given a hyperparameter p, we apply tail prun-
ing to the model’s predicted token distribution
P (yt|Y<t). The pruned distribution Pp(yt|Y<t) as-
signs zero probability to all tokens in the bottom
1− p of the original distribution, and remonrmal-
ized probabilities for the rest. This procedure
prunes the EOS token when it is unlikely, prevent-
ing empty sequences and reducing the brevity bias.

3.2 Dynamic Beam Search

Beam search keeps a fixed number (k) of prefixes
according to their rank. When entropy is high,
the difference between the k-th most probable pre-
fix and the one ranked k + 1 might be minuscule,
and we may want the search algorithm to consider
such candidate prefixes as well. Conversely, when
entropy is low, the best prefix dominates the alter-
natives, making them redundant.

Dynamic beam search provides a mechanism for
increasing the beam size when entropy is high, and
pruning the number of prefixes when entropy is
low. Let kt be the number of viable prefixes at step
t. The model predicts the next-token distribution
for each prefix, creating kt · |V | candidates. Each
candidate Y i is scored according to its cumulative
probability P (Y i) (Equation 1). To determine the
beam size, we first normalize the probability scores
within the set of candidates, and then apply tail
pruning on the normalized probability:

P̂ (Y i) =
P (Y i)

∑kt·|V |
j=1 P (Y j)

As in p-exact search (Section 3.1), we use a hy-
perparameter p to determine the nucleus of P̂ , and
thus the size of the next step’s beam kt+1. The nor-
malized probability P̂ (Y i) is only used to compute
the dynamic beam; we keep the original probability
P (Y i) as each prefix’s cumulative score.

4 Experiments

We compare our search algorithms to beam search
on a variety of tasks, and use the same model across
all settings, for each task.

4.1 Tasks

Machine Translation We evaluate on the
WMT’14 EN-FR dataset (Bojar et al., 2014), us-
ing the model of Ott et al. (2018), a large Trans-
former (Vaswani et al., 2017) with 6 encoder and
decoder layers, trained on 36M bilingual sentences,
tokenized with BPE. We evaluate the generated
sequences using SacreBLEU (Post, 2018), case-
sensitive, with the 13a tokenizer.

Character-Level Machine Translation We
train a character-level model on the IWSLT’14
DE-EN dataset (Cettolo et al., 2014), which
contains approximately 172k bilingual sentences in
its training set. We use the recommended settings
in Fairseq (Ott et al., 2019) for a 6-layer encoder-
decoder transformer. As with the subword-level
dataset, performance is measured via SacreBLEU.

Summarization We evaluate on the XSUM
dataset (Narayan et al., 2018). To alleviate memory
issues and improve data quality, we remove ex-
amples where the source document is longer than
800 tokens (1,663 examples), or when the target
is longer than one quarter of the source document
(698 examples). Our cleaned version of the XSUM
test set contains 8,972 document-summarization
pairs. We use the large fine-tuned BART model
(Lewis et al., 2020), and compute ROUGE-L (Lin
and Hovy, 2003) via compare-mt (Neubig et al.,
2019).

4.2 Implementation

Although both nucleus search algorithms can theo-
retically consume an unbounded amount of mem-
ory, our implementation caps the number of candi-
date prefixes by a large constant: 320 for WMT’14
and XSUM, and 160 for character-level translation.

We explore p in increments of 0.1 for both nu-
cleus search algorithms. For beam search, we ex-
periment with all beam sizes from 1 to 5, as well as
exponentially increasing beam sizes from 5 to 320.
To present a complete picture of the algorithms’
behaviors, we report results for all hyperparameter
settings, rather than selecting the best configuration
according to the validation set. This experiment
design limits our ability to claim the superiority
of one algorithm over another, but as we show in
Section 5, the performance differences are so small
that no such claim will be made.

40

Search Hyper- WMT’14 IWSLT’14
XSUMAlgo param EN-FR DE-EN

(k or p) (Char)

Beam

1 40.3 33.3 35.5
2 40.7 33.6 36.2
3 40.8 33.6 36.4
4 40.8 33.6 36.5
5 40.6 33.5 36.5

10 40.5 33.5 36.6
20 40.2 33.1 36.4
40 39.6 27.4 36.1
80 38.7 18.1 35.7

160 32.2 5.3 34.3
320 11.8 5.3 28.1

p-Exact

0.1 40.3 33.3 35.5
0.2 40.3 33.3 35.7
0.3 40.5 33.3 36.1
0.4 40.5 33.4 36.5
0.5 40.6 33.5 36.6
0.6 40.6 33.5 36.6
0.7 40.2 33.6 36.3
0.8 39.2 33.6 35.9
0.9 27.8 33.2 33.1

Dynamic

0.1 40.2 33.3 35.5
0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.6 33.4 36.2
0.5 40.6 33.4 36.5
0.6 40.6 33.7 36.5
0.7 40.0 33.7 36.0
0.8 38.9 33.6 35.4
0.9 18.1 33.1 31.5

Table 1: Scores of different algorithms and settings on
various generation tasks. Bold numbers indicate the
highest result on the task, and underlined numbers indi-
cate that the result is within 0.2 points of the top score.

5 Results

Main Result Table 1 shows the performance of
each search algorithm across the different tasks.4

In line with previously reported trends (Koehn and
Knowles, 2017), we observe that increasing the
beam size beyond k = 10 can severely degrade
performance. On the other hand, the probabilistic
search algorithms appear to be more stable, with
most hyperparameter settings achieving relatively
high performance metrics until p = 0.9, where
substantial performance degradation is evident.

Despite their increased stability, there appears
to be no significant advantage to either p-exact
search or dynamic beam search over the original
beam search. In fact, the performance differences
between the best settings of each algorithm are
always under 0.2 BLEU/ROUGE, and often zero.

4This table shows performance without reranking (length
normalization), to study the core algorithm. Appendix A
contains the results with reranking, showing similar trends.

Search Algorithm max(i) ≤ 5 max(i) > 5

Beam k = 5 42.2 32.9
Dynamic Beam p = 0.6 42.3 32.2

#Examples 2618 385

Table 2: Performance on two subsets of WMT’14 EN-
FR: (1) examples where dynamic beam search only se-
lects prefixes from the top-5 options (max(i) ≤ 5),
and (2) examples where the output of dynamic beam
search contains at least one prefix that ranked 6 or
worse (max(i) > 5).

We find this trend counter-intuitive, since we orig-
inally assumed that expanding and trimming the
beam based on entropy would benefit language
generation. We further test these assumptions indi-
vidually.

Expanded Beams We compare the performance
of static beam search (k = 5) and dynamic beam
search (p = 0.6) on two subsets of the translation
task’s test set:5 (1) examples where dynamic beam
search always selects from its top 5 prefixes, and
(2) the complement, where every generated output
contains at least one prefix that was ranked 6th or
worse. Table 2 shows that in those cases where
dynamic beam search actually uses the expanded
beam, i.e. it chooses prefixes that rank lower than 5,
it performs worse than static top-5 beam search by
0.7 BLEU. This subset accounts for only 13% of ex-
amples – which are probably harder for the model,
given the 10-point difference in BLEU – while the
majority 87% of cases are always composed from
the top 5 (or less) prefixes.

Trimmed Beams We isolate the effect of proba-
bilistic trimming by applying a k = 5 cap on the
number of active beams, for both nucleus search
variations. Table 3 shows that p-exact and dynamic
beam trimming strategies have no negative effects,
and may have a marginal positive effect.

6 Related Work

As a standard decoding strategy, there is a signifi-
cant body of literature on beam search. Recently,
there has been more focus on the empty string prob-
lem (Stahlberg and Byrne, 2019), and the fact that
increasing the beam size beyond a small constant
typically hurts performance. Meister et al. (2020)
show that beam search optimize for sequences that

5We select p = 0.6 since it is the maximal value that
achieved the top score on the WMT’14 EN-FR benchmark.

41

Search Hyper- WMT’14 IWSLT’14
XSUMAlgo param EN-FR DE-EN

(k or p) (Char)

Beam

1 40.3 33.3 35.5
2 40.7 33.6 36.2
3 40.8 33.6 36.4
4 40.8 33.6 36.5
5 40.6 33.5 36.5

p-Exact

0.1 40.3 33.3 35.5

(k = 5)

0.2 40.3 33.3 35.7
0.3 40.5 33.3 36.1
0.4 40.6 33.4 36.4
0.5 40.8 33.5 36.6
0.6 41.0 33.6 36.6
0.7 40.9 33.7 36.6
0.8 40.9 33.8 36.5
0.9 40.8 33.8 36.5

Dynamic

0.1 40.2 33.3 35.5

(k = 5)

0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.6 33.4 36.2
0.5 40.6 33.4 36.4
0.6 40.8 33.7 36.5
0.7 40.7 33.7 36.6
0.8 40.7 33.6 36.6
0.9 40.6 33.5 36.5

Table 3: Scores of different algorithms and settings on
various generation tasks, when limiting the beam size
to a maximum of 5. Bold numbers indicate the highest
result on the task, and underlined numbers indicate that
the result is within 0.2 points of the top score.

distribute information uniformly, and therefore, us-
ing small beam sizes allows it to overcome the
empty string problem. Shi et al. (2020) train mod-
els with multiple different EOS tokens based on
their positions, instead of a single universal EOS to-
ken. Peters and Martins (2021) replace the softmax
function with the sparse entmax transformation
(Peters et al., 2019) that can assign absolute zero
probability to tokens. This method has a similar
effect to our p-exact search, but requires training
the model with entmax, while our contribution only
modifies the search algorithm.

Massarelli et al. (2020) also propose a combi-
nation of beam search and sampling methods, but
with a different method and a different goal. They
focus on free-form text generation, addressing two
problems – repetition and halucination – by sam-
pling the first few tokens, and then switching over
to beam search. Freitag and Al-Onaizan (2017)
explore how using a small fixed beam size, pruned
further according to the relative or absolute dis-
tance from the top scored candidate, can increase
decoding speed. In this work, we focus on the
quality of the generated text, comparing the use

of a fixed beam size to tail pruning, an established
method that keeps candidates according to the nu-
cleus of the distribution.

7 Conclusion

Language models predict a distribution over their
vocabulary, yet beam search only utilizes the rank
of different candidates, not their actual probabil-
ity scores. A natural assumption is that searching
the space of prefixes with a constant number of
options is not optimal. We hypothesize that using
the probability scores to dynamically determine the
number of candidates may benefit natural language
generation. We test our hypothesis by introducing
two nucleus search algorithms, which incorporate
probabilistic tail pruning (Holtzman et al., 2020)
with beam search, but find that they perform on par
with the baseline beam search algorithm when its
beam size is restricted to a small constant.

Acknowledgements

This work was supported by the Tel Aviv Univer-
sity Data Science Center, the Blavatnik Fund, the
Alon Scholarship, and Intel Corporation. We would
like to thank Ari Holtzman, Jonathan Berant, Ori
Yoran, Lior Vassertail, and Yuval Kirstain for their
valuable feedback.

References

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt
Post, and Lucia Specia, editors. 2014. Proceedings
of the Ninth Workshop on Statistical Machine Trans-
lation. Association for Computational Linguistics,
Baltimore, Maryland, USA.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign, iwslt 2014.
In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, vol-
ume 57.

Edsger W Dijkstra. 1959. A note on two problems
in connexion with graphs. Numerische mathematik,
1(1):269–271.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

42

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56–60, Vancouver. Associ-
ation for Computational Linguistics.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. International Conference on Learning Repre-
sentations.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
neural machine translation systems for WMT’15. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 134–140, Lisbon, Por-
tugal. Association for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 150–157.

Luca Massarelli, Fabio Petroni, Aleksandra Piktus,
Myle Ott, Tim Rocktäschel, Vassilis Plachouras,
Fabrizio Silvestri, and Sebastian Riedel. 2020. How
decoding strategies affect the verifiability of gener-
ated text. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 223–235,
Online. Association for Computational Linguistics.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020.
If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2173–2185, Online. Association for Computa-
tional Linguistics.

Kenton Murray and David Chiang. 2018. Correct-
ing length bias in neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 212–223, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!

topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 35–41, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Ben Peters and André F. T. Martins. 2021. Smooth-
ing and shrinking the sparse Seq2Seq search space.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2642–2654, Online. Association for Compu-
tational Linguistics.

Ben Peters, Vlad Niculae, and André F. T. Martins.
2019. Sparse sequence-to-sequence models. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1504–
1519, Florence, Italy. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

D. Raj Reddy. 1977. Speech understanding systems: A
summary of results of the five-year research effort at
carnegie-mellon university.

Xing Shi, Yijun Xiao, and Kevin Knight. 2020. Why
neural machine translation prefers empty outputs.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3356–
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

43

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

44

A Results with Reranking

When presenting our main results (Section 5), we
follow related work (Peters and Martins, 2021)
and focus on the outputs generated using the al-
gorithms themselves, without reranking. For com-
pleteness, we also present the results of applying
length normalization (Jean et al., 2015; Murray and
Chiang, 2018), i.e. reranking the set of sequences
produced by beam search according to their aver-
age log-probability, rather than their cumulative
log-probability:

score(Y) =
1

n

n∑

t=1

− logP (yt|Y<t)

Table 4 shows that length normalization improves
stability, and slightly increases performance overall.
However, it does not increase the performance gap
between the different algorithms, with respect to
the results in Section 5 (without reranking); all
three variants produce text that scores within 0.2
BLEU/ROUGE from the best performing setting
in every task.

Search Hyper- WMT’14 IWSLT’14
XSUMAlgo param EN-FR DE-EN

(k or p) (Char)

Beam

1 40.3 33.3 35.5
2 40.8 33.8 36.3
3 41.1 34.0 36.4
4 41.1 34.1 36.5
5 41.0 34.1 36.6
10 41.0 34.2 36.6
20 41.0 34.2 36.5
40 40.6 34.2 36.4
80 40.1 34.2 36.3

160 39.4 34.2 36.2
320 38.3 34.2 36.2

p-Exact

0.1 40.3 33.3 35.5
0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.7 33.4 36.2
0.5 41.0 33.6 36.4
0.6 41.1 33.7 36.3
0.7 41.0 34.0 36.3
0.8 40.3 34.1 36.2
0.9 38.8 34.1 36.1

Dynamic

0.1 40.2 33.3 35.5
0.2 40.3 33.3 35.6
0.3 40.5 33.4 36.0
0.4 40.6 33.4 36.2
0.5 40.8 33.4 36.4
0.6 41.0 33.8 36.5
0.7 41.0 34.0 36.3
0.8 40.6 34.1 36.2
0.9 38.6 34.2 36.2

Table 4: The performance of different decoding al-
gorithms and hyperparameter settings on various con-
ditional generation tasks with length normalization
(reranking). Bold numbers indicate the highest result
on the task, and underlined numbers indicate that the
result is within 0.2 points of the top score.

45

