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Abstract
Manual radiology report generation is a time-
consuming task. First, radiologists prepare
brief notes while carefully examining the imag-
ing report. Then, radiologists or their secre-
taries create a full-text report that describes the
findings by referring to the notes. Automatic
radiology report generation is the primary ob-
jective of this research. The central part of auto-
matic radiology report generation is generating
the finding section (main body of the report)
from the radiologists’ notes. In this research,
we suggest a knowledge graph (KG) enhanced
radiology text generator that can provide ad-
ditional domain-specific information. Our ap-
proach uses a KG-BART model to generate
a description of clinical findings (referred to
as pathological description) from radiologists’
brief notes. We have constructed a parallel
dataset of radiologists’ notes and correspond-
ing pathological descriptions to train the KG-
BART model. Our findings demonstrate that,
compared to the BART-large and T5-large mod-
els, the BLEU-2 score of the pathological de-
scriptions generated by our approach is raised
by 4% and 9%, and the ROUGE-L score by 2%
and 2%, respectively. Our analysis shows that
the KG-BART model for radiology text genera-
tion outperforms the T5-large model. Further-
more, we apply our proposed radiology text
generator for whole radiology report genera-
tion.

1 Introduction

Due to the meager ratio of radiologists to patients,
radiologists are in high demand. The ratios in the
US, China and India are 1:10,000, 1:14,772, and
1:100,000 respectively (Arora, 2014). It leads to a
large influx of patients, which keeps radiologists
extremely busy and under stress. To boost the ef-
fectiveness and productivity of radiologists, several
hospitals and diagnostic facilities have established
radiology information systems (RIS) and picture

archiving and communications systems (PACS)
(Honeyman, 1999). Despite this, the current work-
flow causes a delay in the turnaround time for re-
ports, report inaccuracies, and burnout. Our conver-
sations with radiologists have revealed that many
radiologists wish to eliminate the tiresome report-
generating process and concentrate on the diagno-
sis.

The main task in automatic radiology report gen-
eration is generating pathological descriptions from
radiologists’ notes. In Natural Language Process-
ing (NLP), we can look at this as a text genera-
tion task. Various neural encoder-decoder models
have been proposed to accomplish the text gen-
eration goal by learning to map input text to out-
put text. However, the input text alone often pro-
vides limited knowledge to generate the desired out-
put. Hence, researchers have considered incorporat-
ing external knowledge from domain-specific KGs
along with internal knowledge embedded in the
input text (Yu et al., 2022). KG-BART (Liu et al.,
2021) model incorporates the domain-specific KG
in the deep learning model. In our work, we incor-
porate ultrasound radiology KGs (Kale et al., 2022)
in the KG-BART model to generate radiology text
from radiologists’ input notes. We construct a radi-
ology domain dataset to train the KG-BART model.
We obtain grounded KG for input sentences. KG
grounding finds the most relevant entities and rela-
tions from radiology KG to guide the KG-BART
model to better understand the relationships among
concepts. It considers the inter-concept relation
and significant neighbor entities to generate a more
natural and plausible output. Two high-profile radi-
ologists are associated with this research who help
us to get domain insights and to create a dataset.

Our contributions in this paper are as follows:

• Parallel dataset of radiologists’ notes and corre-
sponding pathological descriptions.
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• Our work shows that the KG-BART is strong
choice for radiology text generation than other
state-of-the-art models like T5-base/large, BART-
base/large.

• Our KG grounding approach reduces noise (ir-
relevant neighbor entities) and obtains the most
relevant neighbor entities.

2 Background Concept and Terminology

Traditionally, radiologists either dictate on a voice
recorder or write the diagnosis notes (referred to
as radiologist’s notes) on paper. Their secretaries
are then given access to the notes. Next, the sec-
retary access a normal report template, which is a
scan-specific normal template (referred to as nor-
mal report template) that corresponds to all nor-
mal findings, and creates a preliminary report by
altering it in accordance with the measurements
and findings that the radiologist reported in a more
detailed form (pathological description). The ra-
diologist receives the preliminary report once again.
The radiologist then reads the report, makes any
necessary corrections, and then signs off. Finally,
the report is provided to a doctor or patient for po-
tential follow-up care. Table 1 shows the examples
of radiologists’ notes and corresponding pathologi-
cal descriptions. The average number of words in
radiologists’ notes is 15, and the average number
of words in pathological descriptions is 26.

Radiologists’ Notes Pathological Description

Normal uterus 1 x 5 x
3.4 mm with hypoechoic
fibroid 2.3 x 5.6 mm in
fundic body region.

Uterus is anteverted and normal in
size 1 x 5 x 3.4 mm. Myometrial
reflectivity is inhomogeneous and
shows a hyperechoic fibroid in fundic
body region measuring 2.3 x 5.6 mm.

Liver shows generalized
fatty infiltration severe
hepatomegaly noted.

Liver severely enlarged and it reveals
generalized fatty infiltration.

Cirrhosis with portal hy-
pertension 6 cm.

Liver is small and shrunken and
coarse echotexture margin are nodu-
lar. portal vein is mildly dilated, it
measures 6 cm.

Table 1: Examples of radiologists’ notes and correspond-
ing pathological descriptions.

In order to create an accurate diagnostic descrip-
tion from brief notes, domain-specific knowledge
will be helpful, given that the knowledge graph can
supply relationship information to strengthen the
capacity for reasoning and provide adjunct entities

to the concept. In our work we use radiology (ul-
trasound) KGs constructed by Kale et al. (2022).
These KGs are constructed for each organ sepa-
rately. Since all KGs are hierarchical, and the root
of each KG is an organ name (e.g., liver, gallblad-
der, pancreas, etc.), we have integrated all these
KGs into a single KG (reffered as ultrasound KG)
by adding upper abdomen as root entity. First we
extract the grounded KGs for each input concept
set from ultrasound KG and then we incorporate
grounded KGs in KG-BART model to generate
pathological descriptions. The KG grounding is
the process of extracting the subgraphs (referred to
as grounded KGs) from domain-specific KG (in our
case ultrasound KG). A grounded KG is a subgraph
from the KG whose nodes are concepts in the input
plus additional nodes. While doing KG grounding
we construct two graphs, i) Input-concept graph
and ii) Concept-expansion graph. The expansion is
due to the KG, supplying related concepts closely
related to those in the input. Input-concept Graph:
It consists of (a) nodes in the KG matching with in-
put concepts and (b) nodes that are along the paths
to the root node of the KG, containing these nodes.
Concept-expansion Graph: It is the input-concept
graph plus the relevant children of the nodes in the
input-concept graph.

For input-concept graph and concept-expansion
graph, we encode the entity representations and
their dependency relations using Knowledge Graph
Embeddings (KGE) (Choudhary et al., 2021).
KGE represents the entities and relations in lower-
dimensional vectors that can be efficient for com-
putations.

3 Related Work

With prior knowledge of chest findings, Zhang et al.
(2020) created a graph model that could be used in
deep learning models. Disease findings are repre-
sented in this network as nodes, and related find-
ings are connected closely between them so that
they might impact one another during the prop-
agation and aggregation of the graph. To learn
specific attributes for each node in the graph, they
incorporate this graph into the deep neural network.
Features extracted from KG are used for multilabel
classification. To improve pre-training language
understanding, Zhang et al. (2019) integrates KG
instructive items that are contextually aligned. KE-
PLER uses a pre-trained language understanding
model to encode textual descriptions of entities be-
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fore integrating the goals of knowledge embedding
and language modeling (Wang et al., 2021). By in-
cluding triples from the KG as supplemental words,
K-BERT infuses domain information into the mod-
els (Liu et al., 2020). In light of these studies, we
contend that additional knowledge data can signif-
icantly improve the performance of pre-training
models used for text generation tasks.

4 Dataset Construction

We fetch impressions and corresponding patholog-
ical descriptions from the radiology text report
corpus to construct a parallel dataset. The radi-
ology text report corpus contains anonymized ra-
diology ultrasound reports that are provided by a
company collaborating with us, with due consent
of the physicians. We have approximately 10 lac
radiology reports, out of which around 1 lac reports
are of ultrasound. The radiology report contains
the title, history, findings, and impression sections.
Each section’s content is well-structured despite
not being uniform. As a result, we use heuristics
like regular expressions and word overlap to iden-
tify different sections. Each section’s content is
tokenized and lower-cased. Impressions are very
close to radiologists’ notes, but it does not contain
patient-specific information like measurement of
findings, anatomical location, etc. To convert im-
pressions into radiologists’ notes, we manually edit
impressions by adding patient-specific information
like measurements and anatomical locations by re-
ferring to pathological descriptions. Examples of
impressions, their corresponding pathological de-
scriptions and radiologists’ notes prepared using
impressions are given in table 2.

4.1 Data Preprocessing

Reports contain free-text clinical narratives. There-
fore it has many spelling mistakes and writing mis-
takes as well. We perform the following prepro-
cessing tasks on a parallel dataset:

• In the corpus, there are a lot of extra spaces and
unwanted punctuation marks found. We remove
these unwanted characters from the corpus using
regular expressions.

• We apply sentence segmentation to identify sen-
tence boundaries between different sentences.

• We use SymSpell1 library to correct the spellings
by applying the unigram and bigram dictionar-

1https://symspellpy.readthedocs.io

ies. We create dictionaries from the corpus and
correct them manually.

Once the data cleaning process done. Our do-
main experts verify the dataset manually and cor-
rect it if necessary. We try to create a dataset be-
cause the radiology dataset for ultrasound is not
publicly available.

4.2 Concept Extraction

KG-BART model needs input and target dataset for
training and validation. We give text input to the
KG-BART model in the form of a concept set. Con-
cept set is the set of radiological entities extracted
from radiologist’s notes. For example radiological
concepts present in note, Lesion found in right lobe
of liver. are lesion, right lobe, and liver. To extract
the concepts from radiologists’ notes, we use an
entity extractor based on the method explained in
the paper (Kale et al., 2022). Table 2 shows the
examples of radiologists’ notes and concept sets ex-
tracted from notes along with their corresponding
pathological descriptions.

5 Method

Figure 1 shows the architecture of the text-
generation model with input/output flow. The main
components of our model are KG grounding, KG
embeddings, text embedding, encoder, and decoder.
This section explains all these components in de-
tail.

5.1 Knowledge Graph Grounding

We extract the small subgraphs, input-concept, and
concept-expansion graphs for each input sample
from our ultrasound KG.

Algorithm to construct input-concept graph and
concept-expansion graph is given below: i) For
each input concept set in our dataset, we link input
concepts with ultrasound KG entities using entity
matcher. Entity matcher implemented using The-
Fuzz2 library. ii) To find the appropriate path in the
ultrasound KG. First, we find all possible candidate
paths from matched entity to the root node. We find
the most appropriate top five paths by using ranking
based on precision and recall of entities in concept
set and entities in all possible candidate paths. We
consider all paths which include matched entity
which is absent in the already selected top-ranking
path. iii) Our algorithm constructs an input-concept

2https://github.com/seatgeek/thefuzz
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Impression Radiologists’ Notes Concept Set Pathological Description

Bulky retroverted uterus
with fundal fibroid.

Bulky retroverted uterus
with fundal fibroid 2.3 x
5.6 mm.

uterus, fibroid, bulky, fun-
dal, retroverted, 2.3 x 5.6
mm

Uterus is retroverted and bulky in size. Myometrial
reflectivity is inhomogeneous with an illdefined fun-
dal fibroid measuring 2.3 x 5.6 mm noted.

Calculus cholecystitis
with multiple large
calculi.

Calculus cholecystitis
with multiple large
calculi within lumen
of gallbladder, largest
measuring 2.4 mm.

multiple, calculi, calcu-
lus, lumen, cholecystitis,
enlarged, measuring, 2.4
mm

Gallbladder is distended reveals thick wall. Feature
of note is presence of multiple large calculi seen
within lumen of gallbladder; largest calculus mea-
sures 2.4 mm.

Acute pancreatitis. Acute pancreatitis. acute pancreatitis Pancreas is bulky, reveals reduced reflectivity with
increased reflectivity of peripancreatic fat.

Table 2: Samples from dataset constructed using radiology report corpus. The first column shows the impressions
extracted from the radiology report, and the last column shows the pathological description corresponding to the
impression fetched from the radiology report. The second column shows the radiologists’ notes prepared by adding
patient-specific information to the impression. The third column shows the concepts extracted from radiologists’
notes. The final training dataset contains only concept set (as input) and pathological description (as target) columns.

Figure 1: Our model architecture with input as radiologist’s dictation and output as pathological description.

Total Samples Train Samples Test Samples Validation
Samples

6860 6000 430 430

Table 3: Statistics of the parallel dataset. Training
dataset contains concept sets and corresponding patho-
logical descriptions.

and concept-expansion graphs containing all paths
that we have selected using a ranking algorithm
and neighbor nodes which are the default proper-
ties of node present in path. Since ultrasound KG
is hierarchical KG where if the node is finding,
then its parent is the anatomical location, and its
children are properties of findings. Hence, even if
some information is missing in the input, we can
get it from the input-concept or concept-expansion
graphs.

Algorithm 1 gives the pseudocode to con-
struct input-concept and concept-expansion graphs.
Adding one-hop, two-hop, or n-hop neighbors of
concept nodes adds irrelevant nodes in the ex-
panded graph, which leads to noise. Our approach

reduces the noise and obtains the most relevant
neighbor nodes. Instead of passing these graphs (as
it is for training), the model represents it in vector
form. KG embedding module produces the vec-
tor representation for input-concept and concept-
expansion graphs. Example of the input-concept
and concept-expansion graphs is shown in figure 2.

5.2 KG Embeddings

The ultrasound KG is represented in low dimen-
sional vector space using KGE. For simplicity and
concreteness, in this work, we primarily consider
TransE (Bordes et al., 2013) model due to their
state-of-the-art performance. To implement the
TransE model for KG embeddings, we use the open-
source OpenKE3 tool. Ultrasound KG contains
860 nodes and 1016 triples. Triples are divided
into train and validation sets. The training triple
set contains 900 triples, and the validation triple set
contains 116 triples.

3https://github.com/thunlp/OpenKE
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Algorithm 1: Construct input-concept and

concept-expansion graphs.

Input : CS: Concept Set
G(V, E) : Knowledge Graph

Output : Input-concept and concept-expansion
graph

1 Find all candidate paths in G(V, E) that includes the
node with input concept

2 path-dict -> initialize
3 for each path in possible candidate-paths do
4 Precision = CS∩All entities in path

No. of concepts in CS

5 Recall = CS∩All entities in path
No. of nodes in path

6 F-score = 2∗Precision∗Recall
Precision+Recall

7 add path-dict -> (path:F-score)
8 end
9 Sort path-dict in descending order of F-score

10 Get top 5 paths
11 for each path in top-5-paths do
12 if len(set(CS) - set(path)) > 0 then
13 Add all triplets from that path in

input-concept graph triplet set
14 Add all triplets from that path in

concept-expansion graph triplet set
15 for each node in path do
16 Find all neighbors of node with

default-property relation
17 Add all triples of form (neighbor,

DefaultPropertyOf, node) in
concept-expansion graph triplet set

18 end
19 end
20 end
21 Save input-concept graph triples set (input-concept

graph) in csv file.
22 Save concept-expansion graph triples set

(concept-expansion graph) in csv file.

5.3 Text Embedding

The input embeddings are made of two separate
embeddings, 1) Token embeddings and ii) Position
embeddings. To get the final text embedding we
add the vectors of token embeddings and position
embeddings.

5.3.1 Token Embeddings
Tokens are nothing but a word or a part of a word.
The textual encoder uses the vocabulary offered
by large-cnn BART, and the token embedding is
consistent with BART. Using a trainable lookup
table, we transform each token in the input concept-
set into an embedding vector.

In order to create these token embeddings, a
method called BART tokenizer is used to tokenize
the text. The encoder, decoder, and language mod-
eling head (Press and Wolf, 2016) all share the
embedding parameters. Due to the permutation-
invariance of the attention layers, BART learns
positional embeddings for absolute token positions

and adds them to the token embeddings (Vaswani
et al., 2017; Devlin et al., 2018).

5.3.2 Positional Embeddings
Position embeddings represents the position of the
word within that sentence that is encoded into a
vector. We must introduce some information about
the relative or absolute location of the tokens in the
sequence because our model lacks recurrence and
convolution and hence cannot use the sequence’s
order. To do this, we augment the token embed-
dings at the base of the encoder and decoder stacks
with positional embeddings. The text embeddings
are the sum of the token embeddings and the posi-
tional embeddings.

5.4 Encoder
The encoder uses two modalities- text, and KG
to condition the generation. According to Figure
1, the KG enhanced encoder layer sits above the
text embedding layer and is intended to enhance
the text representation by taking the KG structure
into account. We use a graph attention layer to
incorporate graph representations into the input en-
coding process. It uses explicit relations to help
the model learn intra-concept relations more ef-
fectively. Formally, the grounded KG embedding,
as well as the text embeddings, are combined by
the KG-augmented encoder to update the text to-
ken representation. Our self-attention layer and
fully-connected layer with residuals make up the
stack of m transformer blocks that make up our
bidirectional KG-augmented encoder.

5.5 Decoder
The decoder uses the text embedding module at
the bottom layer to encode the text. Similar to en-
coder, decoder contains KG-augmented decoder
layer. It incorporates a concept-expansion graph to
get input concepts’ missing information and con-
text. The decoder of our model is also a multi-layer
transformer. Our decoder is auto-regressive and
unidirectional. We skip over a detailed explanation
of these modules because our textual transformers
are the same as those used in BART (Lewis et al.,
2019) and (Vaswani et al., 2017).

6 Experimental Setup

The model input consists of the concept set and
KG encoding for the input-concept and concept-
expansion graphs. The output is the TARGET state-
ment, i.e., pathological description. We use above
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BLEU Score ROUGE Score
1-gram 3-gram L-gram

1-gram 2-gram 3-gram 4-gram P R F P R F P R F
T5-base 0.81 0.74 0.68 0.63 0.87 0.88 0.87 0.76 0.77 0.76 0.84 0.85 0.84
T5-large 0.85 0.80 0.75 0.72 0.93 0.88 0.90 0.84 0.8 0.81 0.92 0.87 0.89
BART-base 0.86 0.82 0.78 0.75 0.93 0.90 0.91 0.84 0.82 0.83 0.91 0.89 0.90
BART-large 0.89 0.85 0.84 0.81 0.93 0.92 0.92 0.86 0.86 0.86 0.93 0.92 0.92
KG-BART 0.93 0.89 0.86 0.83 0.96 0.96 0.95 0.89 0.89 0.88 0.94 0.94 0.93

Table 4: BLEU and ROUGE score of generated pathological descriptions by T5-base/large, BART-base/large, and
KG-BART models vs. gold standard pathological descriptions. The best results are in bold font, and the second best
is underlined.

Figure 2: Left hand side graph is the snapshot of ultrasound KG that we are using for training. Nodes highlighted in
yellow shows the concepts from the concept set that matches with the KG entities. Right hand side graph is the
concept-expansion graph constructed for input concept set.

mentioned constructed dataset to train our model.
Table 3 shows the statistics of constructed dataset.

6.1 Retraining Setup
We have implemented our own algorithm for KG-
grounding task. We use pre-trained KG-BART4

model which was trained for commonsense reason-
ing on ConceptNet KG and commonsense dataset.
We fine tune this model on radiology text dataset
that we have constructed. We use byte-pair encod-
ing for tokenization with a maximum length of 32
for the encoder and 64 for the decoder. We set
learning rate to 0.00001 and used AdamW with 1
= 0.9, 2 = 0.98 for optimization. We set the batch
size to 32. We trained the KG-BART for 15 epochs,
and the gradients are accumulated every 6 steps.

4https://github.com/yeliu918/KG-BART

We apply dropout with a probability 0.1 to avoid
over-fitting. We use beam search with beam size
5 and length penalty with factor 0.6 while infer-
encing. The training time took 7 hrs on a single
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
GDDR5X memory.

7 Baseline and Evaluation

We compare the performance of KG-BART model
with T5-base/large (Raffel et al., 2020) and BART-
base/large (Lewis et al., 2019) state-of-the-art pre-
trained conditional text generation models. Fol-
lowing other conventional generation tasks, we use
several widely-used automatic metrics to automati-
cally assess the performance, such as BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), which
mainly focus on measuring n-gram similarities. Ta-
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ble 4 shows the BLEU score and ROUGE score of
generated pathological descriptions by KG-BART
and T5-base/large and BART-base/large models vs.
gold standard pathological descriptions.

8 Qualitative Analysis

KG-BART model performs better on unseen data.
Sentence formation of the KG-BART model is bet-
ter than T5 and BART models when input is in
abstract form and random in sequence. As shown
in table 5, the output generated for input one by
the BART-large model does not consider the extra
part of notes which does not occur in the train-
ing set. Also, in most cases like example two,
the KG-BART model correctly identifies the find-
ing location since KG-BART gets the hierarchical
anatomical location information from the KG.

9 Radiology Report Generation Using
KG-BART Radiology Text Generator

Radiology report generation includes following
main tasks:

• Generate pathological description from radiolo-
gists’ notes.

• Replace appropriate normal sentences (referred
as normal description) in normal report tem-
plate with generated pathological descriptions.

For the first task we use our proposed radiol-
ogy text generator to generate pathological descrip-
tion from radiologists’ notes. This section gives
the details of second task; how to replace gener-
ated pathological description in normal report tem-
plate to generate whole report. Our domain experts
provide us normal report templates. For example,
Male Abdomen Pelvis Ultrasound Normal Report,
Female Abdomen Ultrasound Normal Report etc.
According to patient’s gender and scan procedure
we provide an appropriate normal report template
to the system. System finds the appropriate normal
sentences to replace with generated pathological
description and replace it. As we discussed with
hospitals, radiologists, physicians, etc., they are
happy to provide impression by themselves to gen-
erate whole report. We add impressions provided
by radiologists in impression section and generates
the whole report.

9.1 Replace Appropriate Normal Sentences
with Generated Pathological Descriptions

We create a parallel corpus for the radiologists’
notes and the corresponding normal descriptions.

Table 6 shows the samples from the parallel corpus
of radiologists’ notes and normal descriptions.

We consider following input radiologists’ notes:
’Chronic pancreatitis.’, ’Cholecystitis with 3 mm
gallbladder calculus in lumen.’ and ’Grade ii fatty
liver.’ and their corresponding generated patholog-
ical descriptions by our radiology text generator,

’Pancreas is slightly small, reveals thin inhomoge-
nous parenchyma. the pancreatic duct is dilated.’,

’Gallbladder is distended reveals wall thickening.
feature of note is presence of a calculus measuring
3 mm noted in lumen of gallbladder.’ and ’Liver
shows moderate increase in echogenicity.’ respec-
tively.

• Step 1: We look up similar radiologists’ notes to
the input radiologist’s notes in a parallel corpus
shown in the table 6. We utilize the BLEU score
to determine the match. Then, we retrieve the
appropriate normal description for the matching
sample. For example, for input notes, ’chronic
pancreatitis’ algorithm gives matched radiolo-
gists’ notes ’chronic pancreatitis’. Similarly, for
input notes, ’cholecystitis with 3 mm gallbladder
calculus in lumen’ algorithm gives corresponding
matched notes ’cholecystitis with gallbladder cal-
culus in lumen.’ and for input notes ’grade ii fatty
liver’ algorithm gives corresponding matched
notes ’Fatty liver’.

• Step 2: We find the normal sentences in nor-
mal report template which matches with normal
descriptions found in step 1.

• Step 3: We replace matched normal sentences
in the template with the corresponding generated
pathological descriptions.

Figure 3 shows the system interface of radiology
report generation.

10 Conclusion

We have constructed a parallel dataset of radiol-
ogists’ notes and corresponding pathological de-
scriptions. KG-BART for radiology text generation
produces high-quality sentences by capturing rela-
tionships between the concepts in the input. It also
considers default properties from the KG if they
are missing in the input concept set to generate
more logical and natural sentences. Our approach
to construct grounded KGs does not add noise since
it only considers entities in the hierarchical path
from concept to root node and only adds neighbors
with default properties. Experimental results show
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Input bulky and retroverted uterus 1 x 5 x 3.4 mm with endometrial thickness 7 mm.

T5-large uterus is retroverted and bulky in size 1 x 5 x 3.4 mm. myometrial reflectivity is inhomogeneous with an echogenic
lesion measuring 7 mm in the mid anterior wall.

BART-
large

Uterus is retroverted and bulky in size 1 x 5 & 3.4 mm. Myometrial reflectivity is inhomogeneous and shows normal
echotexture. It has uniform epigastrophic echopattern.

KG-BART uterus is retroverted and bulky in size 1 x 5 x 3.4 mm. myometrial reflectivity is inhomogeneous. Endometrial
thickness is 7 mm in size.

Target Uterus is retroverted and bulky in size measuring 1 x 5 x 3.4 mm. myometrial reflectivity is inhomogeneous and
shows bulky echotexture. Endometrial thickness is 7 mm in size.

Input gross splenomegaly, maximum span of spleen is 8.2 mm with focal calcifications noted in spleen.

T5-large e/o spleen is grossly enlarged and normal in echotexture, maximum span of stiple is 8.2 mm. multiple calcified
granulomas noted in adnexa.

BART-
large

spleen is grossly enlarged and normal in echotexture, maximum span of spleen is 8.2 mm. multiple calcified
granulomas noted in gb.

KG-BART Spleen is grossly enlarged and normal in echotexture, maximum span of spleen is 8.2 mm. multiple calcified
granulomas noted in spleen.

Target Spleen is grossly enlarged and normal in echotexture, maximum span of spleen is 8.2 mm. Multiple calcified
granulomas noted in spleen.

Table 5: Examples of input (radiologist’s notes) and output (pathological description) generated by T5-large,
BART-large and KG-BART model.

Radiologists’ Notes Normal Description

fatty liver Liver is normal in size and echotex-
ture.

acute pancreatitis Pancreas is normal in size and echo-
texture.

chronic pancreatitis Pancreas is normal in size and echo-
texture.

cholecystitis with gall-
bladder calculus in lu-
men

Gall bladder is physiologically dis-
tended reveals normal wall thickness.
No evidence of calculi/calculus or
sludge or polyp.

Table 6: Samples from the parallel corpus of radiolo-
gists’ notes and normal descriptions.

that KG-BART is more capable of producing radi-
ology text than the state-of-the-art T5-base/large
and BART-base/large models. In future, we plan to
apply the proposed method to generate radiology
reports for CT, MRI, etc.

Limitations

Available medical reports used to construct the par-
allel dataset are biased as the abnormal findings for
the liver, pancreas, kidney, gallbladder, and uterus
are more weighted than organs like ovary, prostate,
urinary bladder, etc. Hence, generated pathological
descriptions for organs with fewer data are influ-
enced by data with highly weighted organs.

Broader Impact

Automatic radiology report generation can aug-
ment radiologists’ capabilities to enhance clinical
workflows. Our work will help to avoid delays in
report turnaround time and human typographical
errors in the report. It will speed up the report
generation process resulting in faster medical treat-
ment. This will help faster treatment of patients
thereby saving many lives.
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A Appendix

A.1 Data Preprocessing

In the corpus, there are a lot of extra spaces and
unwanted punctuation marks found. We have re-
moved these unwanted characters from the corpus
using regular expressions.

For example, Liver is enlarged in size(16.
45cm)& normal in shape and shows raised echo
reflectivity. No focal or diffuse lesion is seen. The
portal and hepatic veins are normal. In the above
example, there is no space between size, (16.45cm)
and &. Also, there is no space between . and No
and therefore sentence tokenization is challenging.
Liver is enlarged in size ( 16.45 cm ) & normal in
shape and shows raised echo reflectivity. No focal
or diffuse lesion is seen. The portal and hepatic
veins are normal. The text is then further divided
into sentences.

A.1.1 Spelling Correction
In corpus, there are a lot of spelling mistakes also.
To correct the spellings we have used the SymSpell
library.

Single Word Spelling Correction We have cre-
ated unigram and bigram dictionaries for corpus
text.
Unigram Dictionary: Dictionary of unique correct
spelling words, and the frequency count for each
word.
Bigram Dictionary: Dictionary of the unique cor-
rect spelling of a pair of words, and the frequency
count for each pair.

Levenshtein algorithm is used to compute edit
distance metric between two strings. Edit distance
algorithm finds the correct suggestion for words in
input text with words in unigram dictionary.

For example, enlaregd, billiary, radicals are the
incorrect words found in the corpus. In dictionary
enlarged, biliary, radicals these correct words are
present. Edit distance algorithm suggests enlarged
word for enlaregd. Similarly biliary for billiary
and radicles for radicals.

Multi-word Spelling Correction

• We remove mistakenly inserted spaces within a
correct word
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Input: Liver is normal in size and reveals diffuse
hypo attenuation
Output: Liver is normal in size and reveals dif-
fuse hypoattenuation

• We add mistakenly omitted spaces between two
correct words
Input: Liver appears normal in size and reveals
mild generalized increasedparenchymal reflectiv-
ity.
Output: Liver appears normal in size and re-
veals mild generalized increased parenchymal
reflectivity.
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