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Abstract

Question rewriting (QR) is a subtask of conver-
sational question answering (CQA) aiming to
ease the challenges of understanding dependen-
cies among dialogue history by reformulating
questions in a self-contained form. Despite
seeming plausible, little evidence is available
to justify QR as a mitigation method for CQA.
To verify the effectiveness of QR in CQA, we
investigate a reinforcement learning approach
that integrates QR and CQA tasks and does not
require corresponding QR datasets for targeted
CQA. We find, however, that the RL method is
on par with the end-to-end baseline. We pro-
vide an analysis of the failure and describe the
difficulty of exploiting QR for CQA.

1 Introduction

The question rewriting (QR) task has been intro-
duced as a mitigation method for conversational
question answering (CQA). CQA asks a machine
to answer a question based on the provided passage
and a multi-turn dialogue (Reddy et al., 2019; Choi
et al., 2018), which poses an additional challenge
to comprehend the dialogue history. To ease the
challenge, QR aims to teach a model to paraphrase
a question into a self-contained format using its
dialogue history (Elgohary et al., 2019a; Anantha
et al., 2021a). Except for Kim et al. (2021), how-
ever, no one has provided evidence that QR is ef-
fective for CQA in practice. Existing works on QR
often (i) depend on the existence of a QR dataset
for every target CQA dataset, and (ii) focus more
on generating high-quality rewrites than improving
CQA performance, making them unsatisfactory for
the justification of QR.

To verify the effectiveness of QR, we explore
a reinforcement learning (RL) approach that inte-
grates QR and CQA tasks without corresponding
labeled QR datasets. In the RL framework, a QR
model plays the role of “the agent” that receives
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Figure 1: Overview of the RL approach. The current
question (); and its dialogue history are reformulated
into a self-contained question Qt by the QR model.
Then, Qt is passed to the QA model to extract an answer
span A, from the evidence document. We train the QR
model by maximizing the reward obtained by comparing
the predicted answer span A, with the gold span A;.

rewards from a QA model that acts as “the envi-
ronment.” During training, the QR model aims to
maximize the performance on the CQA task by
generating better rewrites of the questions.
Despite the potential and plausibility of the RL
approach, our experimental results suggest an up-
per bound of the performance, and it is on par with
the baselines without QR. In this paper, we provide
analysis to (i) understand the reason for the failure
of the RL approach and (ii) reveal that QR can-
not improve CQA performance even with the non-
RL approaches. The code is available at https:
//github.com/HLTCHKUST/cqgr4cga.

2 Related Work

The CQA task aims to assist users in seeking in-
formation (Reddy et al., 2019; Choi et al., 2018;
Campos et al., 2020). The key challenge is to re-

Proceedings of the Third Workshop on Insights from Negative Results in NLP, pages 94 - 99
May 26, 2022 ©2022 Association for Computational Linguistics



Models CoQA QuAC
Overall F1  Child. Liter. M&H News Wiki. F1 HEQ-Q HEQ-D
end-to-end 84.5 84.4 82.4 82.9 86.0 86.9 67.8 63.5 7.9
QReCC pipeline 82.9 82.9 80.9 81.5 84.4 84.8 66.3 62.0 6.6
ours 84.7 84.3 83.1 82.7 86.3 86.8 67.6 63.2 78
pipeline 82.8 83.4 80.1 80.8 84.4 85.6 66.5 62.5 7.4
CANARD EXCORD! 83.4(+0.6) 84.4(1.9) 81.2(+1.0) 79.8(-0.3) 84.6(+0.3) 87(0.0) 67.7(+1.2) 64.0 (+1.6) 9.3 (+2.1)
ours 84.4 84.1 82.7 82.6 86.0 86.7 67.4 62.7 8.1

Table 1: Evaluation results of our approach and baselines on the test set. EXCORD! follows the results reported
by Kim et al. (2021) and (£x.x) indicate the improvement compared to their original baseline. Bold are the best
results amongst all. Underlined represents the best score on each combination of the CQA and QR datasets.

solve the conversation history and understand a
highly-contextualized question. Most prior works
focus on model structures (Zhu et al., 2018; Yeh
and Chen, 2019; Zhang et al., 2021b; Zhao et al.,
2021) or training techniques (Ju et al., 2019; Xu
et al., 2021) to improve the performance. QR tasks
have been proposed to further improve CQA sys-
tems by paraphrase a question into a self-contained
styles (Elgohary et al., 2019a; Petrén Bach Hansen
and Sggaard, 2020; Anantha et al., 2021a). While
many of the existing works on QR put more effort
toward generating high-quality rewrites (Lin et al.,
2020; Vakulenko et al., 2021), Kim et al. (2021)
introduced a framework to leverage QR to finetune
CQA models with a consistency-based regulariza-
tion. QR has also been studied in single-turn QA
and other information-seeking tasks (Nogueira and
Cho, 2017; Buck et al., 2018).

3 Methodology

We denote a CQA dataset as {D"})_; and the di-
alogue history at turn ¢ as Dy = {(Qi, 4i)}i_q.
where (); is the question and A; is the answer.
Along with the QA pairs, the corresponding ev-
idence documents Y; are also given.

As depicted in Figure 1, our proposed RL frame-
work involves a QA model as an environment and
a QR model as an agent. Let Q; = {@}E, de-
note a generated rewritten question sequence of
;. The objective of the QR model is to rewrite
the question (); at turn ¢ into a self-contained ver-
sion, based on the current question and the dia-
logue history D;_1. The agent takes an input state
X; = (Dy—1,Q;) and generates a paraphrase Qt.
Then, X; = (Dt_l,Qt) and an evidence docu-
ment Y; are provided to an environment, namely,
the QA model fy4, which extracts an answer span
A = f¢(Xt, Y:). We aim for the agent, a QR
model 7y, to learn to generate a high-quality para-
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phrase of the given question based on the reward
received from the environment.

The policy, in our case the QR model, assigns
probability

L

mo(Qi| Xe) = [ [ pldlds - -

=1

a(jl—let)- (1)

Our goal is to maximize the expected reward of the
answer returned under the policy, namely,

EétNWG('|fIt) [T(f¢(Xt))]a

where 7 is a reward function. We apply the token-
level F1-score between the predicted answer span
A, and the gold span A; as the reward r. We can
directly optimize the expected reward in Eq. 2 using
RL algorithms.

Prior to the training process, the QA model f4
is fine-tuned on {D"} and the QR model is ini-
tialized with mg = mg,, where 7y, is a pretrained
language model. We apply Proximal Policy Op-
timization (PPO) (Schulman et al., 2017; Ziegler
et al., 2019) to train mg. PPO is a policy gradient
method which alternates between sampling data
through interaction with the environment and opti-
mizing a surrogate objective function via stochastic
gradient ascent. Following Ziegler et al. (2019), we
apply a KL-penalty to the reward r so as to prevent
the policy 7y from drifting too far away from g, :

2

Ry = R(Xy) = r(fy(Xy)) — BKL(mg, g, ),

where (3 represents a weight factor and Ry is the
modified reward of r.

4 Experiments

4.1 Setup

We use a pretrained RoBERTa (Liu et al., 2019)
model as the initial QA model and adapt it to the



Question F1 Score ‘ Question F1 Score
Q¢ What is the Vat the library of? 1.0 Q¢ Where did the band The Smashing Pumpkins put on display? 1.0
Q¢ What is the Vat the Library of? 0.22 Q¢ Where was the band The Smashing Pumpkins put on display? 0.0
Q¢ What was everybody doing? 0.91 @Q: Which company produced the movie Island of Misfit Toys? 1.0
@¢ What was everyone doing? 0.0 @ Which company produced the movie, The Island of Misfit Toys? 0.0

Table 2: Minor modification of questions may cause a drastic change in CQA performance.

CQA tasks. For the QR models, we leverage pre-
trained GPT-2 (Radford et al., 2019) and first fine-
tune them with QR datasets for better initialization.
We attempt three settings: (a) directly fine-tune the
QA model on the CQA datasets (end-to-end), (b)
fine-tune the QA model with questions rewritten
by the QR model (pipeline), and (c) train the QR
model based on the reward obtained from the QA
model. More details of the experiments can be
found in Appendix A.

Datasets We conduct our experiments on two
crowd-sourced CQA datasets, CoQA (Reddy et al.,
2019) and QuAC (Choi et al., 2018). Since the test
set is not publicly available for both CoQA and
QuAC, following Kim et al. (2021), we randomly
sample 5% of dialogues in the training set and
adopt them as our validation set and report the
test results on the original development set for the
CoQA experiments. We apply the same split as
Kim et al. (2021) for the QuAC experiments.

For the QR model pre-training, we use two QR
datasets: QReCC (Anantha et al., 2021b) and CA-
NARD (Elgohary et al., 2019b). CANARD is gen-
erated by rewriting a subset of the original ques-
tions in the QuAC datasets, and contains 40K ques-
tions in total. QReCC is built upon three publicly
available datasets: QuAC, TREC Conversational
Assistant Track (CAsT) (Dalton et al., 2020) and
Natural Questions (NQ) (Kwiatkowski et al., 2019).
QReCC contains 14K dialogues with 80K ques-
tions, and 9.3K dialogues are from QuAC.

Evaluation Metrics Following the leaderboards,
we utilize the unigram F1 score to evaluate the
QA performance. In CoQA evaluation, the QA
models are also evaluated with the domain-wise
F1 score. In QuAC evaluation, we incorporate the
human equivalence score HEQ-Q and HEQ-D as
well. HEQ-Q indicates the percentage of questions
on which the model outperforms human beings and
HEQ-D represents the percentage of dialogues on
which the model outperforms human beings for all
questions in the dialogue.
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4.2 Results

We report our experimental results in Table 1. We
see that our RL approach yields 0.9-1.6 F1 im-
provement over the pipeline setting regardless of
the dataset combinations and performs almost as
well as the end-to-end setting. This partially sup-
ports our expectation that RL lifts the CQA perfor-
mance. However, we find it almost impossible to
bring significant improvement over the end-to-end
baseline despite our extensive trials. One reason
why we cannot provide as much improvement as
reported in Kim et al. (2021) would be related to
the inputs of the QA model. Their EXCORD feeds
the original questions together with the rewritten
questions, whereas we only use the rewritten ques-
tions. It is also noteworthy that their results are
consistently lower than ours, even lower than our
end-to-end settings.

Our inspection of the questions generated by the
QR models reveals that the models learn to copy
the original questions by PPO training, and this is
the direct reason that our method cannot outper-
form the end-to-end baselines. Indeed, on average,
89.6% of the questions are the same as the original
questions after PPO training, although this value
is 34.5% in the pipeline settings. We also discover
a significant correlation between the performance
and how much the QR models copy the original
question (the correlation coefficient is 0.984 for
CoQA and 0.967 for QuAC) and the edit distance
from the original question (the correlation coeffi-
cient is -0.996 for CoQA and -0.989 for QuAC).

5 Discussion

In this section, we provide an analysis to (i) raise a
sensitivity problem of the QA model to explain the
failure of RL and (ii) disclose that there is no justi-
fication for QR, even in the non-RL approaches.

5.1 Sensitivity of the QA model

It appears that the QA models are more sensitive to
trivial changes than the reward models in other suc-
cessful language generation tasks, and this could



Sentiment Analysis CQA

Perturb

Amazon Yelp CoQA QuAC
Original 95.8 98.2 84.5 67.8
UPC 95.8 (-) 96.7 (-1.5) 74.8 (-9.8) 57.4 (-10.5)
SLW 91.9 (-3.9) 97.0(-1.1) 83.0(-1.6) 66.7 (-1.1)
WIF 94.3 (-1.5) 97.7(-0.5) 82.6(-2.0) 65.6(-2.2)
SPP 94.8 (-1.0) 97.7 (-0.5) 78.3(-6.2) 65.5(-2.4)

Table 3: Robustness test on Sentiment Analysis and
CQA tasks. We apply four perturbations: UPC (upper
casing), SLW (slang word), WIF (word inflection), and
SPP (sentence paraphrasing).

QuAC Model CANARD Model
Datasets

F1 EM F1 EM
QuAC 677 515 629 46.8
CANARD 65.1 499 63.3 46.9

Table 4: Results of the supervised learning approach.
“XX Model” denotes the QA model trained on XX, and
EM the percentage of the predictions the same as the
gold.

account for our lower performance on CQA. As
can be seen from the examples in Table 2, a subtle
alteration such as uppercasing or replacement with
synonyms can significantly change F1 scores.

To quantify the sensitivity of the reward mod-
els, we compare model robustness between our QA
models and sentiment analysis models that have
been reported in Ziegler et al. (2019) to be effec-
tive for stylistic language generation. We adopt
publicly available models that are fine-tuned sen-
timent analysis datasets: BERT-based trained on
Amazon polarity (McAuley and Leskovec, 2013)!
and RoBERTa-base trained on Yelp polarity (Zhang
et al., 2015)2. To test the robustness of the models,
we introduce small perturbations to the samples in
the test set using the NL-Augmenter toolkit (Dhole
et al., 2021), and compare F1 scores on each task
(experimental details in Appendix B).

Based on the robustness test given in Table 3,
the QA models are shown to be significantly less
robust against most perturbations compared to the
sentiment analysis models. It is conceivable that
this sensitivity of the QA model leads to a sparse
reward problem for the agent, which causes insta-
bility for the model learning the optimal policy. An
important direction for future studies is to ease the
sparse reward problem by, for example, enhancing
the robustness of the QA models.

"https://huggingface.co/fabriceyhc/
bert-base-uncased-amazon_polarity

https://huggingface.co/VictorSanh/
roberta-base-finetuned-yelp-polarity
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CoQA uAC
Datasets Q Q
EM F1 EM
end-to-end 84.5 764 67.83 51.47
QReCC 84.1 76.0 67.83 51.48
CANARD 83.7 75.8 67.81 51.50

Table 5: Results of the data augmentation approach. EM
denotes the percentage of the predictions the same as
the gold.

5.2 Can QR Help in Non-RL Approaches?

First, we evaluate with a simple supervised learn-
ing approach using rewrites provided by CANARD.
Extracting the QuAC samples that have a CA-
NARD annotation, we (i) evaluate the CANARD
annotations with the QA model trained on QuAC
(the model used in the main experiments) and (ii)
train another QA model with the CANARD anno-
tations. Training is under the same conditions of
the QA model initialization as in the main exper-
iments. As the results in Table 4 show, we can
hardly observe the effectiveness of the CANARD
annotations. This supports the claim in Buck et al.
(2018) that better rewrites in the human eye are
not necessarily better for machines and implies the
difficulty of exploiting QR for CQA.

Moreover, we explore a data-augmentation ap-
proach to integrate QR and CQA. First, we generate
ten possible rewrites using top-k sampling (Zhang
et al., 2021a) for all the questions of the CQA
datasets. To guarantee the quality of the rewrites,
we select the best F1 scoring ones from every ten
candidates and use them to teach another QR model
how to reformulate questions (experimental details
in Appendix C). As the results in Table 5 show,
we consistently get worse scores compared to the
end-to-end settings in CoQA, and almost the same
scores for QuAC, not finding justification to ap-
ply QR in the manner of the data augmentation
approach.

6 Conclusion

In this paper, we explore the RL approach to verify
the effectiveness of QR in CQA, and report that
the RL approach is on par with simple end-to-end
baselines. We find the sensitivity of the QA models
would disadvantage the RL training. Future work is
needed to verify that QR is a promising mitigation
method for CQA since even the non-RL approaches
perform unsatisfactorily.
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