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Abstract

With in the broader scope of machine learning,
data augmentation is a common strategy to im-
prove generalization and robustness of machine
learning models. While data augmentation has
been widely used within computer vision, its
use in the NLP has been comparably rather lim-
ited. The reason for this is that within NLP, the
impact of proposed data augmentation meth-
ods on performance has not been evaluated in
a unified manner, and effective data augmen-
tation methods are unclear. In this paper, we
look to tackle this by evaluating the impact
of 12 data augmentation methods on multiple
datasets when finetuning pre-trained language
models. We find minimal improvements when
data sizes are constrained to a few thousand,
with performance degradation when data size
is increased. We also use various methods to
quantify the strength of data augmentations,
and find that these values, though weakly cor-
relate with downstream performance, correlate
negatively or positively depending on the task.
Furthermore, we find a glaring lack of consis-
tently performant data augmentations. This all
alludes to the difficulty of data augmentations
for NLP tasks and we are inclined to believe
that static data augmentations are not broadly
applicable given these properties.

1 Introduction

Data augmentation may be useful in situations
where the data size is insufficient for the number
of parameters in the model, resulting in overtrain-
ing (Perez and Wang, 2017). It has been pointed
out that data augmentation does not degrade the
expressive power of the model and achieves an
improvement in the generalization performance of
the model without adjusting the hyperparameters
(Hernandez-Garcia and Konig, 2018). While data
augmentation is standard in the field of computer
vision, it is not fully used in natural language pro-
cessing. Two factors can be cited for this. The
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first reason is that there has been insufficient uni-
fied validation of data augmentation methods for
a wide range of datasets and data sizes. Another
reason is that it is still unclear what kind of data
augmentation is effective for learning. In natural
language processing, it is difficult to judge whether
a data augmentation method is good or bad with-
out relying on experiments, and it is necessary to
search for effective data augmentations by trial and
error (Feng et al., 2021). If it is possible to predict
whether a data augmentation is effective for learn-
ing before training, it would be possible to search
for data augmentations more efficiently.

This paper examines the performance impact
of data augmentation methods that have been pro-
posed for natural language processing on various
datasets. Through this experiment, we will verify
whether the data augmentation method can con-
tribute to the improvement of performance on mul-
tiple datasets and problem settings. We also use
various measures of the strength of a given data
augmentation, and investigate its relationship with
performance after learning. We find that although
data augmentation strength (i.e. how significantly
it perturbs the input) is correlated with the change
in downstream performance to a given degree, its
sign and degree often varies significantly. Based on
this, we believe that static data augmentations are
not a wise choice for NLP tasks with a reasonable
amount of data, and may need to be combined with
data-dependent modeling innovations to be broadly
applicable to future work.

2 Related Work

Data Augmentation for NLP Data augmenta-
tion has been explored in NLP recently with EDA
(Wei and Zou, 2019), as well as NL-augmenter
(Dhole et al., 2021). Masked language modeling
can be considered to be data augmentation (Devlin
et al., 2019), while dictionary-derived augmenta-
tion methods have been employed recently for aug-
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menting multilingual language models with large
improvements (Chaudhary et al., 2020; Reid et al.,
2021; Reid and Artetxe, 2022). However, Longpre
et al. (2020) showed that two data augmentation
methods in natural language processing had small
effects on pre-trained language models. We further
expand the scope of this study to examine the per-
formance impact of 12 different data augmentation
methods.

Evaluating Data Augmentation In the field of
computer vision, researchers have been studying
what kind of data augmentation contributes to the
performance (Taylor and Nitschke, 2018; Perez and
Wang, 2017). And some studies have been done to
create metrics on data augmentation and evaluate
the relationship with the performance of the model
after training. Gontijo-Lopes et al. (2020) proposed
two indices, affinity and diversity, to quantify how
data augmentation improves the generalization of
the model, and pointed out that data augmentation
methods that are evaluated as having high affinity
and diversity will lead to better performance in
computer vision. Meanwhile, it is still unclear what
characteristics of data augmentation methods are
effective in the field of natural language processing.

3 Evaluation Metrics and Training
Strategies

In this section, we briefly go over metrics we use to
evaluate the strength of our data augmentations of
a given task as well as strategies for training using
data augmentations.

3.1 Training Strategy

In this subsection, we briefly discuss our two
training strategies for incorporating data aug-
mentation.  Given an i.i.d. dataset D
{(z1,v1), (z2,92),...,(xN,yn)} containing N
examples where each x; represents an input, and y;
represents the assigned label corresponding to x;.
Oftentimes, we simply fit a given model on
this dataset. However, given a data augmentation
function f(x;) = &;, where &; represents an aug-
mented input, we can also augment this dataset to
improve the diversity of inputs which should hope-
fully lead to better model generalization and ro-
bustness. That is, we now have augmented dataset
D = {(#1,91),.--, (&N, UN)}.
We now explain the following finetuning methods:
Normal training Finetuning our models on D
1-step training Finetuning our models jointly on
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augmented dataset D and original dataset D—this
method is commonly employed in computer vision.
2-step training To mitigate the distribution shift
introduced by the augmentation, but still allowing
the model to learn from the augmented dataset, we
look at two-step finetuning where we first finetune
on D and then finetune on D.

3.2 Data Augmentation Strength

We also look to analyse whether there are certain
trends among the strength of augmentation meth-
ods and their impact on downstream performance.
To do this, we measure the strength of augmenta-
tion methods using the following metrics:

Semantic Similarity We use semantic similarity
(Cer et al., 2017) as a measure of strength of data
augmentation. For example, if a given example is
perturbed in a more significant manner, we assume
that it’s semantic similarity will decrease, therefore
indicating a “stronger” data augmentation. We use
SentenceBERT (Reimers and Gurevych, 2019) to
measure the cosine similarity between sentence rep-
resentation of the original example x; and sentence
representation of augmented example Z;.

BLEU We use BLEU (Papineni et al., 2002; Post,
2018) as a metric that works on discrete tokens
(therefore more sensitive to exact token matches),
that is not model dependent as our semantic sim-
ilarity measure is. That is, a lower BLEU score
represents a stronger data augmentation.

BERTScore We also use text generation metric
BERTScore (Zhang* et al., 2020), which measures
cosine-similarity at a token-level, rather than
on a sequence-level like our semantic similarity
measure.

In our analyses (Sec. 5), we measure the
correlation between these measures and the +
change in performance.

4 Experimental Setup

4.1 Data Augmentation Methods

In our experiments, we compared the performance
of the model when trained with 12 typical data aug-
mentation methods with that of the model trained
without data augmentation. Our data augmenta-
tions methods are sourced from NL-Augmenter'

"https://github.com/GEM-benchmark/
NL-Augmenter



(Dhole et al., 2021) and n1paug?® (Ma, 2019). We
provide additional details in Appendix B.

4.2 Datasets

In experiments, we use three datasets for different
language tasks, MRPC (Dolan and Brockett, 2005),
SICK (Marelli et al., 2014), and SST-2 (Socher
et al., 2013). MRPC is a dataset in which the task
is to predict whether a sentence-pair is semantically
equivalent. SICK is a dataset that contains a task
to infer the connotation between a given premise
and an explanation. In this experiment, it is a bi-
nary classification problem whether the meaning of
the explanatory sentence is contained in the mean-
ing of the premise sentence or not. SST-2 is a
binary classification problem in which a dataset
for sentiment analysis of sentences is created from
movie reviews, are classified as positive or negative.
For MRPC and SICK, we extended the data to the
second sentence in the experiment, and the com-
bination of the first sentence, the extended second
sentence pair, and the original label was used as the
augmented data set. For SST-2, the combination of
the augmented sentence and the original label was
used as the augmented data set.

4.3 Models

In this experiment, we used the GPT-2 (345M)
(Radford et al., 2019) and BERT-large (Devlin et al.,
2018) as pre-trained language models. We train
models on a single NVIDIA V100 16GB GPU.
We measured the performance of training on the
original dataset as a baseline, and compared the
performance of fine-tuning on the training dataset
with the augmented data. We train models until
convergence, and perform early stopping where we
use a patience of 3 epochs for all models.

5 Results

Performance Changes Due to Data Augmenta-
tion Table 1 shows the scores for single-step and
2-step training on the data set with data augmenta-
tion (see Appendix D for per-task results). For both
training strategies, we also measure the impact of
data size, experimenting with various data sizes
(10%, 50%, and 100% of the full dataset). When
all data was used for training, we found that no
data augmentation that improved scores on average
for both the language model and the masked lan-
guage model, except for the 2-step training with
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BERT with synonym substitution. This indicates
that although data-augmentation has the tendency
to help at a smaller scale, perhaps mitigating ef-
fects of (lack of) data diversity, as the data scale
grows we notice that performance degrades where
the augmentations most likely add more noise to
the dataset.

Relationship between Data Augmentation Inten-
sity and Post-training Performance The corre-
lation coefficients measured by the difference in
F1 scores between the data augmentation intensity
obtained by the language model and the masked
language model and the baseline for each model
and learning method are shown in Table2. A posi-
tive value indicates that a weaker (i.e. more similar)
data augmentation results in better performance.
When we use 1-step training, this correlation is
generally positive — this indicates that when using
naive data combination, then a more similar (i.e.
weaker augmentation) is generally more effective.
This supports our hypothesis about distribution
shift negatively impact augmentation. However,
this finding varies significantly when switching to
2-step training depending on model and dataset.
Given the relatively strong performance of 2-step
training, this indicates that strength of data augmen-
tation can have varying effects when using various
training schedules/models.

6 Discussion

When all the original training data was used for
training in the three datasets tested in this study,
the effect of data augmentation on performance
improvement was small, and the performance on
the test data deteriorated in many cases. There
are two possible reasons for this. The first is that
the augmented data may have become noise. It is
almost inevitable that data augmentation will re-
sult in the augmentation of sentences whose labels
cannot be preserved. If some of the augmented
sentences are incorrectly labeled, the quality of
the dataset will deteriorate to some extent. There-
fore, in a setting where a relatively large number
of data can be prepared, such as using all the train-
ing data, the negative impact of the decrease in
data quality is stronger than the positive impact of
the increase in the number of data. The second
reason is that the knowledge that can be obtained
by data augmentation may have already been ac-
quired through prior learning. This is also pointed
out by Longpre et al. (2020). Therefore, for data



1- step GPT2 1-step BERT 2-step GPT-2 2-step BERT

100% | 50% 10% 100% | 50% 10% 100% | 50% 10% 100% | 50% 10%
baseline 0.8997 | 0.8795 | 0.8567 | 0.9028 | 0.8866 | 0.8461 | 0.8997 | 0.8795 | 0.8567 | 0.9028 | 0.8866 | 0.8461
character substitution 0.8929 | 0.8836 | 0.8356 | 0.8982 | 0.8735 | 0.8517 | 0.8959 | 0.8768 | 0.8483 | 0.8954 | 0.8846 | 0.8494
W2V substitution 0.8902 | 0.8765 | 0.8311 | 0.8939 | 0.8595 | 0.8457 | 0.8886 | 0.8779 | 0.8501 | 0.9027 | 0.8862 | 0.8406
BERT-based substitution | 0.8804 | 0.8728 | 0.8452 | 0.8780 | 0.8592 | 0.8462 | 0.8906 | 0.8790 | 0.8304 | 0.8957 | 0.8825 | 0.8292
synonym substitution 0.8946 | 0.8846 | 0.8338 | 0.8971 | 0.8710 | 0.8535 | 0.8920 | 0.8772 | 0.8585 | 0.9032 | 0.8826 | 0.8462
word paraphrase 0.8916 | 0.8799 | 0.8509 | 0.8980 | 0.8799 | 0.8518 | 0.8981 | 0.8820 | 0.8475 | 0.8972 | 0.8871 | 0.8424
LM-based substitution 0.8910 | 0.8745 | 0.8416 | 0.8928 | 0.8654 | 0.8368 | 0.8918 | 0.8740 | 0.8564 | 0.8941 | 0.8858 | 0.8420
subject-object switching | 0.8958 | 0.8875 | 0.8362 | 0.8963 | 0.8780 | 0.8451 | 0.8932 | 0.8875 | 0.8615 | 0.8968 | 0.8889 | 0.8476
random word deletion 0.8889 | 0.8857 | 0.8544 | 0.8924 | 0.8782 | 0.8568 | 0.8910 | 0.8765 | 0.8606 | 0.8891 | 0.8873 | 0.8443
stammering insertion 0.8899 | 0.8799 | 0.8401 | 0.8990 | 0.8795 | 0.8557 | 0.8920 | 0.8836 | 0.8604 | 0.8974 | 0.8902 | 0.8496
EDA 0.8958 | 0.8774 | 0.8226 | 0.8995 | 0.8770 | 0.8529 | 0.8927 | 0.8860 | 0.8571 | 0.8967 | 0.8835 | 0.8514
back translation 0.8965 | 0.8809 | 0.8318 | 0.9003 | 0.8786 | 0.8557 | 0.8968 | 0.8795 | 0.8607 | 0.8924 | 0.8867 | 0.8483
summarization 0.8905 | 0.8770 | 0.8490 | 0.8901 | 0.8599 | 0.8501 | 0.8917 | 0.8864 | 0.8600 | 0.8896 | 0.8789 | 0.8471

Table 1: Table of average F1 scores in 1-step and 2-step training for each percentage of data used for training when

data augmentation is used for MRPC, SICK and SST-2.

Sentence similarity BLEU BERTScore

GPT-2 BERT GPT-2 BERT GPT-2 BERT

1-step | 2-step I-step | 2-step 1-step | 2-step | l-step | 2-step 1-step | 2-step | l-step | 2-step
MRPC | 0.2478 | 0.5813 | 0.5540 | 0.2011 | 0.3782 | 0.5150 | 0.6574 | 0.2712 | 0.2406 | 0.6119 | 0.4879 | 0.2064
SICK | 0.5138 | -0.1941 | 0.4790 | -0.5216 | 0.2424 | 0.4192 | 0.0392 | -0.5645 | 0.1085 | 0.1314 | 0.0483 | -0.2592
SST-2 | 0.3251 | 0.3216 | 0.5897 | -0.4152 | 0.2226 | 0.4876 | 0.2015 | -0.2712 | 0.1686 | 0.3699 | 0.4524 | -0.4342

Table 2: Correlation coefficient between data augmentation strength and difference in F1 score from baseline.

augmentation in a specific domain, it is possible
that data augmentation based on knowledge about
the domain, such as substitution based on a list of
words that can be substituted in the domain, which
cannot be obtained by pre-training with a general
corpus, may be effective. On the other hand, when
the number of data used for training was limited,
we observed some cases where the performance
improved even when using a pre-training model.
Therefore, in domains where only a few hundred
examples are available, performance improvement
can be expected by augmenting the existing data.

In addition, in 1-step learning, the weaker the
data augmentation, the better the performance.
However, in 2-step learning, the relationship be-
tween the strength of consistent data augmentation
and performance depended on the type of data set.
This suggests that in 2-step learning, the effective
strength of data augmentation may differ depending
on the characteristics of the data set. For example,
in MRPC, the difference between the data augmen-
tation intensity and the F1 score of the baseline was
negatively correlated because even trivial changes
are likely to produce data that become noise in
learning. In SICK and SST-2, even if some of the
content changes, the labels of the sentences are
retained as long as the words indicating relevance
and emotion remain the same. In this case, the vari-
ous sentences created by strong data reinforcement
in two-stage learning contribute to the learning pro-
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cess, allowing clean data to be learned in the second
half. This may be why the difference between the
strength of the data reinforcement and the F1 score
from the baseline may have been positively cor-
related in some cases. Therefore, by comparing
the augmentation intensity determined by the pro-
posed index, it may be possible to efficiently search
for promising data augmentation methods before
actual training. However, more work needs to be
done to effectively use these methods in a practical
setting.

7 Conclusion

In this paper, we observed that most of the data aug-
mentation methods did not improve performance
when training on datasets with thousands of ex-
amples, but some of them improved performance
when training on datasets with hundreds of exam-
ples. This suggests that, depending on the task and
the data size, data augmentation may be effective
even when a pre-trained language model is used for
training. We also defined data augmentation inten-
sity, a measure to evaluate whether data augmenta-
tion produces sentences that are different from the
original sentences, and evaluated the relationship
between this measure and the performance after
training. As a result, the data augmentation inten-
sity showed different correlations with the change
in performance after training depending on the tar-
get dataset. For tasks with enough data, this indi-



cates the limited applicability and predictability of
static data augmentations. In future work, we be-
lieve the NLP community should look at modeling
or adaptive learning methods (Dery et al., 2022) to
account for these differences in data.
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