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Abstract 

Conversational agents on smart devices 

need to be efficient concerning latency in 

responding, for enhanced user experience 

and real-time utility. This demands on-

device processing (as on-device processing 

is quicker), which limits the availability of 

resources such as memory and processing. 

Most state-of-the-art Dialog State Tracking 

(DST) systems make use of large pre-

trained language models that require high 

resource computation, typically available 

on high-end servers. Whereas, on-device 

systems are memory efficient, have 

reduced time/latency, preserve privacy, and 

don’t rely on network. A recent approach 

tries to reduce the latency by splitting the 

task of slot prediction into two subtasks of 

State Operation Prediction (SOP) to select 

an action for each slot, and Slot Value 

Generation (SVG) responsible for 

producing values for the identified slots. 

SVG being computationally expensive, is 

performed only for a small subset of actions 

predicted in the SOP. Motivated from this 

optimization technique, we build a similar 

system and work on multi-task learning to 

achieve significant improvements in DST 

performance, while optimizing the resource 

consumption. We propose a quadruplet 

(Domain, Intent, Slot, and Slot Value) 

based DST, which significantly boosts the 

performance. We experiment with different 

techniques to fuse different layers of 

representations from intent and slot 

prediction tasks. We obtain the best joint 

accuracy of 53.3% on the publicly available 

MultiWOZ 2.2 dataset, using BERT-

medium along with a gating mechanism. 

We also compare the cost efficiency of our 

system with other large models and find 

that our system is best suited for an on-

device based production environment. 

1 Introduction 

With the rapid growth of internet and thus Internet 

of Things, smart devices including smartphones, 

TV, refrigerators, among others that can 

communicate with each other are being 

increasingly introduced in the market. Smart 

devices come with processing power, which opens 

up the capability of deploying AI solutions 

(Agarwal et al. 2020, Ghosh et al. 2021). These 

solutions also include on-device Conversational 

Agents (CA) and thus its components such as intent 

detection (Agarwal et al. 2021). These CAs such as 

Alexa, Bixby, and Google home, tend to be task-

oriented, and perform the device-specific tasks.  

A user of a smart device CA expects a quick 

action and response from the device, otherwise it’s 

no better than manually performing the task. The 

low latency demands for on-device processing to 

reduce/remove network calls to a server. Even 

though the smart devices come with processing 

capabilities, usually the processing power and 

memory are very limited. This makes it very 

difficult to deploy large and complex DNN models 

on the device. 

We are particularly interested in the task of 

Dialog State Tracking (DST), which is a crucial 

module of a CA. Many state-of-the-art (SOTA) 

DST systems, such as Zhao et al. (2021), Tian et al. 

(2021) are based on large language models, which 

need high processing power and memory during 

inference,  and thus suitable for server side 

processing. 

In this scenario, on-device systems can play a 

major role. They can operate on low resources and 

hence, can be run on mobile devices / edge 

processors. In addition to occupying lesser space 

and providing lower latency, they also require 

lesser RAM. They are better than server based 
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models with respect to privacy, security and non- 

reliability on network. 

In light of these advantages, we focus on 

building high performance on-device DST. In this 

paper, we propose an efficient DST architecture, 

which can run in resource constrained environment 

and can provide comparable accuracy to other 

SOTA models on MultiWOZ 2.2 dataset (Zang et 

al., 2020) . 

Majority of the open vocabulary based DST 

systems, predict/generate slot values at each turn. 

This is rather an inefficient approach for both 

latency and prediction accuracy. Kim et al. (2020), 

worked on solving this challenge and proposed 

Selective Overwriting Memory for efficient DST 

(abbreviated as SOM-DST), based on a two-step 

process consisting of State Operation Predictor 

(SOP) and Slot Value Generator (SVG) modules. 

SOP helps decide which slots’ values need to be 

updated/generated, thus gating the amount of SVG 

requests made. As the two-step architecture 

achieves significant improvements in latency, we 

base our experiments on SOM-DST.  In this work, 

we try to improve the SOP module, as the authors 

analyzed better possibility of improvements in SOP 

than SVG. 

The SOM-DST system was trained on 

MultiWOZ 2.1 (Eric et al., 2019), which didn’t 

have intent information. We work on MultiWOZ 

2.2 dataset and make use of the intent annotation 

provided for each utterance, which may prove to be 

helpful for the SOP in a multi-task setting of intent 

and slot prediction. Intent in an utterance depicts 

the ulterior motive of the speaker. For example, 

intents for Restaurant domain are find_restaurant 

and book_restaurant, which represent the main 

motive of the speaker of finding/booking a 

restaurant. Intent information may help selecting 

an appropriate operation (SOP) for each slot. For 

example, if the conversation is about meeting at a 

restaurant for lunch, then a dialog turn carrying 

time information related to a different intent (such 

as “We had been to the same restaurant yesterday 

at 4 PM”) needs to be eliminated for the SVG 

generation phase. We experiment with different 

strategies to fuse the information from different 

representation layers of intent and slot predictors. 

SOM-DST makes use of BERT-base model, 

which is a large model, not suitable for on-device 

processing. In this work, we not only improve the 

performance with joint learning and different 

fusion techniques, but also reduce the model size 

by replacing BERT-base with the BERT-medium 

model, making the overall size of the model      

~202 MB (binary PyTorch file), small enough to 

deploy on-device. 

Our major contributions include: 

   1. We build a lightweight two-step DST system 

that can be deployed on-device, while providing 

competitive efficiency to the SOTA models. 

   2. We improve a previous two-step model (SOM-

DST) efficiency by jointly predicting intent, 

domain, state operation and slot value generation. 

   3. We experiment with different fusion strategies 

such as self-attention and gating while 

concatenating representations at different levels, to 

achieve better multi-task performance 

2 Related Work 

SOTA: Most recent works which have achieved 

SOTA results on MultiWOZ 2.2 are based on large 

language models. Lee et al. (2021) in their work of 

using Schema-Driven Prompting for DST have 

used T5 language model (Raffel et al., 2020). Tian 

et al. (2021) have introduced a two-pass generation 

process in which the second pass amends the 

primitive dialog state which was generated from 

the first pass and alleviates unnecessary error 

propagation. They also use large language models: 

GPT-2 and PLATO-2, and the two-pass generation 

process would also increase the latency. 

Rastogi et al. (2020), proposed a scalable DST 

architecture for Schema Guided Dataset (SGD) for 

task oriented virtual assistants which predicts intent 

along with slot values. Their baseline model 

consists of two modules: Schema Embedding 

Module which embeds the schema elements 

(intents, slots and categorical slot values) and State 

Update Module which predicts the active intent, 

requested slots, slot values and performs state 

update using utterance (current user turn and 

previous system turn) embeddings and schema 

embeddings.  

Fusion: Fusion of information from intent 

prediction and previous belief state is performed 

using fusion method described in CrossViT (Chen 

et al, 2021). The major advantage of this technique 

is the patch based encoding using transformers and 

its fusion. In CrossViT (Chen et al, 2021), their 

main approach is to divide image into patches 

(preferably of different sizes) and to pass them 

through separate branches of transformer and to 

fuse these features. This approach gives better 

accuracy than many current CNN based SOTA 
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models for Image Classification Task in Computer 

Vision domain. Based on this paper, we got 

motivated to try different approaches to fuse 

information from intent prediction and previous 

belief state for efficient SOP module. 

Intent logits information fusion with previous 

belief state is performed as explained in Meng et al. 

Meng et al have proposed the following: 

i) Flexible contextual gazetteer representation 

(CGR) which is similar to gazetteer embedding but 

also has context and positional features.  

ii) Mixture of Experts (MoE) - Gating for 

CGR and CWR (Contextual Word Representation) 

to selectively pass gazetteer and context info, so as 

to pass both syntactic as well as gazetteer info 

dynamically based on use case. They have used 

Joint CGR and CWR gating network to learn to 

balance contributions. This avoids feature 

overuse/underuse problem. We use the Mixture of 

Experts logic for fusing the information from intent 

and previous belief state. 

3 Dataset 

We use MultiWOZ 2.2 dataset. Following Wu et al. 

(2019), we use only five domains (restaurant, train, 

hotel, taxi, attraction) excluding hospital and 

police. Therefore, the number of domains is five, 

the number of slots is 30 and the number of intents 

is 12. 

Table 1: Statistics of MultiWOZ 2.2 dataset.  

4 Baseline System (SOM-DST) 

As discussed in the Section 1, in this work, we base 

our experiments on improving the performance and 

optimizing the cost of the SOM-DST architecture 

(depicted in Figure 1) by Kim et al. (2020). To 

improve the latency, the DST system is divided into 

two modules: 

a. State Operation Predictor (SOP): For each 

slot (defined in the ontology), classify it 

amongst a predefined set of labels (such as 

carryover, update, delete, don’t-care). These 

label values help us identify which slot’s value 

has to be generated/updated and which has to 

be modified, deleted, skipped etc. The input to 

the SOP module is formed by concatenating 

the current dialogue context with the previous 

belief state (slots and corresponding values). 

The input is passed through a BERT encoder to 

obtain encodings for each slot, which are 

further processed for operation classification. 

b. Slot Value Generator (SVG): This module 

generates value only for the slots in which 

update operation is predicted from SOP. SVG 

generates the slot values using a simple GRU 

based model. 

 
Figure 1: SOM-DST model architecture consisting of 

two sequential modules. 

 

SOP gates the amount of SVG requests made. This 

is a very efficient way of determining the dialog 

state. In this work, we first replicate the results on 

MultiWOZ 2.2 dataset using the same architecture. 

We then experiment with different fusion 

experiments for the multitask learning of slot and 

intent predictions. 

5 Fusion Experiments 

We are mainly trying to fuse information from 

intent classification into State Operation 

Prediction. Introduction of the intent prediction 

into the SOM-DST architecture was designed in 

several ways as follows 

5.1 Intent Prediction with Joint Loss 

Optimization 

In SOM-DST, we are jointly optimizing loss from 

Domain Prediction, SOP and SVG modules. 

Domain prediction is done by adding classification 

head on BERT pooled output. 

In this design (as depicted in Figure 2, 

experiment 1), we introduce Intent prediction as is 

done for Domain labels. The BERT-medium 

pooled output (represented by the [CLS] token) is 

passed through a linear layer of 512 x 12 (12 is 

possible number of intent labels, 512 is BERT-

medium hidden dimension) to generate the intent 

 Train Test Validation 

#dialogs 8,420 999 1,000 

#turns 54,981 7,368 7,374 
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logits. The model is jointly optimized along with 

intent using the joint cross-entropy loss. With this 

base model, we see a boost in the SOP 

classification results.  

5.2 Concatenating intent logits and a layer 

from the SOP module 

In conjunction with joint optimization, the intent 

logits are fed into the SOP module (via 

concatenating intent logits with BERT encoded 

“[SLOT]” tokens). This way we try to introduce the 

intent logits so that they have an impact on SOP. 

This is depicted in Figure 2, experiment 2.  

5.3 Intent & Slot Self-Attention network 

In this model architecture (depicted in Figure 2 

experiment 3), we allow the intent logits to interact 

with the embedding inputs to SOP module (which 

are BERT encoded “[SLOT]” token from previous 

belief state input). This way the model can establish 

similarity between the previous belief state and 

intent in order to determine the SOP labels for 

current turn.  

There are two approaches to generate 

similarity. First, the cross-attention way as 

mentioned in CrossViT (Chen et al, 2021). In this 

approach, the resultant cross attention matrix is 

large sized and is sparse. Moreover, the dimension 

of intent logits being far less than the belief state, 

the effect of intent gets nullified. Hence, we move 

on to an alternative way of self-attention (Vaswani 

et al, 2017). Here we concatenate the intent logits 

along with the previous belief state hidden 

representation and feed it through a single self-

attention layer. By far this has been the best model 

to establish the similarity between the turn intent 

and previous belief state. 

The cross attention technique (equation 1) can 

be represented as follows:  

𝑄 = 𝑊𝑞 ∗ 𝑥1 

𝐾 = 𝑊𝑘 ∗ 𝑥2 

𝑉 = 𝑊𝑣 ∗ 𝑥2 

                𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑𝑘

𝑇
)𝑉                  (1) 

Where 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣  are learnable parameters 

(weight matrices). 𝑥1  is intent logits and 𝑥2  is 

previous belief state’s “[SLOT]” token embedding. 

5.4 Gated-Intent Quadruplet State  

5.4.1 Model Architecture 

In all the design choices discussed before 

Figure 2: The leftmost part of the diagram shows the overall architecture of the multi-task learning including prediction 

of domain, intent, slot operation prediction and slot value generation. The entire context including previous and current 

dialog turns along with the previous belief state is passed through a BERT based encoder. The pooled embeddings 

([CLS]) and SLOT embeddings are further used for prediction tasks. To improve performance of the slot prediction, we 

experiment with different strategies to infuse important information from different layers of the intent prediction network 

to that of the State Operation Prediction (SOP) module. The corresponding blocks are colored in purple. In the four 

experiments, we progressively add blocks and layers (marked with Green color). In Experiment-1 we try vanilla multi-

task learning with joint loss optimization; later in Experiment-2 we concatenate intent logits with the SLOT logits for 

better access to the intent information in SOP; for better weighing of the concatenated SLOT and intent logits, we 

introduce a self-attention layer in Experiment-3; whereas in Experiment-4, using gating mechanism, we selectively 

infuse only the relevant intent information for more improvements. 
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section 5.4, we primarily mandated the use of intent 

logits or intent classification results in conjunction 

with the SOP input (which is BERT encoded 

“[SLOT]” token embedding). In case of topic 

steering or change in task-oriented discussions, we 

still force fit the non-related intent from the task to 

propagate into the model. 

Yann et al. (2017), demonstrated a gated CNN 

network-based language model which was able to 

perform competitively against the large-scale 

recurrent models. Though gates were well known 

in recurrent networks, Yann et al. (2017), applied 

them to non-recurrent networks for the first time 

and the results were impressive. We adopted the 

same mechanism as Mixture of Experts from Meng 

et al. (2021) (depicted in Figure 2 experiment 4) 

and observed that the model was able to undo the 

adverse effect of force-fitting intent for the DST. 

5.4.2 Intent Gating Mechanism 

If ′𝑋′ represents the BERT Encoder pooled output 

of hidden state representation for the dialog turn 

and the previous belief state, ′𝑊𝑖′  represents the 

weight matrix for intent hidden layer, 

′𝑊′ represents the weight matrix for the intent 

logits layer, then the output of the gating hidden 

layer (equation 2) is given as follows: 

                      𝐼₁ =   (𝑋 ∗  𝑊𝑖  +  𝑐)                       

                       𝑇𝑐𝑜𝑛𝑐𝑎𝑡  =  𝐼1 ⊕ 𝑆1                        
                  𝑔 = 𝜎(𝑇𝑐𝑜𝑛𝑐𝑎𝑡 ∗  𝑊 +  𝑏)               (2) 

 

           ℎ1(𝑋) = (𝑔 ∗ 𝐼1) ⊕ ((1 − 𝑔) ∗ 𝑆1)        (3) 

 

Where ⊕  represents the concatenation operation, 

′𝐼₁ ′ represents Intent Logits, ′𝑆₁′ represents BERT 

encoded “[SLOT]” tokens from previous belief 

state, ′𝑔′  represents gating value (generally a 

scalar), as expressed in equation 3. 

The output from equation 3 is then passed through 

self-attention and then linear projection layer. Q is 

Query, K is Key, V is Value. 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣  are 

learnable parameters (weight matrices). 

 

𝑄 = 𝑊𝑞 ∗ ℎ1(𝑋) 

𝐾 = 𝑊𝑘 ∗ ℎ1(𝑋) 

𝑉 = 𝑊𝑣 ∗ ℎ1(𝑋) 

𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑𝑘

𝑇

)𝑉 

                      𝑆𝑂𝑃𝑂𝑃 = (𝑆 ∗ 𝑊) + 𝑏                 (4) 

Per slot predicted state operation is denoted by 

equation 4. 

5.4.3 Loss Function 

For the entire training, we have used the average 

cross entropy loss from each of the modules such 

as intent classification, domain classification, SOP 

and SVG module. 

6 Experimental Setup  

6.1 Evaluation Metrics 

We use joint accuracy and F1 scores for different 

SOP modules for evaluating model performance. 

SOP labels classify each turn for each slot in one of 

the following categories 

1. CarryOver - No change from the previous 

turn for that slot. 

2. Delete - The previously entered slot value is 

cancelled/removed (set to none) 

3. Update - Particular slot has to be updated with 

new value. Leads a call to SVG. 

4. Dontcare - The slot value is not relevant and is 

set to "dontcare" literal. 

6.2 Data Preparation 

We have followed same preprocessing steps as in 

the case of Kim et al. (2020), with intent as an 

additional field extracted from MultiWOZ 2.2 data.  

6.3 Training 

We employ the pre-trained BERT-medium-

uncased model for SOP and one GRU (Cho et al., 

2014b) for SVG. The hidden size of the decoder 

and encoder is the same, which is 512. We use 

BertAdam as our optimizer (Kingma and Ba, 2015) 

and greedy decoding for SVG. The encoder of SOP 

makes use of a pre-trained model, whereas the 

decoder (GRU) of SVG needs to be trained from 

scratch. Therefore, we use different learning rate 

schemes for the encoder and the decoder. We use a 

batch size of 32 and set the dropout (Srivastava et 

al., 2014) rate to 0.1. We also utilize word dropout 

(Bowman et al., 2016) by randomly replacing the 

input tokens with the special [UNK] token. 

The max sequence length for all inputs is fixed 

to 512. We train SOP and SVG jointly with early 

stopping and choose the model that reports the best 

performance (joint accuracy) on the validation set. 

We use teacher forcing 50% of the time to train the 

decoder. This is done so that the model is well 

accustomed to the test time scenario (i.e., intent 

from intent classifier output) and to intent from GT 

(so that, model doesn’t face error propagation from 

intent prediction side).  
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We fuse the gated-intent logit features and the 

gated BERT encoded “[SLOT]” tokens following a 

mechanism similar to Mixture of Experts by Meng 

et al. (2021). We add two layers of Self-Attention 

and SOP classification head on top of the fused 

output for each slot. We train this model on Tesla 

GPUs. 

7 Results 

7.1 Joint Goal Accuracy (Overall Results) 

We have achieved joint goal accuracy comparable 

to SOTA joint goal accuracy on MultiWOZ 2.2. 

Model Accuracy Size 

DS-DST (Zhang et al. 

(2019)) 

51.70 ~440MB 

SOM-DST baseline (Kim et 

al. (2020)) 

52 432MB 

Gated-Self Attention DST 

(BERT-medium) 
53.30 202MB 

Gated-Self Attention DST 

(BERT-base) 
54.09 496MB 

Pegasus (Zhao et al. (2021))  56.60 >2.2GB 

T5 (Zhao et al. (2021))  57.60 >891MB 

 

Table 2: Joint Goal Accuracy on MultiWOZ 2.2 

7.2 SOP Efficiency 

F1 Score for State Operation Prediction (SOP) 

module. 

Model 

  

Operation 

Delete Update 
Don’t- 

Care 

Carry- 

Over 

SOM-DST  

(Baseline) 
22.05 91.56 54.67 99.60 

Intent 

Prediction 

(Joint Loss 

Optimizati

on) 

14.41 91.55 55.41 99.60 

Appending 

intent 

logits- 

to SOP 

module 

22.41 91.81 55.16 99.61 

Intent and 

Slot- 

Self 

Attention 

22.05 91.66 58.82 99.61 

Gated-

Intent 

(proposed 

model) 

20.16 91.89 58.80 99.62 

Table 3: SOP scores (F1) for each operation for dialog 

state borrowed from GT 

8 Analysis 

In Table 2, we compare our system’s performance 

with other important works. Our Gated-Self 

Attention based model achieves a Joint Goal 

Accuracy (JGA) of 54.09 using BERT-base, and of 

53.30 using BERT-medium. The system 

performance is comparable with the current SOTA 

results, while also providing the benefit of lesser 

processing. We achieve a performance 

improvement of 1.3% JGA, over the SOM-DST 

baseline. 

We also compare the sizes of the different pre-

trained models used by different systems, which 

gives a hint of the comparative memory efficiency 

of the models. Compared to T5 and Pegasus, our 

model makes use of BERT-medium , which is 4 

times and 10 times smaller, respectively. Our 

model size is 202 MB which makes it feasible to 

deploy on-device. 

As presented in Table 3, we also observe 

significant improvements in SOP efficiency, 

indicating optimization of the calls made to the 

time-consuming Slot Value Generator (SVG) 

module, further decreasing the overall latency of 

the system. The improvements are consistent 

across all the state-operations (Delete, Update, 

Don’t Care, and Carry Over). 

8.1 Future scope of enhancements 

Similar improvisation can further be extended to 

dialog acts, which are more generic than intents, for 

SOP tasks. 

We also plan to explore quantization techniques 

for reducing the model size without affecting the 

prediction results. 

Another technique that has shown benefits in the 

task of named entity recognition is the use of 

external knowledge bases, for ever-expanding 

dynamic entities. We can further improve our 

system by incorporating such knowledge. 

 A limitation of our current system is the upper 

cap on the length of input (512 tokens). We would 

like to explore techniques to handle longer input 

sequences. 

9 Conclusion 

From our experiment results, we can conclude that 

using gating based self-attention on the intent logits 

for state operation prediction improves the 

accuracy. There is also a significant reduction in 

model size and latency when compared to other 
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existing SOTA models which use large pre-trained 

language models. This makes our model more 

suitable for on-device based production 

environment. 
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