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Abstract

Text revision refers to a family of natural lan-
guage generation tasks, where the source and
target sequences share moderate resemblance
in surface form but differentiate in attributes,
such as text style transfer (Shen et al., 2017),
text simplification (Xu et al., 2016), counterfac-
tual debiasing (Zmigrod et al., 2019), grammar
error correction (Sun et al., 2022) and sentence
fusion (Malmi et al., 2019).

As the most popular solution, sequence-to-
sequence (seq2seq) learning achieves state-of-
the-art results on many text revision tasks to-
day. However, it becomes less applicable when
there is no large-scale annotated parallel data
for training.

With recent breakthroughs in self-supervised
learning have enabled the pre-trained Trans-
former models (Vaswani et al., 2017), such as
BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019) and GPT (Radford et al., 2020), to
learn sufficient distributed representation of nat-
ural language, which is universally transferable
to a wide range of downstream tasks even with-
out labeled data (Tenney et al., 2019; Zhang
et al., 2019; Wu et al., 2020). In this work, we
borrow the power of a pre-trained Transformer
for text revision without any parallel data.

In this paper, we propose OREO, a method of
On-the-fly REpresentation Optimization for text
revision. Instead of generating an entire se-
quence of tokens from scratch, OREO first de-
tects partial text span to be edited, then con-
ducts in-place span revision:

Step 1: Representation optimization Given
an input sentence X(i) at the i-th iteration,
RoBERTa parameterized by θ transforms it to a
sequence of hidden states H(i), conditioned on
which the attribute head estimates the probabil-
ity of target attribute PWAtt(z

∗|H(i)). Then, for
each revision, we find a small local perturbation
on H(i) that maximally increases the likelihood
of target attribute. As such, the update rule of

hidden states is:

H(i+1) = H(i) − λ
∇H(i)L

∥∇H(i)L∥2
, (1)

where λ is a hyper-parameter that controls the
norm of perturbation, and

L = − logPWAtt(z
∗|H(i)). (2)

Step 2: Span replacement After hidden states
are updated, OREO conducts span replacement.
We calculate magnitude of ∇H(i)L for i-th to-
ken, where L is calculated with (2), and se-
lect the span with largest magnitude. The se-
lected span X

(i)
t:t+N of length N is replaced by

[LM-MASK] tokens. RoBERTa takes as input
the masked sequence, and predicts a new span
autoregressively with the previously updated
hidden states.

The training for OREO is simple: we fine-tune
the RoBERTa model with masked language
modeling and attribute classification jointly.
The first objective forces RoBERTa to infill
a span consistent with the semantics and at-
tributes represented by hidden states, while the
latter one steers the hidden states towards a
desired attribute.

We experiment with two fundamental revision
tasks, text simplification and formalization.
In text simplification, our method surpassed
the supervised baseline by 4.2 SARI score
and unsupervised baseline 5.3 SARI score on
Newsela-turk (Maddela et al., 2020). In text
formalization, our approach outperforms all of
the unsupervised baseline models in terms of
content preservation and formality on GYAFC-
fr (Rao and Tetreault, 2018). Ablation study is
conducted to validate the design of each com-
ponent in the model, through which we have
following key findings: (1) representation op-
timization is essential to formality metrics; (2)
infilling conditioned on hidden states helps pre-
serve content; (3) our gradient-guided span se-
lection contributes to both of them.1

1This paper was originally published at AAAI 2022. Ac-
cess the full version here.
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https://github.com/jingjingli01/OREO
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