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Abstract

In this work, we examine the problems asso-
ciated with neural dialog models under the
common theme of compositionality. Specif-
ically, we investigate three manifestations of
compositionality: (1) Productivity, (2) Substitu-
tivity, and (3) Systematicity. These manifesta-
tions shed light on the generalization, syntactic
robustness, and semantic capabilities of neu-
ral dialog models. We design probing experi-
ments by perturbing the training data to study
the above phenomenon. We make informative
observations based on automated metrics and
hope that this work increases research interest
in understanding the capacity of these models.

1 Introduction

Fully data-driven and end-to-end approaches to dia-
log response generation (Vinyals and Le, 2015; Ser-
ban et al., 2016; Bordes et al., 2016; Serban et al.,
2017; Zhao et al., 2017) within the sequence-to-
sequence (seq2seq) (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014; Bahdanau et al., 2014;
Vaswani et al., 2017) framework have become ubiq-
uitous and now produce competitive results.

Recently, there have been a few attempts to
explore the capabilities of such models. A well
known problem in seq2seq modeling is the ten-
dency to generate short and meaningless replies
in conversation (Li et al., 2015; Mou et al., 2016).
By drawing a parallel between machine translation
and dialog generation, Wei et al. (2019) suggest
that such models encounter a severe mis-alignment
problem i.e a given input utterance can have many
plausible replies.

Sankar et al. (2019) empirically investigate the
information captured in seq2seq models by syn-
thetically perturbing the test set during inference.
They demonstrate an inability of seq2seq models
to use all the information that is presented. They
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also present their study as a “diagnostic tool" to
evaluate dialog models.

Although they provide useful insights, such stud-
ies fail to systematically demonstrate the composi-
tional features of seq2seq dialog models. Further,
their “diagnostic tool" is only helpful for evalu-
ating syntactic robustness of models at test time.
In this work, we carefully design experiments to
investigate and evaluate the compositional general-
izability of neural dialog models.

Compositionality has been well studied for Neu-
ral Machine Translation (Cho et al., 2014; Lake and
Baroni, 2017) as well as some other tasks. In these
works, for a system to be compositional, it should
be able to generalize beyond its observations. For
example, Kaiser and Sutskever (2015) observe
that Neural GPUs are able to generalize addition
and multiplication to larger sequences than what
they are trained on. However, one should carefully
note that such a definition of compositionality is
peripheral and represents only a part of what it truly
means.

To provide a complete picture, Hupkes et al.
(2019) collect the different manifestations of com-
positionality and translate them into a series of
theoretically-grounded tests. By adapting (and
modifying) some of these tests, the experiments
in this paper aim to quantitatively elucidate the
compositional nature of seq2seq based neural dia-
log models. Below, we provide a motivation and
description for each of the adapted tests:
Productivity - Upon taking part in a number of
reasonable length conversations, it might not be dif-
ficult for humans to carry conversations consisting
of a larger number of turns. Based on this intuition,
we test the ability of a dialog system to extend
its prediction beyond the length of the observed
conversational history.
Substitutivity - There is a many-to-many corre-
spondence between utterances and their possible
responses. Given the responses of a particular con-
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Dataset Baseline DS-0.75 DS-0.5 DS-0.25 DNS-0.75 DNS-0.5 DNS-0.25 BT-Russian
Transformer

dailydialog 33.2[0.7] 140.6[11.6] 56.3[2.0] 41.1[1.3] 131.6[2.6] 63.4[1.0] 42.9[0.4] 117.2[7.9]

MutualFriends 12.5[0.1] 30.1[3.0] 18.1[1.2] 15.0[0.3] 39.6[1.1] 21.3[0.8] 17.1[0.3] 150.8[16.8]

Babi 1.0[0.0] 19.8[0.7] 6.3[0.4] 3.5[0.2] 16.1[1.6] 3.3[0.1] 2.1[0.1] 6.4[1.2]

S2S
dailydialog 29.4[0.3] 104.8[2.4] 47.1[0.6] 35.6[0.2] 150.9[5.4] 61.9[1.3] 39.4[0.5] 192.9[14.3]

MutualFriends 13.3[0.1] 25.4[0.2] 17.2[0.2] 15.2[0.3] 50.1[2.1] 24.3[0.5] 18.3[0.3] 227.1[8.6]

Babi 1.2[0.0] 3759.0[1994.7] 52.6[13.2] 8.2[1.4] 121.0[24.4] 7.9[1.8] 3.0[0.1] 59.3[14.9]

S2SA

dailydialog 26.9[0.2] 94.7[4.0] 45.5[0.2] 32.6[0.3] 130.2[5.3] 58.6[1.1] 37.3[0.7] 173.0[16.5]

MutualFriends 10.2[0.1] 20.1[0.3] 13.6[0.1] 11.8[0.2] 40.5[1.4] 19.0[0.2] 14.1[0.2] 216.4[18.4]

Babi 1.0[0.0] 961.0[421.5] 68.2[22.5] 8.1[2.2] 118.8[43.4] 7.5[1.2] 2.8[0.2] 630.8[136.1]

Table 1: Performance of the models based on perplexity. The second column represents the baseline scores of the
models on different datasets. Columns 3-5 shows the effect of dropping stop words at a certain rate. Columns 6-8
shows the effect of dropping non stop words at a certain rate. Column 9 shows the difference in perplexity of the
model when the test set is changed by back translation and evaluated using the baseline model. All experiments are
repeated 5 times and the mean(µ) and std deviations(�) are reported in every cell. For all experiment runs and other
metrics refer to A.1.

versation, if we encounter a semantically equivalent
conversation, we can easily produce the same set
of responses to this new conversation. Based on
this, we attempt to observe if dialog models are
also capable of such reasoning. This property of
compositionality accounts for the semantic expres-
siveness of neural models.
Systematicity - Humans can understand how to fill
in missing pieces of information, or to introduce
additional words which can make an utterance in
a conversation more fluent. This makes humans
capable of recombining known fragments and rules.
Without the presence of topic-inducing words, it
might become difficult for humans to make sense
of a conversation. Based on this intuition, we test
the ability of the model to recombine known frag-
ments and rules. This property of compositionality
accounts for the syntactic robustness of neural
models.

The contributions of this paper are threefold: (i)
We observe that neural dialog models don’t gener-
alize well to dialogs with longer turns when they
are trained on dialogs with shorter number of turns.
(ii) Neural dialog models pay less attention to the
topic inducing “content words” of the dialog. In
fact, we observe that they are highly sensitive to
the stop words (a type of “function word“) present
in utterances. (iii) We also observe that the neural
dialog models don’t perform well when the same
utterance is presented to the model in a semanti-
cally similar but syntactically different fashion i.e

they are not robust to syntactic variations. The code
for reproducing results is released along with this
paper 1.

2 Datasets
Following Sankar et al. (2019), we experiment
with using an open domain, a closed domain, and a
synthetically generated dataset. The details of the
dataset are presented below:
DailyDialog: An open domain, manually labelled
dataset (Li et al., 2017) consisting of conversations
on multiple topics which can occur on a daily basis.
There are 13,118 total dialogs with an average of
7.9 turns per dialog.
Mutual Friends: A task-oriented dataset (He
et al., 2017) that encourages open-ended dialog
acts. It has a total of 11,157 dialogs with an average
length of 11.4 utterances per dialog.
Babi: A synthetic dataset created by Bordes et al.
(2016). We use task 5 of this dataset which requires
the prediction of the text of the entire dialog and
not just dialog acts. Each dialog in this task has
an average of 13 utterances and there is a total of
1,000 dialogs.

3 Experiments and Results

We investigate using Seq2Seq(S2S) (Sutskever
et al., 2014), Seq2Seq-Attention(S2SA) (Luong
et al., 2015) and Transformer models (Vaswani

1https://github.com/vinayshekharcmu/
ComposionalityOfDialogModels
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(a) Daily Dialog (b) Mutual Friends (c) Babi - Task 5

Figure 1: Results of the model on the test of productivity. We see that all the models don’t learn to generalize from
dialogs with fewer utterances to dialogs with more utterances.

et al., 2017). The behaviour of these models is ex-
amined using the three standard datasets described
in Section 2.

Both S2S and S2SA utilise a two-layer LSTM
for the encoder and the decoder. Each layer has
128 hidden units with a dropout of 0.1. On the
other hand, the transformer utilises a 300 dimen-
sional embedding with 2 layers and 2 attention
heads. Perplexity has been shown to correlate well
with human judgement for Dialog Systems (Adi-
wardana et al., 2020) making it a suitable metric
for our study. By choosing perplexity we also re-
main consistent with the previous study conducted
by Sankar et al. (2019). Note that we do not aim
to achieve state-of-the-art results, but rather, our
aim is to observe and characterize the behaviour
of the models based on different aspects of com-
positionality. Hence we pick three seminal models
that tackles the problem of language generation and
probe them to understand their manifestations.

The upcoming subsections first provides a brief
description of the experimental setup employed
for measuring the compositional capabilities of the
various models, and then later discusses the results.

3.1 Productivity

This experiment aims to test whether neural dialog
models can learn from meaningful dialogs con-
sisting of fewer utterances and then generalize to
dialogs consisting of a larger number of utterances
than what they had observed during training time.

In order to test this capability, we train the mod-
els with trimmed context. For each dialog in the
training set, we restrict the context utilised by
the models to the previous k utterances, where
k 2 {2, 4, 6, 8, 10}. However, at test time the mod-
els utilise all the available context. We compare
the performance of the models trained on different

context lengths to that of the baseline model which
is trained by utilising the entire context.

The results are displayed in Figures 1a, 1b, 1c.
These figures show the % increase in perplexity
of the models from their baseline perplexity as a
function of number of utterances in the dialog. It
is quite clear from the figures that the model are
incapable of generalizing from shorter dialogs to
longer dialogs.

The average number of utterances within the
dialogs is ⇠ 8 for all the three datasets. Based
on the results we see that even when models use
previous 8 utterances, their performance is still
significantly lower than that of the baseline. This
experiment questions the generalizing ability of
the model beyond what was observed during train
time.

3.2 Systematicity

Two different experiments were performed to un-
derstand the semantic robustness of these models.
The first experiment was done to understand the
importance of stop words. A comparison between
model’s sensitivity to dropping of stop words (DS)
and dropping of content words (DNS) sheds light
on the relevance of stop words in dialogs. We drop
stop words and content words at the rate of 0.75,
0.5 and 0.25 and observe the effect on models’ per-
formance. When the rate of stop words removal
is 1, all the stop words are removed and when it is
0.25, 25% are removed, etc.

In second experiment we drop words based on
their rank in the corpus. Six different conditions
are used in this experiment. We first drop words
from the top ranks such that only 10% of the total
number of words are removed in the corpus. We
then repeat this by using the mid ranked words.
Ideally, the models should be affected equally in
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Rank Range Transformer S2S S2SA

DailyDialog
0-1 49.4[0.6] 49.1[7.1] 42.4[1.3]

1-3 59.6[0.9] 59.5[2.1] 55.4[1.6]

0-3 92.7[1.9] 92.5[1.3] 88.7[4.2]

500-1000 52.6[1.1] 59.6[1.1] 52.3[1.2]

1000-1500 39.4[0.7] 42.0[1.1] 38.8[0.4]

500-1500 59.5[0.9] 76.3[3.6] 72.5[1.8]

MutualFriends
0-1 14.9[0.2] 16.7[0.5] 12.9[0.5]

1-3 17.6[0.4] 20.5[0.4] 15.0[0.3]

0-3 19.9[0.4] 23.0[0.5] 18.0[0.8]

300-600 13.9[0.2] 15.1[0.2] 12.0[0.8]

600-1000 14.3[0.3] 15.1[0.2] 11.8[0.3]

300-1000 16.0[0.5] 17.8[0.2] 13.8[0.2]

Babi
0-1 2.0[0.1] 3.9[0.5] 4.8[0.7]

0-2 3.7[0.2] 11.2[1.4] 11.0[1.6]

36-44 1.5[0.0] 2.1[0.1] 2.0[0.1]

36-55 1.5[0.0] 2.2[0.1] 2.1[0.1]

Table 2: The first column represents the range of ranks
based on which the words were removed from the
dataset. We chose to experiment with the top and the
mid ranking words. We dropped words from both sec-
tions such that it accounts for ⇡ 10% of the words in its
respective corpus. We see that the model is very sensi-
tive to the top ranked words (which are stop-words most
of the time). The effect of dropping 1000, 700 and 20
"content words" from the middle section is equivalent
to dropping 3,3,2 stop words for dailydialog, mutual-
friends and babi respectively.

both these settings, as, in each setting we end up
removing 10% of the words in the training data. In
fact, it should be affected more in the latter case
as the mid-rank words are majorly responsible for
inducing the topic of the dialog and it should be
difficult to continue a conversation without know-
ing the topic. Note that, for both these experiments,
we do not remove any word during test time.

Table 1 shows the result of the first experiment.
We see that each of model’s performance increases
as the rate of dropping stop words decreases. This
observation suggests the high sensitivty of the mod-
els towards stop words. Even dropping 25% of the
stop words affects the models adversely. While
dropping of the content words also affects models
performance, we observe that all the models per-
form just slightly worse when content words are
dropped as compared to stop words. However, it
is interesting to see that the transformer’s perfor-
mance is stable across different drop rates whereas

the LSTM based sequence to sequence models suf-
fer when the drop rate is high.

The results for the second experiment are pro-
vided in Table 2. It is clear that removal of higher
ranked words leads to a greater drop in the model
performance when compared to the drop caused by
the removal of middle ranked words, even though
in both the cases we remove the same percentage
of words. This provides two insights: (1) Mod-
els don’t focus on the mid ranking words (which
are mostly topic inducing) and (2) Models have
an over-reliance on top ranking words (which are
mostly stop words).

3.3 Substitutivity

Given that we (humans) know the answer to a par-
ticular question, we will not have any difficulty in
answering it even if it is asked in various different
ways. This experiment aims to test if neural dialog
models are also capable of this ability.

In order to do this, we evaluate the baseline mod-
els on the backtranslated (BT) version of the test
set. Basically, back translation provides a para-
phrased version of individual utterances (Wieting
et al., 2017), which brings in syntactic variations
while keeping the semantics intact.

We back translate the test set from both German
and Russian back into English. Since the BLEU
scores when translating from German were con-
siderably lower than that of Russian, we decided
to test the models based on Russian Backtransla-
tions. The final backtranslations have a BLEU
score of 35.91, 10.12, 43.49 on Daily Dialog, Mu-
tual Friends and Babi respectively.

The results for the experiment are provided in
Table 1. It is clear that the models are adversely
affected when presented with back translated (para-
phrased) utterances. One would expect the models
to have similar perplexities when utterances are
paraphrased, however we see that there is a sig-
nificant increase in perplexity. This observation is
consistent across the three different models. We
also observe that the transformer is slightly more
robust to syntactic variation than others.

4 Conclusion

This work interprets the behaviour of seq2seq based
Neural Dialog Models under the general umbrella
of compositionality. We observe that such models
lack the ability to reason and produce response
based on surface level information. The results

157



provided in this paper motivate the need for better
modelling approaches.
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