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Abstract

Code-Mixing is a phenomenon of mixing two
or more languages in a speech event and is
prevalent in multilingual societies. Given the
low-resource nature of Code-Mixing, machine
generation of code-mixed text is a prevalent
approach for data augmentation. However,
evaluating the quality of such machine gen-
erated code-mixed text is an open problem.
In our submission to HinglishEval, a shared-
task collocated with INLG2022, we attempt to
build models factors that impact the quality of
synthetically generated code-mix text by pre-
dicting ratings for code-mix quality. Hingli-
shEval Shared Task consists of two sub-tasks
- a) Quality rating prediction); b) Disagree-
ment prediction. We leverage popular code-
mixed metrics and embeddings of multilin-
gual large language models (MLLMs) as fea-
tures, and train task specific MLP regression
models. Our approach could not beat the
baseline results. However, for Subtask-A our
team ranked a close second on F-1 and Co-
hen’s Kappa Score measures and first for Mean
Squared Error measure. For Subtask-B our ap-
proach ranked third for F1 score, and first for
Mean Squared Error measure. Code of our
submission can be accessed here.

1 Introduction

Code-mixing1 is a phenomenon where linguistic
units from two or more languages are interspersed
in a single utterance or a speech event and is com-
mon in multilingual communities. Due to increased
penetration of the Internet and social media, code-
mixing has become common and, at the same time,
has posed challenges to automatic text process-
ing pipelines (Çetinoğlu et al., 2016). One such
challenge is the dearth of naturally occurring code-
mixed data. Data constraints have been the primary

1“Code-switching” also refers to the phenomenon of mix-
ing two or more languages and is often used interchangeably
with code-mixing by the research community. Following the
same convention, we use both terms interchangeably.

motive for researchers to leverage data augmen-
tation and construct synthetically generated code-
mixed corpora using monolingual parallel data as
input.

Synthetic code-mixed data generation, using
monolingual parallel corpora, is a non-trivial gen-
eration task. In the generated code-mixed sentence,
one has to be careful about both the adequacy (pre-
serving semantic content of monolingual sentence)
and fluency (grammatical correctness). The task is
further obscured by the fact that there is no single
way of writing a code-mixed sentence.

In this work, we describe our approaches im-
plemented in our submission to HinglishEval, a
shared task co-located at INLG2022. HinglishE-
val is based on the HinGE dataset (Srivastava and
Singh, 2021a). HinGE is created in two phases:
a) Human-generated Hinglish sentences: at least
two Hinglish sentences corresponding to the 1,976
English-Hindi sentence pairs; b) Synthetic Hinglish
sentence generation and quality evaluation: gener-
ate Hinglish sentences using two rule-based algo-
rithms, with human annotations for quality rating
for each synthetically generated sentence. Two
annotators rated each sentence on a scale of 1(low-
quality) to 10 (high-quality).

HinglishEval (Srivastava and Singh, 2021b), con-
sists of two subtasks - a) Subtask-1 Quality rat-
ing prediction: For each synthetically generated
sentence, predict the average (rounded-off) qual-
ity rating; b) Subtask-2 Disagreement prediction:
predict the disagreement score (absolute difference
between the two human ratings) for the syntheti-
cally generated sentence.

In our approach, we use a combination of code-
mixed metrics and language model embeddings
as features and train an MLP regressor for both
the tasks. Rest of the paper is organised as fol-
lows: Section 2 describes the features and models
in detail as well as the experimental setup; Section
3 covers the results of our experimentation; and
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Figure 1: System Architecture for predicting Average Quality Rating and Disagreement Rating of Synthetic Code-
Mixed sentences. Human-generated code-mixed sentences are also used as input to our Regression model.

we end with Section 4 discussing the implications,
limitations, and future work.

2 System Overview

Figure 1 shows the system architecture of our sub-
mission for both the Sub-Tasks. We describe the
Pre-Processing involved, methodology for feature
computation, and model architecture in subsequent
sub-sections.

2.1 Pre-Processing

Before computing features on code-mixed sen-
tences, we pre-process the sentences using CSNLI
tool 2. CSNLI computes the token-wise Language
ID (LID) and converts romanised Hindi tokens to
native (Devanagari) script, a step that is also known
as Normalisation. LID tags are used to compute
LID based code-mixing metrics. The normalised
code-mixed sentences are useful in computing Mul-
tilingual Large Language Model (MLLM) features.
MLLMs have been shown to perform better in
downstream tasks when input code-mixed text is in
normalised form (Pires et al., 2019).

2https://github.com/irshadbhat/csnli

2.2 Features

Features used in our regression model can be
broadly categorised as a) Code-Mixing Metrics as
features, b) MLLM based Features.

1. Code-Mixing Metrics: (Guzmán et al., 2017;
Gambäck and Das, 2016) proposed multiple
Language ID based metrics which are used to
compare code-mix corpora. However, such
measures fail to capture syntactic variety in
code-mixing, and to overcome this limita-
tion we utilise SyMCoM measures proposed
by (Kodali et al., 2022). We use the en-hi
code-mix PoS tagger released by authors to
compute PoS tags based on which SyMCoM
scores are computed. For syntactic code-mix
measures, we use SyMCoM scores for each
PoS tag (Eq 3), and sentence level scores
(Eq 4). For Eq 3 & 4, SU is a POS tag, and L1

and L2 are languages that are mixed. We use
the following LID based code-mixing mea-
sures:

• Code-Mixing Index (CMI) as described
in Eq. 1, where N is the total number
of languages mixed, wi is the number
of words present from ith language, n is
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F1 Score Cohen’s Kappa Mean Squared Error
Sub-Task 1

Quality rating prediction
0.25734 (2)
∆ = 0.009

0.09858 (2)
∆ = 0.00064

2.00000 (1)
∆ = 0

Sub-Task 2
Disagreement prediction

0.23523 (3)
∆ = −0.02592

-
3.00000 (1)

∆ = 0

Table 1: Performance Measures of our system for individual Sub-Tasks. Values in the bracket show position of our
system in the task leaderboard. ∆ is indicating the difference between the top-performing system for the sub-task
and our system.

the total number of tokens, and u is the
number of tokens given other tags.

• Number of Switch Points: number of
times the language is switched within a
sentence

• Burstiness, as described in Eq. 2, where
σt denotes the standard deviation of the
language spans and mt the mean of the
language spans. Burstiness captures the
periodicity in the switch patterns, with
periodic dispersion of switch points tak-
ing on burstiness values closer to -1, and
sentences with less predictable patterns
of switching take on values closer to 1.

Code-mix metrics are only computed for the
synthetic code-mix sentences. Further, we
scale normalised code-mixing metric based
features.

CMI =

∑N
i=1(wi)−max(wi)

n− u (1)

Burstiness =
σt −mt

σt +mt
(2)

2. MLLM Features: In recent years, Multilin-
gual Large Language Models (MLLMs), such
as XLM-R (Conneau et al., 2020), have per-
formed well across semantic tasks and cross-
lingual transfer, and have been the go-to meth-
ods in code-mixed settings as well (Khanuja
et al., 2020). We utilise embeddings from
two models - XLM-R and LABSE (Feng
et al., 2022). We compute the pseudo-log-
likelihood(PPL) scores proposed by (Salazar
et al., 2020), which are akin to perplexity
scores of conventional LMs. In our model,
PPL scores are computed for both synthetic
code-mixed sentences as well as human gener-
ated code-mixed sentences, and delta between
the two PPL scores is considered as a feature.

We use LABSE model to compute sentence
embeddings which are used as features. We
compute LABSE embeddings for Hindi, En-
glish monolingual sentences, and synthetic
code-mixed sentence. The intuition behind
using features from two different LMs was
to improve the discriminative power of the
model.

All the aforementioned features are concatenated
resulting in a vector of dimension 2,385, and these
features are used to train task-specific models.

SyMCoMSU =
(CountSUL1

)− (CountSUL2
)

∑2
i=1CountSULi

(3)

SyMCoMsent =
∑

SU

CountSU
len

×|SyMCoMSU |

(4)

2.3 Models

We experimented with various models such as -
Linear Regression, MLP Regressor, and XGBoost
with the combination of the above features. In the
Validation phase, we noticed that the MLP outper-
formed all the other models. For the test phase we
used only the MLP Regressor models. We train
task-specific MLP Regression models using the
same features, and rely on them to learn the com-
plex function to predict the task-specific values in
the same feature space.

We use the Sklearn library (Pedregosa et al.,
2011) to implement the MLP Regressor models.
We implement the MLP with three hidden lay-
ers - consisting of 1000, 100, and 10 neurons, re-
spectively, paired with ReLU activation functions,
an Adam optimizer, adaptive learning rate, and
a default batch size and number of epochs. We
could do only a limited hyper-parameter search,
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and a more structured and comprehensive hyper-
parameter search could lead to further improvement
in the model’s performance. Our hyperparame-
ter search space for learning rate was 0.01, 0.001,
0.0001, and for hidden layer dimensions search
space was {10,100,1000}.

3 Results

The scores for the Sub-Tasks achieved by our
model are given in Table 1. For Sub-Task 1, we
achieved rank 2 on the leaderboard for F1-Score
and Cohen’s Kappa, while a rank of 1 for Mean
Squared Error (tied with the baseline model).

For Sub-Task 2, we beat the baseline model
and achieved rank three on the leaderboard for F1-
Score and one for Mean Squared Error (tied with
the models achieving ranks 1 and 2).

For Sub-Task 1, our system is closest to the base-
line model, as none of the competing models would
beat the baseline model’s performance. We hy-
pothesize that the low-performance scores can be
attributed to the task’s hardness and the data’s size.

As noted earlier, a comprehensive and struc-
tured hyper-parameter search will likely improve
the results. Because of the very low delta between
our system and the best performing system, hyper-
parameter tuning could be crucial to surpassing the
baseline models.

4 Discussion

In this work, we propose a system to predict the
Quality and Disagreement scores given code-mixed
sentences and their monolingual counterparts. We
leverage the combination of code-mixing metrics
and MLLMs embeddings as features and train MLP
regressor models. While our approach fails to beat
the baseline/best performing system, the perfor-
mance of our system is a close second or third and
ranks first on MSE for both Sub-Tasks. Further
hyper-parameter tuning can further improve the
results.

Even the best-performing systems/baselines
have very low scores across performance measures,
which can be attributed to the difficulty of the task
at hand, and the subjectivity of annotators while
rating a sentence on a scale of 1-10. The size of the
dataset could also be a limitation for solving the
task at hand.

While MLP-based regressors are black boxes,
having an explainable/interpretable model could
help rank the features that impact the scores. In

our system, an ablation study could help prune the
feature space and identify the kind of features that
are useful in rating prediction, and such features
could be augmented. We leave these pursuits as
part of our future work.
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