Comparing informativeness of an NLG chatbot vs graphical app
in diet-information domain

Simone Balloccu
University of Aberdeen, UK
simone.balloccu@abdn.ac.uk

Abstract

Visual representation of data like charts
and tables can be challenging to under-
stand for readers. Previous work showed
that combining visualisations with text
can improve the communication of in-
sights in static contexts, but little is
known about interactive ones. In this
work we present an NLG chatbot that
processes natural language queries and
provides insights through a combination
of charts and text. We apply it to nu-
trition, a domain communication quality
is critical. Through crowd-sourced eval-
uation we compare the informativeness
of our chatbot against traditional, static
diet-apps. We find that the conversational
context significantly improved users un-
derstanding of dietary data in various
tasks, and that users considered the chat-
bot as more useful and quick to use than
traditional apps.

1 Introduction

Visual representations of data is commonly
used to communicate insights to the reader.
However, understanding the meaning of
charts or other visualisations can be chal-
lenged by visual deficit, information context,
or just the required cognitive effort. Pre-
vious research investigated on generating
textual explanations of data and comparing
them with visualisations (Gatt et al., 2009;
Molina et al., 2011; Gkatzia et al., 2017). Ap-
proaches like these are particularly useful in
healthcare, where lots of data get produced
and communication plays a critical role (Zol-
nierek and DiMatteo, 2009; Brock et al.,
2013). Most of these works showed that com-
bining text and visuals improve users’ under-
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standing of data but they explored static con-
texts only, where information is presented
in a fixed way and there is no active interac-
tion with the reader. Little is known about
the effects of text and charts combination in
dynamic scenarios, such as conversational
ones. Since chatbots are emerging as tools
for healthcare (Zhang et al., 2020), it is im-
portant to assess if they can provide bet-
ter communication than static tools (e.g. e-
health apps).

In this work we develop and evaluate an
NLG-chatbot that generates insights expla-
nation by combining graphics and text. Us-
ing our chatbot, users do not need to explore
or interpret data themselves, as they can di-
rectly ask what they’re looking for and get
it, along with explanation. We apply it to
diet coaching, a domain where communica-
tion quality is critical (Van Dorsten and Lind-
ley, 2008; Savolainen, 2010; Michie et al.,
2011) and often overlooked by existing tools
(Balloccu et al., 2021; Balloccu and Reiter,
2022). To assess the effectiveness of this ap-
proach, we run a human evaluation in which
we compare our chatbot with traditional diet
apps. Participants were assigned to either
our chatbot or an app, and used it to take
a 10-point quiz concerning the extraction of
insights from a simulated food diary. At the
end, participants expressed a feedback on
the assigned tool. Results show that using
our chatbot led to significantly higher scores
compared to using traditional apps, both in
general and with regards to particular sub-
topics. Feedback analysis also reveal that
participants perceived our chatbot as more
useful for finding diet problems and quicker
to use than traditional diet apps.
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Figure 1: Chatbot architecture and interaction flow.

2 Related work

In this section we recap past research on
charts and text combination for insights ex-
planation. We first look at more general
work, then move to healthcare and diet-
coaching.

2.1 Text vs Graphics in NLG

Previous work investigated how NLG can
enhance understanding of data by combin-
ing textual content and images. Work on
weather data (Gkatzia et al., 2017), showed
mixed text and pictures improving decision-
making over images alone. Dashboards
(Ramos-Soto et al., 2017) benefit from tex-
tual explanation of charts as well, as it helps
assessing learning in students. Combin-
ing charts with explanation of sensors data
(Molina et al., 2011) helps insights under-
standing for general users. Driving reports
(Braun et al., 2015) are more helpful if pre-
sented as a mix of pictures and text. Health-
care data can also be explained through NLG
(Pauws et al., 2019). Experiments in NICU
(Law et al., 2005; van der Meulen et al.,
2010) suggest that combining charts and
text could be the preferred approach by clin-
icians.

2.2 Text vs Graphics in diet-coaching

Information quality and communication
plays a big role in diet (Van Dorsten and Lind-
ley, 2008; Savolainen, 2010; Michie et al.,
2011). This applies to apps as well: com-
prehensibility showed to be a predictor of

prolonged app use (Lee and Cho, 2017). Sub-
optimal communication can confuse and de-
motivate users, leading to early abandon-
ment (Murnane et al., 2015; Mukhtar, 2016).
Despite this, diet apps (like MyFitnessPal
1 or FatSecret?) typically come as calorie
counters, where users log their meals to ob-
tain insights. These tools adopt very lim-
ited textual communication and make ex-
tensive use of visualisations that must be
interpreted by users themselves (Balloccu
and Reiter, 2022). Considering the relation-
ship between numeracy and nutrition liter-
acy (Mulders et al., 2018), this poses a bar-
rier between users and the delivered infor-
mation. Our previous work (Balloccu et al.,
2021) showed similar issues for conversa-
tional agents: chatbots adopt fixed educa-
tional material (Casas et al., 2018; Stephens
et al., 2019; Davis et al., 2020), such as PDFs
containing guidelines, and expose lack of
reasoning over user queries (Maher et al.,
2020). Similarly to apps, chatbots show plain
reports, with little to no feedback on goals,
progress or mistakes (Casas et al., 2018;
Prasetyo et al., 2020).

3 NLG chatbot to improve
communication quality

Our chatbot consists of an Input Layer for
users’ input understanding; a Data Layer
that extracts insights and generates visual-
isations; a Communication Layer that per-

!www.myfitnesspal.com
Zhttps://www.fatsecret.com/
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Figure 2: Overview of the NLU pipeline.

forms planning and surface realisation (Fig-
ure 1). We use RASA Open Source 2.0% as
the main infrastructure for the entire system,
and exploit its NLU component (Figure 2) for
the Input layer; the Data Layer adopts a cus-
tom data analysis logic; the Communication
Layer adopts rule-based NLG and variable
templates (through Jinja 3.0 4).

We adopt an hybrid architecture: we use
machine-learning for NLU but restrict text
generation to rules. This is mainly for two
reasons: 1) diet domain imposes strict accu-
racy requirements that cannot be met by cur-
rent E2E NLG (Thomson and Reiter, 2020;
van Miltenburg et al., 2021) and 2) to the
best of our knowledge, there is no publicly
available diet-coaching corpus which can be
used to train or fine-tune generative models.
On the other hand, machine-learning offers
good generalisation for NLU with the only
risk being unexpected inputs or failure in
intent classification.

We model two main interactions into the
chatbot: basic reports and comparisons (Fig-
ure 3). Basic reports show insights about a
single time frame, either as brief informa-
tion on energy and nutrients balance or com-
binations of charts and text. Comparisons
extend basic reports to multiple time frames
by informing users about progress (e.g. im-
proved intake; changes in food choices etc..).
For each request, users can specify metrics
(calories and five nutrients: carbohydrates,
protein, fat, sugar and sodium) and time (de-

3https://rasa.com/docs/rasa/
“https://jinja.palletsprojects.com/en/3.0.x/

tected via Duckling Entity extractor®). This
approach offers more flexibility than tradi-
tional apps, that typically aggregates all the
metrics in a single section (e.g. a table) and
present pre-defined comparisons (e.g. every
month).

3.1 Explanation through text and
charts

Users can access two typologies of insights:
basic and advanced. Basic insights show
energy and nutrients intake (see Figure 3)
as brief textual messages. This is thought for
users that need a quick glance at their data.
Advanced insights deliver more information
and are presented as a combination of text
and charts. Users can obtain the following
advanced insights (Figure 4):

1. Intake analysis: reasons and explains
intakes with regards to user goals.

2. Trend and consistency: detects if
trends match recommended changes
in diet (e.g. getting less calories to
fix an excess) and checks intake con-
sistency (maintaining a stable intake
across days).

3. Food analysis: reasons and explains
intakes at food level, by showing which
food has the biggest impact.

Advanced insights naturally extend to com-
parisons as well (Figure 4). To let both
novice users (that need supervision) and ad-
vanced ones access advanced insights, they
can be obtained in two ways (Figure 5):

®https://duckling.wit.ai/
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Figure 3: Basic report and comparison as pre-
sented by the chatbot.

1. Guided navigation: through generic
queries (e.g. "tell me more about this"
or "anything else?"). Following this trig-
ger, the chatbot presents a button inter-
face for each available advanced insight.
Buttons can be checked and unchecked
to obtain only those insights that are of
interest.

2. Natural language query: by directly
asking for specific insights and metrics.
This can be done by specifying a partic-
ular insight (e.g. "food" or "intake") on
a specific period.

For both interactions, users can specify one
or more metrics.

¥our energy intaka;

| s
=== =

Y ENERGY ¢

I ON AVERAGE: You got 93% (7% deficit).
It's a bit too low, but not worrying. A bit of
work and it will be ok. &2

~/ PROGRESS: The average energy intake got
better (now it's 8% better). ==

. TOUGHEST DAY: November 27, your
intake was 85% (15% deficit). You should
increase your consumption, we'll have towork |
on it. & |
~/ PROGRESS: The intake for most off-plan
day got better (now it's 60% better). &=

1. FOOD: In the below chart you can see how
different foods contributes to your intake:

o

Figure 4: Example of advanced insights (intake
and food analysis) for comparisons.

3.2 Other features

We implement a number of supplementary
best practices (Ferman, 2018) to further
improve usability and clarity. The chatbot
actively provides feedback for each input
(while informing users on the pending task);
adopts emojis to make insights more un-
derstandable; splits the content in multiple
messages and introduce a dynamic delay be-
tween them to avoid flooding.

4 Experiment setup

We deploy our chatbot on Telegram Bot API®
and compare its informativeness with tradi-
tional diet apps. We gather our test popula-
tion (workers) through crowd-sourcing on
Amazon Mechanical Turk’. Details of recruit-
ment, pay and sanity checks are available in
the Appendix A. We choose to compare our

Shttps://core.telegram.org/bots/api
"https://www.mturk.com/worker/help
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chatbot with MyfitnessPal® (MFP) and Fat-
Secret? (FS). An example of the two apps Ul
can be seen in Figure 6. We choose these
two apps based on their popularity and down-
loads number on the Apple and Android app
stores. We do not compare against any di-
eting chatbot as none of those present in
literature is publicly available.

4.1 Measuring informativeness

Aiming at communication improvement, we
need to find a measure to capture whether

8https://www.myfitnesspal.com/
https://www.fatsecret.com/

one specific tool performs better than oth-
ers. From communication theory (Webster
and Morris, 2019) we adopt the concept of
"informativeness", defined as "how success-
fully a person is able to convey an intended
message". We extend this definition to diet
systems as "how successfully a tool is able
to convey an intended message". To capture
informativeness we create a ten questions
quiz regarding diet analysis (a sample is pro-
vided in Appendix B). The quiz consists of 4
macro-tasks:

1. Day analysis: understanding if calories
and carbohydrates are balanced on a
single day (2pts).

2. Food analysis: understanding what
food provided most calories and fat on a
single day, along with quantities (4pts).

3. Week analysis: understanding if calo-
ries and carbohydrates are balanced
across a week (2pts).

4. Weeks comparison: understanding if,
by comparing two weeks, calories and
carbohydrates improved or worsened
(2pts).

Each question is worth 1 point, for a total
of 10 points. We choose to develop a cus-
tom quiz because no available questionnaire
can be used evaluate the informativeness
of a diet-coaching tool. In creating it, we
analyse existing apps and all the informa-
tion that they deliver; we incorporate ex-
perts recommendations from previous sur-
veys (Vasiloglou et al., 2020); we consider
the theoretical constructs of self-regulation
(Zahry et al., 2016), with a particular focus
on the measure of informativeness. We avoid
evaluating "trend and consistency" feature
for fairness, as apps don’t offer a way for the
user to infer such information without long
and tedious calculations.

Workers were randomly assigned to either
our chatbot, MFP or FS, each of which was
pre-filled with a simulated food diary (none
of the data belonged to the users) consist-
ing of 2 weeks of logged meals. We obtained
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Figure 6: Food Diary and nutrition reports as showed to the user in FatSecret (left) and MyFitnessPal

UI (right).

n=27 workers assigned to our chatbot; n=31
workers to MFP; n=29 workers to FS. Be-
sides the tool itself, workers were provided
with a PDF guide on how to use it and a glos-
sary explaining the meaning of the terms
used in the quiz. Each worker took the quiz
and was asked to answer the questions to
the best of their knowledge by using the tool.
Through the quiz we test the following hy-
pothesis:

Hypothesis 1 (H1): Chatbot workers
scored higher on informativeness quiz than
MFP or FS workers.

4.2 Measuring nutrition literacy

Previous research highlighted the impor-
tance of nutrition literacy in dieting (Michie
et al.,, 2011), so we analyse its impact on
our experiment. We also analyse if our chat-
bot communication can reduce the score gap
between different literacy levels. Before tak-
ing the quiz, each worker completed Pfizer’'s
Newest-Vital-Sign (NVS) (Weiss et al., 2005;
Powers et al., 2010), consisting of 6 ques-
tions (each one worth 1 point) regarding an
ice-cream label. NVS scores are grouped
in ranges: 0-1 refers to "high likelihood of
limited literacy", 2-3 refers to "possibility of
limited literacy"; 4-6 refers to "adequate lit-
eracy". We compare NVS scores with quiz
scores to test the following hypothesis:

Hypothesis 2 (H2): There was a positive
correlation between NVS score and quiz
score in our experiment, but not for chat-
bot workers.

4.3 Measuring perception of the tool
and past experience

Finally, we inspect workers opinion on the
tool they used. We ask each worker to rate
the tool under different characteristics (see
Figure 8) through Likert-5 scale. Through
this approach we test the following hypothe-
sis:

Hypothesis 3 (H3): Our chatbot received
higher ratings across the proposed ques-
tions.

Finally, we ask workers to specify whether
they had past experience with dieting tools
(including the one they were assigned to)
and to specify how often they used it (often;
occasionally; rarely; never).

5 Results analysis

For variance analysis, we adopt One-Way
ANOVA and Tukey’s post-hoc test (replaced
respectively by Kruskal-Wallis test and
Dunn’s post-hoc test if ANOVA’s normality
requirement is not met). To test variable
dependence we adopt Chi-squared test and
Bonferroni’s post-hoc test. For correlation
test we adopt Pearson correlation (substi-
tuted by Spearman correlation if Pearson’s
normality requirement is not met).

5.1 Preliminary checks

Before analysing results, we verify nutrition
literacy uniformity across our population, to
ensure that none of the groups contained
mostly workers with high/low nutrition lit-
eracy. We discover that nutrition literacy

161



Average score Score differences
Topic CB FS | MFP | CB-FS | CB-MFP | MFP-FS
Overall (10pt) 6.65 | 4.13 | 5.22 | +2.52%* +1.43 +1.09
Day analysis (2pt) 1.15 | 0.76 | 1.32 | +0.40 -0.16 +0.56
Food analysis (4pt) 2.85 | 2.14 | 0.91 +0.71 | +1.94%%k | -1.23%
Week analysis (2pt) 1.35 | 0.66 | 1.05 | +0.70%* +0.30 +0.39
Weeks comparison (2pt) | 1.31 | 0.59 | 1.14 | +0.72%* +0.17 +0.55%*

Table 1: Results from informativeness quiz. On the left side: average scores, overall and for specific
tasks. Highest score for each category are in bold. On the right side: score differences between
tools. Green is for higher scores, red is for lower score. CB = Chatbot; MFP = MyFitnessPal; FS =
FatSecret. Significance: * for p<0.05; ** for p<0.01; *** for p<0.001.

‘Workers per class
NVS class | CB | FS MFP
LOW (0-1pt) 1 0 9
MID (2-3pt) 5 3 5
HIGH (4-6pt) | 21 | 26 17

Table 2: Distribution of nutrition literacy for our
population. CB = Chatbot; MFP = MyFitnessPal;
FS = FatSecret.

distribution is unbalanced among apps, with
the majority of workers with low nutrition
literacy assigned to MFP sample, none to
FS only one to our chatbot (see Table 2).
We re-balance the samples by removing all
the such workers workers. This limits our
inspections on nutrition literacy but keeps
the comparison fair. From now on, all re-
sults will refer to the re-balanced sample
unless otherwise specified. We also check
for meaningful difference in workers past
experience with diet tools, but find none nei-
ther in general (p = 0.47) and by considering
only those workers who had past experience
and (p = 0.27).

5.2 Quiz scores

We first check total and per-task quiz scores
(see Table 1). We find that, overall, the high-
est average score was reached by chatbot
workers. The difference was statistically sig-
nificant when compared to FS workers. Re-
gardless of the group, average scores were
low, not going much higher than 6/10. We
consider this as a further confirmation of
how hard understanding dietary insights is
for the average user, especially in our con-
text where data was simulated. By inspect-
ing individual quiz tasks, we see that chatbot
workers scored significantly higher in week
analysis and comparison than FS workers,

and in food analysis than MFP workers. We
also find that MFP workers scored signifi-
cantly higher than FS workers when compar-
ing weeks, while the opposite happened for
food analysis. Overall, chatbot workers al-
ways scored the highest score in every case,
except for the day analysis, where MFP work-
ers scores were slightly higher.

Next we look at the percentage of correct
answers to check if any of the tools were
associated with reaching specific scores (e.g.
maximum points or 0 points). First, we find
that our chatbot was positively associated
(p = 0.0001) with an overall score of 9/10
points. This tells us that the chatbot made
it easier to reach higher scores in general.
We then proceed to analyse individual quiz
tasks (Figure 7). Our chatbot was positively
associated with maximum score in food anal-
ysis and week analysis. For chatbot workers
it was easier understanding food details and
insights based on aggregation in general. It
was also negatively associated (p = 0.001)
with O points in weeks comparison. In fact,
every chatbot worker managed to answer at
least one of the two questions about compar-
ison right. Interestingly, we find the opposite
for FS, that was positively associated with
scoring 0 points in weeks comparison. This
tells us that FS workers struggled consid-
erably in this task. Lastly, using MFP was
negatively associated with maximum score
in food analysis: understanding food details
was one of the hardest tasks with MFP.

5.3 Nutrition Literacy effect on scores

We check if nutrition literacy influenced quiz
score. In here we discover a discrepancy be-
tween the balanced and unbalanced sample.
MFP workers show a significant difference
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Figure 7: Percentage of correct answers by task, for each tool. CB = Chatbot; FS = FatSecret; MFP
= MyFitnessPal. For day, week analysis and comparisons (2-points) we check no right answer (0%),
1 right answer out of 2 (50%) and all right answers (100%). For food analysis (4 points), we check
quarters as well. Significance: * for p<0.05; ** for p<0.01; *** for p<0.001; **** for p < 0.0001.

(p = 0.03) in scores between high and low nu-
trition literacy. By re-balancing the sample,
we lose this significance. We also discover
a moderate correlation (p = 0.48,p = 0.02)
between nutrition literacy and quiz score for
MFP workers, even after balancing the sam-
ples.

5.4 Users perception of the tool

Finally, we check workers feedback (see Fig-
ure 8). We notice a generally positive eval-
uation for every tool, with the chatbot get-
ting an higher amount of "Agree" ratings
across every question. By single-item anal-
ysis, our chatbot was positively associated
with "Agree" in Q1 (p = 0.01), where it also
shows a better mode value than the other
tools. Chatbot workers felt it more useful
for finding problems in the food diary. We
also find a better mode than both apps in
Q3, meaning that workers found it to be
quicker to use. This result in particular is
unexpected considering that there was no
significant difference in the quiz execution
time (p = 0.22). It could be that using natu-
ral language in our chatbot was felt as faster

than navigating through different app sec-
tions. No app showed better mode than our
chatbot in any question. Finally, it is inter-
esting to notice that FS scored higher than
MFP in Q5 despite being the tool with the
lowest scores across every task except food
analysis.

6 Discussion

From quiz results, chatbot workers scored
the highest in informativeness across every
scenario except for a slight advantage of
MFP in day analysis. In multiple contexts,
the difference with MFP and FS was statis-
tically significant. We also found that using
the chatbot was associated with higher com-
pletion rate in different tasks, and very high
overall scores like 9/10. With these results
we confirm H1. We could not inspect nutri-
tion literacy properly, as the different sam-
ples were too unbalanced and introducing
low-literate workers would have made the
comparison between MFP and our chatbot
unfair. We saw a relationship between lower
nutrition literacy and quiz scores, but iso-
lated to MFP workers, and could not verify
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it across the whole population. With these
results we neither confirm or reject H2 be-
cause of the lack of data. Looking at feed-
back, we found out that our chatbot received
a higher amount of "Agree" ratings across
every question. It was also the only tool that
showed association with maximum useful-
ness in finding diet problems. By analysing
the mode of each question, we discovered
that our chatbot was evaluated as quicker to
use than the other apps. We also see that,
unlike MFP and FS, it never showed a lower
mode than any other tool. With these results
we confirm H3.

7 Conclusion and future
developments

In this work we evaluated the combination of
charts and textual explanation for diet coach-
ing, in the conversational scenario. We im-
plemented an NLG-chatbot that understands
natural language input and returns dietary
insights as a combination of textual explana-
tions and visualisations. We compared the
chatbot with traditional static diet apps by
inspecting informativeness and user feed-
back. Results shows that the combination
of visuals and text efficiently delivers infor-

mation in diet-coaching, and makes it more
understandable. Improved informativeness
could play a critical role in diet outcome.
Feedback was generally more positive for
the chatbot, meaning that it can be a valid
tool for diet-coaching, potentially substitut-
ing static apps.

For future work we plan to investigate if
our approach can lead to actual learning
from the user, for example through spaced
repetition (Ausubel and Youssef, 1965; Tabib-
ian et al., 2019) that can positively affect
users’ forgetting curve (Ebbinghaus, 2013).
We also commit on addressing the limits of
our setup, to properly inspect the relation-
ship between nutrition literacy and informa-
tiveness. We also plan to inspect more per-
sonalised approaches to information tailor-
ing, namely by considering users’ stress and
emotional state that showed to be promising
research directions (Balloccu et al., 2020;
Balloccu and Reiter, 2022). Lastly, we con-
sider this result as a sign of the maturity
of our approach and we plan to run a trial
to measure its effect on diet-coaching (e.qg.
weight control).
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A Ethics

This section sums up the procedure we
adopted to ensure the ethical compliance
of our experiment.

A.1 Preliminary review

Before starting the experiment, procedure
and materials were carefully reviewed by
our institution Ethics Board (omitted for the
sake of double-blinded review). Our experi-
ment proposal was accepted without major
revisions.

A.2 Platforms

For the quiz, we adopted Microsoft Forms!®
because of its compliance with GDPR pol-
icy. For hiring, we used Amazon Mechani-
cal Turk. No recruitment qualification was
specified, beside custom ones to prevent the
same worker from submitting multiple HITs.
Participants were showed a consent form
containing all the information regarding the
experiment procedure. They were also in-
formed about the requirements that had to
be satisfied to obtain the remuneration. All
worker had to confirm their acceptance of
these conditions (through checkboxes) in or-
der to proceed with the experiment. Workers
were given an email contact in case of prob-
lems during the experiment.

A.3 Pay and workload

Before launching the experiment, we veri-
fied the average completion time with 10
test users. The average result for complet-
ing the whole experiment (reading informa-
tion; downloading and setting up material;
taking NVS; taking the quiz; expressing the
feedback) was 20 minutes. We gave each
worker 45 minutes, and paid 15USD for the
HIT. Workers were informed that if they ran
out of time on Mturk they could just finish
the quiz (on Microsoft Forms web platform)
and contact us through the provided email
address to still get paid.

Ohttps://forms.office.com/

A.4 HITs sanity checks

We received a total amount of 250 applica-
tions for our task. Most of these applica-
tion were fraudulent, with random answers
or unrealistic completion times. In order
to recognise legit HITs we set up multiple
sanity-checks, both in general and depend-
ing on the tool each worker was assigned.

A.4.1 Global sanity checks

To check on the attention of workers dur-
ing Pfizer's NVS, a fake price was added
to the ice-cream label. Consequently, we
added a (non scored) question to the form,
asking "what’s the price of the ice-cream?".
Moreover, each worker received a comple-
tion code that they had to submit on Mechan-
ical Turk platform after completing all the
tasks.

A.4.2 Sanity check for chatbot worker

The chatbot was programmed to accept
some custom queries that led to specific an-
swers. The workers were asked, at multiple
times, to trigger one of these query. We man-
ually checked the answers for HITs, in or-
der to verify whether workers actually used
the chatbot. In addition, conversations were
logged and anonymised, and the provided
WorkerID was used to track down specific
workers and verify the sanity of interaction.

A.4.3 Sanity check for FS and MFP
worker

To verify that workers actually used the diet
apps they were asked to provide a descrip-
tion of the app logo, and to check which
particular food (among three alternatives)
could be seen in a specified day. As this
tasks are subjective and could be failed by
legit workers who struggled to use the app,
each HIT was manually evaluated to avoid
unfair treatment.
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B Appendix A: Quiz sample

Evaluating the informativeness of
various diet-coaching tools ;-

* Required

Introduction

Please read the following instructions carefully before proceeding.

What is this experiment about?

This research aims at evaluating whether common diet-coaching apps are informat-
ive for users.

In other words, how easy it is for users to find the information they need and, most
importantly, how comprehensible they are.

What will | have to do?
For this experiment, we ask you to do 3 main tasks.

1. Preliminary form: during this step, you'll be asked to answer a short form (5-
6 questions) regarding nutrition. This will involve extracting information from a
sample nutritional label and reasoning about them.

2. Main form: following the completion of the previous point, you'll be assigned
to a tool (a diet-coaching app). You'll receive instructions on how to download
(through Play/Apple Store), install and use the app on your phone. Each
app has been pre-compiled with food diaries (imagine this as someone else re-
cord of what they ate).

You will be asked to explore this data to answer 10 questions.

3. Final feedback: finally, we will ask you to give us your opinion on the overall
experiment (7 questions), with a particular focus on the tool you used in step

2. You'll be asked for your worker ID and be given a completion code.
Return it to us to process your HIT.

Total time for doing this experiment should be between 30-45 minutes.
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Additional details (1/2)

Some important things to keep in mind:

1.

You'll need to install and use the assigned app on your phone (Android/IOS)
to complete the experiment.
Failure in complying with this requirement will cause HIT invalidation.

. The experiment is monitored. Fraudulent behaviour such as completing the

form without reading the questions or giving random answers will be de-
tected and will result in the invalidation of your HIT.

. Note that the previous points does not apply to the cases in which, despite us-

ing the app, you're still not able to give an answer. Regardless of the
amount of correct answer you give, you will still receive your remuneration.

. You will be assigned to only one app for this experiment. You won't have to re-

peat it multiple times.

. Most of the apps don't require any registration: we'll give you login credentials

(username and password).
In only one case, the app will require your phone number for access. We won't
be able to see or access this as it is a chat app (Telegram).

. You don't have to keep the app installed after the experiment. You can unin-

stall it immediately when done.

. None of the apps have been developed by us and therefore we won't receive

any data except the form answers.

. As said before, your assigned app will show you some data regarding food and

meals across different days.

Please only read the data, avoid changing, deleting or altering that data in
any way.

Data alteration/augmentation will result in experiment invalidation (and HIT
invalidation for MTurkers)

.In any case, no data (outside of form answers) will be gathered.

. Should you change your mind, you can withdraw from the experiment at any

given stage and without giving a reason, until the point in which data analysis

chall ha Aana with vnnir framnlatad) raciilte

169



Additional details (2/2)

Data management and storage

No personal data about you shall be collected or stored beside the data which will be
put in the forms. All your answers will be anonymously and safely stored in devices
belonging to University of Aberdeen. None of these data shall be released to the pub-
lic.

Confidentiality and anonymity

Raw data and the identity of participants will not be released to anyone outside the
research team. The data you provide will be analysed and may be used in publica-
tions, dissertations, reports or presentations derived from the research project, but
this will be done in such a way that your identity is not disclosed.

Consent
If you agree to take part in the research, you will be asked to indicate your consent by
ticking the following checkboxes.

Risk

We foresee no risk for any participant involved.

Sponsor
This research is being funded by the European Union's Horizon 2020 research and in-
novation programme under the Marie Sktodowska-Curie grant agreement No 812882.

Question *

| confirm that the research project “Evaluating the informativeness of various diet-
D coaching tools” has been explained to me. | have had the opportunity to ask
questions about the project and have had these answered satisfactorily.

Question *

I:] | consent to the material | contribute being used to generate insights for the research
project “Evaluating the informativeness of various diet-coaching tools”.
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Question *

| understand that my participation in this research is voluntary and that | may withdraw
D from the project at any time (until the point of data analysis) without providing a
reason. | understand that (for MTurkers) withdrawal will invalidate my HIT.

Question *

I:] | consent to allow the fully anonymised data to be used for future publications and
other scholarly means of disseminating the findings from the research project.

Question *

| understand that the information/data acquired will be securely stored by researchers,
but that appropriately anonymised data may in future be made available to others for

D research purposes. | understand that the University may publish appropriately
anonymised data in its research repository for verification purposes and to make it
accessible to researchers and other research users.
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Preliminary form (1/3)

In this first form, we ask you to answer some questions related to the nutritional la-
bel displayed below. Answer to the best of your knowledge.

Please do not seek help from anyone else to complete this form. The aim is not
to score maximum points at any cost. None of your answers will be shared with
anyone and your identity will be kept anonymous.

Additional help:
- You are allowed to use a calculator if you would like to.
- You do not need any app for this part of the experiment.

Nutrition Facts

* Serving Size ¥2 cup
Servings per container 4
Amount per serving
Calories 250 FatCal 120

%DV,
Total Fat 13g 20%
Sat Fat 9g 40%
Cholesterol 28mg 12%
Sodium 55mg 2%
Total Carbohydrate 30g 12%
Dietary Fiber 2g
Sugars 23g
Protein 4g 8%

*Percentage Daily Values (DV) are based on a
2,000 calorie diet. Your daily values may

be higher or lower depending on your

calorie needs.

Ingredients: Cream, Skim Milk, Liquid
Sugar, Water, Egg Yolks, Brown Sugar,
Milkfat, Peanut Oil, Sugar, Butter, Salt,
Carrageenan, Vanilla Extract.

Price: $12.72

D Check this box to proceed.
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If you eat the entire container, how many calories will you eat? *
(1 Point)

If you are allowed to eat 60 grams of carbohydrates as a snack, how
much ice cream could you have? *

(1 Point)

What's the price of the ice-cream? *
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Your doctor advises you to reduce the amount of saturated fat in your
diet. You usually have 42 g of saturated fat each day, which includes
one serving of ice cream. If you stop eating ice cream, how many
grams of saturated fat would you be consuming each day? *

(1 Point)

If you usually eat 2,500 calories in a day, what percentage (%) of your
daily value
of calories will you be eating if you eat one serving? *

(1 Point)

Pretend that you are allergic to the following substances: penicillin,
peanuts, latex gloves, and bee stings. Is it safe for you to eat this ice
cream? *

(1 Point)

O Yes
O No
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If you replied “No" to the previous question, motivate your choice: *
(1 Point)
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Main form (2/3)

To complete this form you will need your assigned tool.
Your assigned tool is: $tool_name

Please do not seek help from anyone else to complete this form.
The goal of this experiment is to assess your ability to use the tool, not to score
maximum points at any cost. Your identity will be kept anonymous.

Additional help:

* You are allowed to use a calculator if you would like to.
* We suggest you to use the glossary to better understand the questions.

How to download, setup and use your tool:
Below you can find two download links:

1. Glossary: we made this file to make it clearer what certain terms means. You
can use it to better understand what we're asking you.

2. User guide: this file shows you how to download, install and setup the app. It
also guides you through all the features that you can use to answer the follow-
ing questions.

Download links:
- Glossary: $glossary_link
- User guide: $guide_link

Credentials:

- Username: $user

- Password: $password

Please open the app and login now before proceeding.

Additional support:
If you have questions or something doesn't work, feel free to contact us at the follow-
ing email:

Please read everything before proceeding, otherwise you could struggle
while doing the experiment. *

D | read everything!
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Food diary on November 28 2021

Following the user guide, you can access a food diary. That is, for two consecutive
weeks you can see every meal and some related information (e.g.: nutrients and
calories).

Through the app, check November 28 2021 only and answer the questions to the

Which one of the following is true for November 28 2021? *
(1 Point)

(O The calorie intake is too high.
O The calorie intake is balanced.
O The calorie intake is too low.

O | don't know.

Which one of the following is true for November 28 2021? *
(1 Point)

O The carbohydrates intake is too high.
O The carbohydrates intake is balanced.
O The carbohydrates intake is too low.

O | don't know.
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Write the single food with most calories on November 28 2021:
(If you're not able to answer just type "unknown" and proceed) *

(1 Point)

How many calories does that food contain?
(If you're not able to answer just type 0 and proceed) *

(1 Point)

Write the single food with most fat on November 28 2021:
(If you're not able to answer just type "unknown" and proceed)

(1 Point)
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How many grams of fat does that food contain?
(If you're not able to answer type 0 and proceed) *

(1 Point)

Describe $tool_name app logo in your own words: *
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Food diary on November 22-28 2021

Following the user guide, you can access a simulated food diary. That is, for two
consecutive weeks you can see every meal and some related information (e.g.: nu-
trients and calories).

Through the app, check the week November 22-28 2021 only and answer the ques-
tions to the best of your knowledge

Which one of the following is true for November 22-28 2021? *
(1 Point)

O The calories intake is too high.
O The calories intake is balanced.
O The calories intake is too low.

O | don't know.

Which one of the following is true for November 22-28 2021? *
(1 Point)

O The carbohydrates intake is too high.
O The carbohydrates intake is balanced.
O The carbohydrates intake is too low.

O | don't know.
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Go to the home section of $tool_name. At the top, you will see a recap
of your profile, with a picture. What do you see as the profile picture? *

181



Food diary on November 15-21 2021 and
on November 22-28 2021

Following the user guide, you can access a simulated food diary. That is, for two
consecutive weeks you can see every meal and some related information (e.g.: nu-
trients and calories).

Through the app, check both:
- the week November 15-21 2021

~Am AA AAma

Which one of the following is true? *
(1 Point)

O The calorie intake is better on November 22-28 2021

O The calorie intake was better on November 15-21 2021
O The calories intake is the same for both weeks

O | don't know.

Which one of the following is true? *
(1 Point)

O The carbohydrates intake is better on November 22-28 2021
O The carbohydrates intake was better on November 15-21 2021
O The carbohydrates intake is the same for both weeks

O | don't know.
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On November 19 2021, which one of these can you see in
"Snacks/Other"? *

O Spaghetti bolognese

O Espresso

O Gin and Tonic
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Final feedback (3/3)

Thank you again for your help. In this final form, we ask you to evaluate your overall
experience by using your assigned tool.

Please do not give the most positive answer if you don't fully agree with the
statement. The goal of this form is to see how good the tool was for you.

Please give a score to each statement, based on how much you agree
with each one: *

Neither
Somewhat agree or Somewhat
Disagree disagree disagree agree Agree

$tool_name
helped me

finding

problems in O O O O O
the food

diary.

$tool_name
helped me
answer the O O O O O

questions.

Getting the
answers with
$tool_name O O O O Q

was quick.

$tool_name

was easy to

o O O O O O
understand.

| think | could

improve my
diet using O O O O O

$tool_name.
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Did you use any diet-coaching tool (even $tool_name itself) before this
experiment? *

O Yes
O No

If you chose yes, how often do you use the assigned or similar tool? *

Often
Occasionally

Rarely

ONONONGC

Never

185



