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Abstract

Multilingual language pretraining enables pos-
sibilities of transferring task knowledge learned
from a rich-resource source language to the
other, particularly favoring those low-resource
languages with few or no task annotated data.
However, knowledge about language and tasks
encoded is strongly entangled in multilingual
neural representations, thereby the learned task
knowledge falsely correlated to the source lan-
guage, falling short of cross-lingual transfer-
ability. In this paper, we present a novel
language-agnostic finetuning (LAFT) to facili-
tate zero-resource cross-lingual transfer for text
generation. LAFT performs language-agnostic
task acquisition to isolate task learning com-
pletely from the source language, and then lan-
guage specification for better generation for
specified languages. Experiments demonstrate
that the proposed approach facilitates a better
and parameter-efficient transferability on two
text generation tasks.

1 Introduction

Deep learning has boosted the development of nat-
ural language generation (NLG), giving rise to its
applications to a broad range of tasks (Brown et al.,
2020; Liu et al., 2020; Xue et al., 2021), e.g., sum-
marizing a lengthy news article. Annotated data is
essential for learning neural NLG models. How-
ever, the vast bulk of available data is normally pre-
sented in English, making data scarcity in other
languages a significant difficulty. Therefore, cross-
lingual transfer, the ability to transfer knowledge
learned in a rich-resource source language (typi-
cally English) to other, unseen target languages,
has enormous practical significance.

The recent success of multi-lingual pre-trained
language models (MPLMs) (Liu et al., 2020; Con-
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neau et al., 2020; Xue et al., 2021) enables possibil-
ities for such zero-resource cross-lingual transfer
in a “pretrainig-finetuning” paradigm. Specifically,
thanks to that MPLMs can learn plausible multi-
lingual representations for any languages involved
in multi-lingual pretraining, finetuning a MPLM on
task annotated data in English can exhibit immedi-
ate task performance on other languages. However,
despite its appealing results on natural language un-
derstanding, the transferring performance remains
unsatisfactory on language generation tasks.

The neural NLG pipeline consists of three se-
quential steps: a) understanding input text (e.g., a
news article), b) manipulating semantics in accor-
dance with the task (e.g., filtering out redundant
content while retaining content of the main idea),
and c) generating text result (e.g., abstractive sum-
mary). As a result, we suggest that learning a gen-
eration task essentially bolts down to learning how
to manipulate the input semantic for the following
generation. However, due to the highly entangled
nature of semantic information and language in-
formation learned in multilingual representations,
knowledge of a downstream task learned by fine-
tuning would inevitably be correlated to the source
language, thus harming the ability to transfer to
unseen target languages.

In this paper, we propose the language-agnostic
finetuning (LAFT). The key idea is to completely
isolate acquiring task knowledge for an MPLM
from the source language, and then add the lan-
guage information back for generation. Given a
text generation task and its annotated data in the
source language, LAFT consists of two stages:

• Language-agnostic task acquisition. An ex-
tra task module is added to the MPLM. The
module learns to manipulate semantic content
given the task without considering any infor-
mation about the source language.

• Language specialization. We then incor-
porate language information back into the
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Figure 1: Illustration of LAFT for mBART. (1) Training
on source language task annotated data. (2) Trained
model can be directly evaluated for target language.

task module’s language-agnostic representa-
tion, helping the decoder to better generate the
resulting content in the specified language.

We evaluate our zero-resource cross-lingual
transfer approach in two scenarios: zero-shot and
translate-train, which differ in terms of the exis-
tence of machine translation systems. Experimen-
tal results show that the proposed method facilitates
a better and parameter-efficient transferability on
abstractive summarization (+up to 0.71 ROUGE-L)
and question generation (+up to 2.45 ROUGE-L),
which could motivate further research that cross-
lingual transfer necessitates careful consideration
of task acquisition and language specialization,

2 Related Work

Most previous cross-lingual transfer research has
succeeded on NLU rather than NLG. For both NLU
and NLG, one solution is data augmentation that
leverages data from the source language to the tar-
get language using translation systems or code-
switching (Singh et al., 2019; Bornea et al., 2021;
Qin et al., 2020). Some NLU research aims to learn
language-agnostic features that minimize the dis-
tance among features from different languages, by
adversarial training (Keung et al., 2019; Chen et al.,
2019), removing the language identity from the
original multi-lingual representations (Libovický
et al., 2020; Zhao et al., 2021; Yang et al., 2021;
Tiyajamorn et al., 2021) or contrastive learning(Yu
and Joty, 2021).

For NLG, one of the most promising findings of
cross-lingual transfer is that multilingual machine
translation systems trained on massive amount of
multilingual data manifest emergent ability of un-
supervised (Üstün et al., 2021) or zero-shot trans-
lation for those unseen language pairs (Gu et al.,
2019; Chen et al., 2022). Such observations en-
courage researchers to design effective pretrain-
ing objectives favoring cross-lingual transfer for
monolingual text generation tasks (e.g., summa-
rization) (Chi et al., 2020; Lewis et al., 2020;
Maurya et al., 2021), whereas the finetuning pro-
cess receives little attention. Despite learning
language-agnostic features for finetuning as in
NLU is promissing, language information, in con-
trast to NLU, is critical for NLG. If only language-
agnostic features are used, the model will not be
able to generate text in the specified language.

3 Methodology: LAFT

Figure 1 shows the overall workflow of LAFT
when applying to mBART (Liu et al., 2020).1 As
illustrated, we first introduce an extra task mod-
ule (TM), parameterized by two Transformer lay-
ers(Vaswani et al., 2017), between the encoder and
decoder for language-agnostic task acquisition
(§3.1), where the TM is expected to learn how
to manipulate input semantic content given the
task. We then perform language specialization
by adding language information to the language-
agnostic representation obtained by the TM, allow-
ing the decoder to synthesize the resulting text in
the provided language (§3.2).

3.1 Language-agnostic Task Acquisition

Our approach is inspired by Yang et al. (2021) that
for an MPLM, the representations from the same
language L tend to cluster together, which implies
that they share vector space components that cor-
respond to the language identity of the language
L. This finding intuitively enables disentangling
the semantic contents from language identity by
removing the language components from the rep-
resentation, which can be conducted as following
two steps:

(1) Estimation of language component. Given
a pretrained mBART, its encoder can be seen
as a multi-lingual embedding system E. For

1In this paper, we primarily study the proposed language-
agnostic finetuning on mBART, but the method can be applied
to any encoder-decoder MPLMs.
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each language L, we construct a language matrix
ML ∈ Rn×d based on a collection of monolin-
gual texts {tiL}ni=0, where the ith row of ML is
the sentence representation of tiL given by E. We
then apply singular value decomposition (SVD)
ML = ULΣLV

T
L , and extract the first k right sin-

gular vectors (i.e., columns of VL ∈ Rd×d) as the
shared components for language identity of L, de-
noted as cL ∈ Rd×k.
(2) Removal of language component. Given a
text xL = {xiL} from the language L, where xiL is
the ith token of xL, we denote the representation
of xiL given by the encoder as eiL. The sentence
representation eL is obtained via the mean-pooling
of {eiL}. Then we subtract the projection of eL
onto cL from eiL as

riL = eiL − cL
cTLeL
∥eL∥2

.

As a result, rL = {riL} is the language-agnostic
representation as expected, which is then fed into
the TM for learning the task:

hL = TM(rL)

3.2 Language Specialization for Generation
The proposed language-agnostic task acquisition
eases the transfer of task knowledge across lan-
guage. Unlike NLU tasks, which can rely solely on
semantic information for classification, language
information is critical for NLG tasks since we want
to generate text in a specific language. Thus, be-
side language-agnostic task acquisition, we also
need to improve the model regarding its language
generation ability. We refer to this as language
specialization, which includes two aspects: (1) we
integrate the subtracted language components into
the TM’s language-agnostic output, (2) we enhance
the decoder with an extra language adapter.
Fusing with subtracted language components.
We apply a fusion mechanism to add subtracted
language components cL back to the TM’s output:

B(hiL, cL) = U
(
ReLU

(
D([hiL, cL])

))
+ hiL,

where D ∈ R2dh×da and U ∈ Rda×dh

are parametrized by two feed-forward layers.
B(hiL, cL) is then fed into the decoder.
Enhancing decoder with language adapter. The
decoder is responsible for generating text in a given
language. To promote the decoder to adapt to

the fused representations, we incorporate a feed-
forward layer based language adapter to each de-
coder layer (Pfeiffer et al., 2020a), which is jointly
trained with the fusion mechanism.

3.3 Learning

Learning of LAFT contains two stages.
(1) Unsupervised generation pretraining. In this

stage, we only allow the TM and fusion mech-
anism trainable while keeping the remainder
of the model parameters frozen. We leverage
unsupervised data from the source and target
language. Following (Liu et al., 2020), we
use a cross-entropy loss between the original
document and the decoder’s output given the
corrupted document as input, which is con-
structed by applying “text infilling” noise to
the original document (Liu et al., 2020).

(2) Task finetuning. In this stage, given source
language annotated task data, we freeze the
fusion mechanism and optimize the TM using
the cross-entropy loss between the decoder’s
output and the ground-truth reference.

4 Experiments

We experiment on two NLG tasks, i.e., abstrac-
tive text summarization and question generation to
evaluate our LAFT for cross-lingual transfer.

Datasets. For text summarization, we perform
experiments on the XGIGA datasets. We choose its
English part as the training set and its French and
Chinese parts as the evaluation set. For question
generation, we choose the XQG dataset (Chi et al.,
2020). The XQG dataset consists of the English
part and the Chinese part. We train models on
English part and evaluate models on Chinese part.

We learn language specialization using cc100
dataset (Conneau et al., 2020), from which we se-
lect a subset containing 1,000,000 sentences for
Chinese, English and French respectively.

Baselines. We compare LAFT with the following
baselines:

• mBART (full): directly finetuning the full
parameters of mBART on English annotated
data;

• mBART (enc): only finetuning the encoder
parameters of mBART;

• TM + adv: using adversarial training instead
of LAFT to force the output of TM to be
language-agnostic.

More details are presented in Appendix.
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Setting Zero-shot Trans-train

Language zh→zh fr→fr zh→zh fr→fr

Baselines
mBART (full) 43.82 33.40 47.33 42.8
mBART (enc) 45.85 36.55 47.09 42.11
TM + adv 31.41 36.71 48.04 43.04

LAFT 46.37 40.78 47.66 43.10

Table 1: Results of abstractive summarization. “full“:
finetuning full model. “enc”: finetuning only encoder

Setting Zero-shot Trans-train

Language zh→zh zh→zh

Baselines
mBART (full) 21.62 36.58
mBART (enc) 32.08 33.57
TM + adv 21.98 37.02

LAFT 34.53 37.02

Table 2: Results of question generation.“full“: finetun-
ing full model. “enc”: finetuning only encoder.

Results of Zero-shot Setting. First, we evaluate
models on the zero-shot cross-lingual transfer. Re-
sults of abstractive summarization and question
generation are presented in Table 1 and Table 2,
respectively. When a full mBART is fine-tuned,
it runs the danger of incorrectly associating the
task to the source language, resulting in poor trans-
fer performance. Only Finetuning the encoder
can somehow alleviate but does not fundamentally
address the problem. LAFT, on the other hand,
can learn task ability avoiding associating to the
source language, which improves transferability for
generation and outperforms baseline systems. Sur-
prisingly, while the adversarial method is known to
be good at removing language information, it fails
miserably in the zero-shot case due to a lack of task
data for each language, causing the model to degen-
erate into copying the input sequence regardless of
languages.

Results of Translate-train Setting. We evaluate
models on the translate-train setting to see if data
augmentation by machine translation could further
help. As shown in Table 1 and Table 2, we can ob-
serve that data augmentation can generally improve
all approaches. Note that because pseudo task data
for target languages is accessible in this setting, the
adversarial method can function normally. Never-
theless, our LAFT still achieves comparable results
with the adversarial method, demonstrating the ef-
fectiveness of the proposed method.

(a) mBART encoder (b) Language-agnostic 
 task acquisition

(c) Language 

  specialization

en

fr

en

zh

remove lang. add lang.

Figure 2: t-SNE (Van der Maaten and Hinton, 2008)
visualization of representations.

Model R-L (↑) |θtrainable|% (↓)

mBART (full) 43.82 100%
mBART (enc) 45.85 19.2%

mBART (enc top-2) 44.85 3.8%
Adapter (Pfeiffer et al., 2020a) 43.05 4.3%

LAFT 46.37 3.8%

Table 3: Number of trained parameters and results on
abstractive summarization. “enc top-2”: only finetuning
the top two layers of the encoder.

Visualization of LAFT. To ensure that LAFT can
yield language-agnostic representations, we visu-
alize the representations before and after applying
LAFT in Figure 2. As we can see, the original
mBART encoder representation is distributed sep-
arately in terms of languages (Figure 2(a)). Af-
ter removing language identity, the distribution of
representations from different languages becomes
closer, allowing the model to produce language-
agnostic representations for task acquisition (Fig-
ure 2(b)). Finally, once language specialization is
performed, the representations become language-
aware thus distribute separately again, making it
easier for the decoder to generate text in a specific
language (Figure 2(c)).

Analysis of Parameter Efficiency. To demonstrate
parameter efficiency of LAFT, we compare the per-
formance of abstractive summarization with the
number of training parameters. As shown in Ta-
ble 3, our method yields the best ROUGE-L score
with the fewest training parameters, demonstrating
that LAFT results in a parameter-efficient model.

5 Conclusion
This paper proposes language-agnostic finetuning
(LAFT) to facilitate zero-resource cross-lingual
transfer for text generation. We finetune a task
module only through the semantic contents of a
multi-lingual representation. To achieve it, we uti-
lize a disentangled-based and an adversarial-based

263



method. Then we combine the information of a
language with the task module’s language-agnostic
representation, allowing the model to generate text
in the language. Experimental results show that
language-agnostic finetuning results in a better and
parameter-efficient transferability on two text gen-
eration tasks. The major limitation of our work is
we only explore two target languages. We leave
other languages for future work.
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A Appendix

Implement Details. We choose the mBARTlarge
model as the backbone model. The task mod-
ule consists of two transformer layers, whose set-
ting is the same as the transformer layer in the
mBARTlarge model. Language adapters are ap-
pended by each decoder layer. We follow the set-
ting of language adapter used in (Pfeiffer et al.,
2020b) while moving the layer normalization to
the end of the adapter. For all experiments, we set
da as 1024 and k as 6.

We utilize the Adam optimizer with learning rate
scheduling. The warm-up step is 10000, and linear
learning weight decay is used in the remaining
training. We select the maximum learning rate
from {1e− 4, 3e− 5} according to the best result
on the evaluation set. Decoding is done with beam
search (beam size = 5) and length penalty (α = 1.5
for text summarization and α = 3 for question
generation).

Adversarial-based method. The main idea is to
use adversarial training to force the output of the
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TM to be language-agnostic. Specifically, we intro-
duce a language classifier to judge whether or not
a text is from the source language. Given the TM’s
output hL of a text xL, the classifier calculates the
probability that xL belongs to the source language
Lsrc as ŷ = xLW

T
c , where Wc ∈ Rda×1 is the

weight of the classifier. We encourage the classifier
to recognize x’s language identity by minimizing a
cross-entropy:

Lcls = −Ix∈Lsrc ·log(ŷ)−(1−Ix∈Lsrc)·log(1−ŷ),

where Ix∈Lsrc = 1 when x is from the source lan-
guage, otherwise 0. On the other hand, we encour-
age the TM to fool the language classifier:

Ladv = −Ix∈Lsrc ·log(1−ŷ)−(1−Ix∈Lsrc)·log(ŷ).

Besides, we utilize the cross-entropy loss between
the decoder’s output and the target sequence:

Lgen = −(1−ϵ) log p(i)−
∑

j ̸=i∈V

ϵ

|V | − 1
log p(j)

The final loss is,

L = Lcls + Ladv + Lgen

Note that the adversarial training needs data from
the target language. As the annotated data from the
target language can not be accessed, we leverage
monolingual data.
Using multi-lingual representations. Like LAFT,
we also need to provide language information to
TM’s output. Given the TM’s output hiL and the
encoder’s output eiL, a gated mechanism aggregates
hiL and eiL via a weighted sum as

αi = sigmoid(Wg([h
i
L, e

i
L]) + bg)

giL = αihiL + (1− αi)eiL

where Wg ∈ Rdh+da . Unlike the fusion mecha-
nism, the gated mechanism is trained along with
the whole model.

266


