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Abstract

Different studies of the embedding space of
transformer models suggest that the distribu-
tion of contextual representations is highly
anisotropic — the embeddings are distributed
in a narrow cone. Meanwhile, static word rep-
resentations (e.g., Word2Vec or GloVe) have
been shown to benefit from isotropic spaces.
Therefore, previous work has developed meth-
ods to calibrate the embedding space of trans-
formers in order to ensure isotropy. However,
a recent study (Cai et al., 2021) shows that
the embedding space of transformers is locally
isotropic, which suggests that these models
are already capable of exploiting the expres-
sive capacity of their embedding space. In
this work, we conduct an empirical evaluation
of state-of-the-art methods for isotropy calibra-
tion on transformers and find that they do not
provide consistent improvements across mod-
els and tasks. These results support the the-
sis that, given the local isotropy, transformers
do not benefit from additional isotropy calibra-
tion.

1 Introduction

The impressive performance of transformer mod-
els (Vaswani et al., 2017) across almost all areas of
Natural Language Processing (NLP) has sparked in-
depth investigations of these models. A remarkable
finding is that the contextual representations com-
puted by transformers are strongly anistropic (Etha-
yarajh, 2019), i.e., they are unevenly distributed
and localized in a narrow cone of the embedding
space. This discovery, labeled as the representa-
tion degeneration problem by Gao et al. (2019) is
surprising since it suggests that most of the expres-
sive capacity of these high-dimensional spaces is
neglected by transformers.

Furthermore, previous work on static word repre-
sentations, e.g., GloVE (Pennington et al., 2014) or
Word2Vec (Mikolov et al., 2013), established that
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isotropy is a desirable property in non-contextual
embedding spaces (Mu and Viswanath, 2018). In-
deed, Mu and Viswanath (2018) and Liu et al.
(2019a) showed that post-processing static word
embeddings in order to increase isotropy improves
their performance in downstream tasks. Based on
these results, recent work has developed methods
to correct the anisotropy of the contextual represen-
tations generated by transformers (Gao et al., 2019;
Wang et al., 2019b; Li et al., 2020). These isotropy
calibration methods have been reported to produce
small gains in performance on some NLP tasks.

However, in a recent study, Cai et al. (2021)
show that the space of contextual embeddings of
transformers is locally isotropic. By analyzing low
dimensional sub-spaces the authors identify iso-
lated clusters and manifolds and argue that isotropy
does exist in these manifolds. In the same line,
Luo et al. (2021) and Kovaleva et al. (2021) find
that in BERT (Devlin et al., 2019) almost all of
the embeddings present large values in the same
two components of the embedding vector. These
large components distort our understanding of the
embedding spaces by making all the representa-
tions have high cosine similarity. In this work,
we perform an extensive empirical evaluation of
isotropy calibration methods across different tasks
and models to determine if they provide consistent
improvements. Our results question the utility of
isotropy calibration in transformers, implicitly sup-
porting the argument that transformers do already
benefit from local isotropy (Cai et al., 2021).

2 Related Work

Since the appearance of the transformer architec-
ture and its multiple variants, of which BERT (De-
vlin et al., 2019) stands out as the most researched
model, a lot of effort has been devoted to under-
standing their inner workings (Rogers et al., 2020).
Unlike static word embeddings such as GloVE or
Word2Vec, transformers build contextual embed-
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dings, i.e., dynamic representations that aggregate
information from other context words. These rep-
resentations have sparked a lot of research interest.
Wu et al. (2020) showed that different transformer
architectures produce similar contextual representa-
tions. Chronis and Erk (2020) studied the similarity
and relatedness of contextual representations in the
embedding spaces of BERT, while Brunner et al.
(2019) studied how identifiable the intermediate
representations of BERT are with respect to the
input. Zhao et al. (2020) quantified the contextual
knowledge of BERT and Zhao et al. (2021) ana-
lyzed the embedding spaces of BERT in order to
quantify the non-linearity of its layers.

Following the discovery of anisotropy in trans-
formers (Gao et al., 2019; Ethayarajh, 2019), dif-
ferent isotropy calibration methods have been de-
veloped to correct this phenomenon. Gao et al.
(2019) and Zhang et al. (2020) introduced reg-
ularization objectives that affect the embedding
distances. Zhou et al. (2021) presented a module
inspired by batch-norm that regularizes the embed-
dings towards isotropic representations. Wang et al.
(2019b) proposed to control the singular value de-
cay of the output layer of transformers and Li et al.
(2020) used normalizing flows to map transformer
embeddings to an isotropic space. However, Cai
et al. (2021) show that contextual representations
are locally isotropic and suggest that this property
allows transformers to exploit their full expressive
capacity, questioning the utility of isotropy calibra-
tion.

3 Isotropy Calibration Methods

The output distribution of transformers is typically
parameterized as a softmax function:

P (Yi = yi|hi) =
exp(hTi WI(yi))∑N
j=1 exp(hTi Wj)

,

where W ∈ RN×d is the output weight matrix,
d is the embedding dimension, N is the output
size, yi is the i-th output, I(yi) is the index of yi
and h is the contextual embedding produced by
the model. Since this constitutes a shared space
between model embeddings h ∈ H and output
embeddings, isotropy at the output distribution can
be enforced by calibrating either H or W .

We experiment with three prominent methods
for isotropy calibration on transformers:

Cosine Regularization. Gao et al. (2019) intro-
duce a simple regularization term that minimizes
the cosine similarity between any two output em-
beddings in order to increase the aperture of the
cone that contains the embeddings. This regular-
ization term is given by:

Rcos = λc
1

|V|2
n∑

i

n∑

j 6=i
ŵT
i ŵj ,

where wi is the embedding of the i-th token in the
vocabulary V , ŵ = w

||w|| and λc is the regulariza-
tion constant.

Spectrum Control. Wang et al. (2019b) increase
isotropy by mitigating the fast decay of the sin-
gular value distribution of the output matrix W .
They decompose W using Singular Value Decom-
position (SVD), such that W = UΣV T , where
Σ ∈ Rd×d is the diagonal matrix of singular
values. Then, they add a regularization term to
guide the singular value distribution towards a pre-
specified slow-decaying prior distribution. This
term spreads the variance away from the first few
dominating singular values, increasing the isotropy
of the space. They propose the following two regu-
larization terms:

Rpol(Σ) = λp

d∑

k=1

(σk − c1kγ)2 ,

for polynomial singular value decay; and

Rexp(Σ) = λe

d∑

k=1

(σk − c1 exp(−c2kγ))2 ,

for exponential decay, where λe, λp, c1 and c2
are regularization constants, σk is the k-th largest
singular value and γ is a parameter which controls
the rate of singular value decay.

Flow Model. Li et al. (2020) propose a method
that leverages normalizing flows to learn an invert-
ible mapping f−1φ between the embedding space of
the transformer model and an isotropic (Gaussian)
space Z . First, an invertible flow model (Kingma
and Dhariwal, 2018) fφ is trained to generate trans-
former embedding vectors h from Gaussian noise
z:

z ∼ pZ(z), h = fφ(z) .

Then, the model fφ is inverted to map transformer
embeddings h to the new (and isotropic) output
embedding space Z .
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SST-2 MRPC CoLA RTE WNLI STS-B QNLI MNLI QQP

Model Accuracy F1 Mat. corr. Accuracy Accuracy Pearson corr. Accuracy Match acc. Mismatch acc. Accuracy

BERT 91.44 ±0.52 88.80±0.99 53.16±1.82 58.97±1.82 53.52±4.88 80.86 ±2.11 88.78±0.57 81.02±0.17 81.78±0.40 89.31±0.06
+Cosreg 90.71 ±1.00 88.17 ±0.38 46.94 ±4.29 56.43 ±5.16 50.23 ±4.95 78.23 ±2.19 89.58 ±0.19 81.20 ±0.41 82.04 ±0.21 89.26 ±0.10
+Spectrum-Pol 90.86 ±1.35 81.22 ±0 0 49.58 ±3.62 56.34 ±0 NaN 81.24 ±4.45 64.33 ±27.80 64.76 ±27.48 87.15 ±2.23
+Spectrum-Exp 91.21 ±0.37 81.22 ±0 0 50.90 ±3.45 56.34 ±0 NaN 86.42 ±0.42 62.43 ±24.97 63.12 ±25.20 89.16 ±0.45
+Flow 91.09 ±0.54 86.99 ±0.89 51.19 ±1.81 54.27 ±1.46 48.36 ±5.86 78.88 ±3.46 86.21 ±3.38 80.65 ±0.46 81.15 ±0.21 89.36 ±0.10

RoBERTa 92.97 ±0.63 85.35 ±8.52 53.67 ±3.32 53.19 ±0.55 54.46 ±0.81 83.10 ±2.87 91.00 ±0.46 85.16 ±0.28 85.19 ±0.15 89.85 ±0.13
+Cosreg 92.66 ±0.23 89.17 ±2.28 48.99 ±5.61 53.67 ±1.16 53.52 ±1.41 28.44 ±44.84 90.89 ±0.19 85.41 ±0.09 85.64 ±0.22 * 89.87 ±0.12
+Spectrum-Pol 88.08 ±0.99 81.22 ±0 0 52.71 ±0 57.28 ±1.62 * NaN 83.89 ±2.46 50.63 ±29.72 51.14 ±29.29 81.76 ±12.76
+Spectrum-Exp 90.71 ±1.09 81.22 ±0 0 52.95 ±0.42 56.34 ±0 NaN 82.25 ±3.14 84.46 ±0.51 84.77 0.41 80.95 ±13.89

DistilBERT 88.23 ±1.79 87.97 ±1.02 44.11 ±2.09 56.68 ±0.62 51.17 ±5.69 23.63 ±41.08 87.53 ±0.13 78.84 ±0.27 79.50 ±0.32 88.28 ±0.25
+Cosreg 88.53 ±1.55 87.88 ±1.36 43.13 ±0.85 58.24 ±1.78 52.11 ±2.44 -0.50 ±2.08 87.15 ±0.84 78.69 ±0.17 79.42 ±0.28 88.38 ±0.05
+Spectrum-Pol 88.80 ±0.37 81.22 ±0 0 54.15 ±2.50 55.87 ±0.81 NaN 85.47 ±0.96 78.39 ±0.17 79.13 ±0.05 88.41 ±0.43
+Spectrum-Exp 88.92 ±0.67 81.22 ±0 0 54.27 ±2.71 55.87 ±0.81 NaN 86.25 ±0.80 78.38 ±1.34 79.03 ±0.34 88.12 ±0.58

Table 1: Performance for different models and calibration methods on GLUE; * denotes significantly better perfor-
mance than the corresponding uncalibrated model (p < 0.05, two-sample t-test). The NaN and 0 scores are caused
by the model always predicting the same class.

4 Experiments

We evaluate the impact of each of these calibration
methods on state-of-the-art transformer models in
three prominent areas of Natural Language Pro-
cessing: language understanding, machine trans-
lation, and summarization. For all of the models,
we use the implementation and fine-tuning param-
eters from HuggingFace (Wolf et al., 2020) (cf.
Appendix B). We run each experiment three times
and report the mean and standard deviation. Fine-
tuning time is reported on a Nvidia Titan RTX
GPU.

To characterize the isotropy of the output embed-
ding space we adopt the I1 and I2 isotropy mea-
sures from (Wang et al., 2019b), with I1(W ) ∈
[0, 1] and I2(W ) ≥ 0. Larger I1(W ) and smaller
I2(W ) indicate more isotropic embeddings (cf.
App. A for details).

4.1 Language Understanding

We consider three representative transformer mod-
els with different sizes, BERT-base (Devlin et al.,
2019), RoBERTa (Liu et al., 2019b), and Distil-
BERT (Sanh et al., 2020). We evaluate these mod-
els on the development set of GLUE (Wang et al.,
2019a), a well-known benchmark for language un-
derstanding that consists of nine different tasks.
Due to the high computational cost of flow calibra-
tion and the large number of tasks, we apply this
method only on BERT to save resources.

In Table 1 we report the performance per task
of the calibrated and uncalibrated models. We ob-
serve the same pattern for all three models. In
the overwhelming majority of cases, the calibrated
models perform comparably to or worse than the

uncalibrated ones, with calibration improving per-
formance with statistical significance (p < 0.05,
two-sample t-test) only in RoBERTa for WNLI
with exponential decay and MNLI mismatched
with cosine regularization. More specifically, co-
sine regularization and flow calibration (in BERT)
do not affect performance much, while spectrum
control in some cases produces severe performance
degradation or even prevents learning, e.g., CoLA
and STS-B. Furthermore, flow calibration adds a
large training overhead, requiring on average 4.2
times more time per training epoch.

These results reveal that no isotropy calibration
method yields consistently better performance than
the uncalibrated models in language understanding
tasks.

4.2 Machine Translation

We test multilingual BART (M-BART) (Liu et al.,
2020) on English-Romanian and German-English
WMT16 (Bojar et al., 2016) translation datasets.
In Table 2 we report BLUE scores, compute time,
and the isotropy metrics, for the uncalibrated and
calibrated models. To reduce the high compu-
tational cost of flow calibration, we apply this
method only on a reduced version of 50 000 sam-
ples for both tasks, English-Romanian and German-
English translation. As a reference, we also provide
the scores of the uncalibrated model on the small
datasets. We find, that while cosine regularization
does not significantly affect either BLEU scores or
isotropy metrics, both variants of spectrum control
improve isotropy but produce a performance degra-
dation of over 3 and 5 BLEU points in the English-
Romanian and German-English tasks respectively,
while requiring 25% to 50% more computation
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EN-RO DE-EN

Model BLEU (↑) I1(↑) I2(↓) Time (min) BLEU (↑) I1(↑) I2(↓) Time (min)

M-BART 26.15 ±0.08 0.88 ±0.01 0.60 ±0 108 ±0 22.81 ±0.35 0.89 ±0.01 0.60 ±0 176 ±0
+Cosreg 26.07 ±0.10 0.88 ±0.01 0.60 ±0 110 ±0 23.03 ±0.27 0.89 ±0.01 0.60 ±0 188 ±1
+Spectrum-Pol 22.94 ±0.18 1.00 ±0 0.02 ±0 176 ±2 16.27 ±0.06 1.00 ±0 0.02 ±0 265 ±0
+Spectrum-Exp 22.92 ±0.05 1.00 ±0 0.02 ±0 170 ±1 16.24 ±0.12 1.00 ±0 0.02 ±0 230 ±18

M-BART (small dataset) 9.09 ±1.02 0.88 ±0 0.60 ±0 9 ±0 11.61 ±2.25 0.88 ±0 0.60 ±0 9 ±0
+Flow 8.57 ±2.52 0.89 ±0 0.60 ±0 95 ±0 10.93 ±0.70 0.88 ±0 0.60 ±0 96 ±1

Table 2: Multilingual BART performance, isotropy (I1 and I2) and fine-tuning time per epoch with different
calibration methods for English - Romanian and German - English translation. Due to computational cost, the flow
method was tested only on a smaller version of the EN-RO dataset with 50 000 sentences.

time. On the other hand, flow calibration yields
comparable BLEU score to the uncalibrated model
but requires on average 10.5 times more computa-
tion per epoch. These results suggest a negative
and counter-intuitive relation between isotropy and
downstream performance: when isotropy increases,
performance decreases. We observe a similar trend
for language understanding in Appendix C.

Overall, and in line with the results in the previ-
ous section, isotropy calibration in machine trans-
lation tends to degrade performance and increase
the computational budget.

4.3 Summarization
We evaluate BART (Lewis et al., 2020) on the
CNN/DM summarization task (Hermann et al.,
2015); again we use a reduced dataset (20 000 ar-
ticles) for flow calibration. The results in Table 3
show that none of the calibrated models performs
significantly better than their uncalibrated counter-
parts in terms of ROUGE score (Lin, 2004) (cf.
Appendix D). Cosine regularization does not af-
fect performance nor isotropy, while spectrum con-
trol improves isotropy (I1 and I2) at the cost of a
small performance drop. The flow model performs
comparably to uncalibrated BART but requires 5.5
times more computation. Overall, we find no ev-
idence that isotropy calibration provides gains in
summarization.

5 Discussion

Our extensive evaluation shows that none of the
considered isotropy calibration methods produce
consistent improvements over the uncalibrated
models across tasks, domains and architectures.
In fact, we observe a negative relation between
isotropy calibration and downstream performance.
The most aggressive method, i.e., spectrum con-
trol, produces the largest improvement in isotropy

CNN / Daily Mail

Model R-1 (↑) I1(↑) I2(↓) Time (min)

BART 38.21 ±0.05 0.95 ±0.01 0.25 ±0 246 ±8
+Cosreg 38.21 ±0.05 0.95 ±0.01 0.25 ±0 240 ±8
+Spectrum-Pol 37.36 ±0.08 0.99 ±0 0.04 ±0 245 ±20
+Spectrum-Exp 37.43 ±0.08 0.99 ±0 0.04 ±0 230 ±18

BART (small d.) 36.56 ±0.25 0.94 ±0 0.25 ±0 17 ±0
+Flow 36.15 ±0.30 0.94 ±0 0.25 ±0 95 ±2

Table 3: ROUGE-1 score, isotropy (I1 and I2), and
fine-tuning time per epoch with different calibration
methods on BART for summarization. Due to compu-
tational cost, the flow calibration method was tested on
a smaller version of the dataset.

metrics as well as the most significant performance
drop. On the other hand, the effect of cosine reg-
ularization and flow calibration is small in both,
isotropy and performance.

According to Cai et al. (2021), the local isotropy
of the embedding space of transformers may enable
them to exploit their full expressive capacity. Fur-
thermore, concurrent findings by Luo et al. (2021)
and Kovaleva et al. (2021) reveal that certain com-
ponents of the contextual embeddings consistently
present very large magnitudes, which distort the
cosine distances in the embedding space and ques-
tions their anisotropy. This could explain why ad-
ditional isotropy calibration does not consistently
improve the performance of transformers in down-
stream tasks.

In light of our results, we discourage isotropy
calibration of transformers as a means of improving
downstream performance. However, we believe
that further investigation of the embedding space
of transformers may be beneficial to increase our
ability to interpret these models and improve their
architecture.
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A Isotropy Metrics

To characterize the isotropy of the output embedding space we adopt the I1 and I2 isotropy measures
from (Wang et al., 2019b).

I1(W ) =
minv∈V Z(v)

maxv∈V Z(v)
,

is based on the observation by (Arora et al., 2016), that the partition function Z(v) =
∑n

i=1 exp(vTwi)
should be close to a constant for any unit vector v if the embedding matrix W is isotropic. Here, we
abuse notation and wi ∈W is the i-th row of the embedding matrix W . Following (Mu and Viswanath,
2018) we use the set of eigenvectors of W TW as V . The second measure

I2(W ) =

√∑
v∈V (Z(v)− Z̄(v))2

|V |Z̄(v)2
,

is the sample standard deviation of the partition function Z(v) normalized by its average Z̄(v). This way,
I1(W ) ∈ [0, 1] and I2(W ) ≥ 0. Larger I1(W ) and smaller I2(W ) indicate more isotropic embeddings.

B Model Hyperparameter Configuration

For all the models used in his work we use the implementation from HuggingFace and follow their
instructions for the hyperparameters. In particular, we use the following configurations:

BERT and DistilBERT. Learning rate 2e−5 without scheduling, batch size 32, 3 training epochs for all
GLUE tasks except for MRPC and WNLI, for which we train during 5 epochs.

RoBERTa. Learning rate of 1e−5 for all GLUE tasks except for SST-2 and STS-B, for which the
learning rate is set to 1e−5, same number of epochs as for BERT and DistilBERT, batch size of 32.

M-BART and BART. Learning rate of 3e−5 with polynomial decay, batch size 48, and 5 training
epochs.

C Isotropy Scores on GLUE

Here, in Table 4, we present the isotropy scores obtained in our evaluation of GLUE with BERT, RoBERTa,
and DistilBERT, which were not included in the main text due to lack of space.

The isotropy metrics I1 and I2 show the opposite trend to the performance metrics. An improvement
in isotropy reflects a decrease in downstream performance. This way, we see that across models and
tasks, cosine regularization and flow calibration (for BERT) have a small impact on isotropy and that the
performance of the models calibrated with these techniques is close to the that of the uncalibrated models.
On the other hand, spectrum control produces a very significant increase in isotropy, with many tasks
reaching a I1 of 1.00; while in Table 1 we see how it produces strong performance degradation. This,
further suggests a negative relation between isotropy and the downstream performance of transformers.
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SST-2 MRPC CoLA

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)
BERT 0.91 ±0.01 0.4 ±0 0.91 ±0.01 0.38 ±0.01 0.91 ±0.01 0.39 ±0.01
+Cosreg 0.91 ±0.2 0.39 ±0.02 0.92 ±0.01 0.39 ±0.2 0.91 ±0.01 0.39 ±0.01
+Spectrum-Pol 1.00 ±0 0.007 ±0.003 1.00 ±0 7e−4 ±3e−4 1.00 ±0 6e−4 ±1e−4
+Spectrum-Exp 0.99 ±0.01 0.02 ±0.02 1.00 ±0 6e−4 ±2e−4 1.00 ±0 7e−4 ±3e−4

+Flow 0.92 ±0.01 0.40 ±0 0.91 ±0.01 0.40 ±0 0.91 ±0.01 0.39 ±0.01

RoBERTa 0.91 ±0.01 0.39 ±0.01 0.92 ±0.01 0.39 ±0.01 0.91 ±0.01 0.40 ±0.01
+Cosreg 0.92 ±0.01 0.40 ±0.01 0.91 ±0.01 0.39 ±0.01 0.91 ±0.01 0.40 ±0.01
+Spectrum-Pol 1.00 ±0 0.008 ±0.002 1.00 ±0 5e−4 ±4e−4 1.00 ±0 5e−4 ±2e−4
+Spectrum-Exp 1.00 ±0 0.005 ±0.004 1.00 ±0 1e−4 ±2e−4 1.00 ±0 6e−4 ±4e−4

DistilBERT 0.91 ±0.01 0.38 ±0.01 0.92 ±0.01 0.39 ±0.01 0.92 ±0.01 0.38 ±0.01
+Cosreg 0.91 ±0.01 0.39 ±0.01 0.92 ±0.01 0.38 ±0.01 0.92 ±0.01 0.38 ±0.01
+Spectrum-Pol 1.00 ±0.01 0.012 ±0.016 1.00 ±0 7e−4 ±5e−4 1.00 ±0 11e−4 ±9e−4
+Spectrum-Exp 1.00 ±0.01 0.009 ±0.010 1.00 ±0 7e−4 ±5e−4 1.00 ±0 11e−4 ±9e−4

RTE WNLI STS-B

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)
BERT 0.92 ±0.01 0.39 ±0.02 0.91 ±0.01 0.39 ±0.02 0.95 ±0 0.22 ±0.01
+Cosreg 0.92 ±0.01 0.40 ±0.03 0.91 ±0.01 0.40 ±0.01 0.95 ±0.01 0.23 ±0.01
+Spectrum-Pol 1.00 ±0 2e−4 ±1e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 0.002 ±0
+Spectrum-Exp 1.00 ±0 3e−4 ±2e−4 1.00 ±0 2e−4 ±3e−4 1.00 ±0 13e−4 ±6e−4
+Flow 0.92 ±0.01 0.39 ±0.01 0.92 ±0.01 0.39 ±0.02 0.95 ±0.01 0.23 ±0.01

RoBERTa 0.91 ±0.01 0.40 ±0.01 0.91 ±0.01 0.39 ±0.01 0.95 ±0.01 0.23 ±0.01
+Cosreg 0.91 ±0 0.41 ±0 0.91 ±0.01 0.40 ±0.01 0.95 ±0 0.23 ±0.01
+Spectrum-Pol 1.00 ±0 3e−4 ±2e−4 1.00 ±0 3e−4 ±1e−4 1.00 ±0 7e−4 ±3e−4
+Spectrum-Exp 1.00 ±0 3e−4 ±2e−4 1.00 ±0 3e−4 ±1e−4 1.00 ±0 15e−4 ±13e−4

DistilBERT 0.92 ±0.01 0.38 ±0.01 0.92 ±0 0.39 ±0.01 0.95 ±0 0.22 ±0.01
+Cosreg 0.92 ±0 0.38 ±0.01 0.92 ±0.01 0.38 ±0.01 0.95 ±0 0.22 ±0.01
+Spectrum-Pol 1.00 ±0 2e−4 ±3e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 9e−4 ±1e−4
+Spectrum-Exp 1.00 ±0 2e−4 ±3e−4 1.00 ±0 1e−4 ±2e−4 1.00 ±0 9e−4 ±1e−4

QNLI MNLI QQP

Model I1(↑) I2(↓) I1(↑) I2(↓) I1(↑) I2(↓)
BERT 0.92 ±0.01 0.39 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.01 0.39 ±0.01
+Cosreg 0.92 ±0.01 0.39 ±0.01 0.93 ±0.01 0.32 ±0.01 0.9 ±0 0.39 ±0.01
+Spectrum-Pol 0.99 ±0.01 0.06 ±0.02 0.95 ±0.01 0.21 ±0.04 0.92 ±0.02 0.39 ±0.06
+Spectrum-Exp 1.00 ±0 5e−4 ±1e−4 0.98 ±0.01 0.08 ±0.03 0.97 ±0.03 0.12 ±0.12
+Flow 0.92 ±0.01 0.39 ±0.01 0.93 ±0 0.31 ±0 0.92 ±0.01 0.39 ±0.01

RoBERTa 0.91 ±0.01 0.40 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.01 0.39 ±0
+Cosreg 0.92 ±0.01 0.40 ±0.01 0.93 ±0.01 0.93 ±0.01 0.32 ±0.01 0.39 ±0
+Spectrum-Pol 1.00 ±0 0.005 ±0.003 0.96 ±0.03 0.15 ±0.13 0.99 ±0.2 0.04 ±0.07
+Spectrum-Exp 1.0 ±0.01 0.012 ±0.015 0.98 ±0.01 0.10 ±0.04 0.99 ±0.01 0.04 ±0.06

DistilBERT 0.92 ±0 0.38 ±0.01 0.93 ±0.01 0.32 ±0 0.92 ±0.1 0.38 ±0.01
+Cosreg 0.92 ±0.01 0.39 ±0.01 0.93 ±0 0.32 ±0 0.992 ±0.01 0.39 ±0.01
+Spectrum-Pol 0.99 ±0.01 0.03 ±0.04 0.93 ±0.01 0.29 ±0.01 0.93 ±0.03 0.36 ±0.17
+Spectrum-Exp 1.00 ±0.01 0.02 ±0.03 0.97 ±0.1 0.13 ±0.01 0.95 ±0.01 0.25 ±0.01

Table 4: Isotropy of the embedding space of the different transformer model and calibration method combinations
on GLUE tasks.
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D Complete Summarization Results

Here we report the complete summarization results, including the ROUGE-2 and ROUGE-L metrics,
omitted in the main text.

CNN / Daily Mail

Model R-1 (↑) R-2 (↑) R-L (↑) I2(↑) I2(↓) Time (min)

BART 38.21 ±0.05 17.62 ±0.03 27.06 ±0.08 0.95 ±0.01 0.25 ±0 246 ±8
+Cosreg 38.21 ±0.05 17.62 ±0.03 27.06 ±0.08 0.95 ±0.01 0.25 ±0 240 ±8
+Spectrum-Pol 37.36 ±0.08 16.60 ±0.08 25.26 ±0.09 0.99 ±0 0.04 ±0 245 ±20
+Spectrum-Exp 37.43 ±0.08 16.62 ±0.01 26.30 ±0.05 0.99 ±0 0.04 ±0 230 ±18

BART (small dataset) 36.56 ±0.25 15.62 ±0.07 25.05 ±0.07 0.94 ±0 0.25 ±0 17 ±0
+Flow 36.15 ±0.30 15.40 ±0.23 24.79 ±0.19 0.94 ±0 0.25 ±0 95 ±2

Table 5: Complete BART summariation performance, embedding space isotropy and fine-tuning time per epoch
using different calibration methods on the CNN / DailyMail dataset. Due to computational cost, the flow calibration
method was tested on a smaller version of the dataset with 20 000 articles.

The performance in terms of ROUGE-2 and ROUGE-L scores follows the same patterns as ROUGE-
1. Similar to language understanding and machine translation, increasing isotropy does not improve
performance.
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