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Abstract

Enabling voice assistants on small embed-
ded devices requires a keyword spotter with
a smaller model size and adequate accuracy.
It becomes difficult to achieve a reasonable
trade-off between a small footprint and high
accuracy. Recent studies have demonstrated
that convolution neural networks are also effec-
tive in the audio domain. In this paper, taking
into account the nature of spectrograms, we
propose a compact ResNet architecture that
uses frequency-based non-square kernels to ex-
tract the maximum number of timbral features
for keyword spotting. The proposed architec-
ture is approximately three-and-a-half times
smaller than a comparable architecture with
conventional square kernels. On the Google’s
speech command dataset v1, it outperforms
both Google’s convolution neural networks
and the equivalent ResNet architecture with
square kernels. By implementing non-square
kernels for spectrogram-related data, we can
achieve a significant increase in accuracy with
relatively few parameters, as compared to the
conventional square kernels that are the default
choice for every problem.

1 Introduction

Keyword detection systems (KWS) are imple-
mented on embedded or mobile devices to detect
predefined keywords in an audio stream. These
words can function as wake words or trigger words
for intelligent voice assistants (e.g., Hey Siri, Alexa,
or Okay Google) or as simple speech commands
(e.g., yes, no, on, stop, etc.). Due to the nature
of deployment, these systems must have a reason-
able compromise between a small footprint and
high accuracy. However, implementing a fast, com-
pact, and highly accurate KWS model that can
be deployed on embedded or mobile devices with
limited hardware and computation is a significant
challenge.

Recent studies have demonstrated that convolu-
tion neural networks (CNNs) perform well in the
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audio domain as well. CNNs are predominantly
utilized for image-related tasks. CNN’s lowest lay-
ers typically learn to detect edges. These edges
can be oriented in any way. However, one cannot
predict which kernel will acquire a given feature.
Also, since filter dimensions have a spatial mean-
ing, square kernels are widely used to preserve sym-
metry. It is common practice in the audio domain
to transform an audio stream into a spectrogram
in which the X-axis represents time and the Y-axis
represents frequency. Then, these spectrograms are
fed to two-dimensional CNNs as input.

Spectrograms are a visual representation of the
audio intensity over time at various frequencies
present in a specific waveform. On spectrograms,
the X-axis represents time and the Y-axis repre-
sents frequency. The images are then sent to CNN,
which performs the feature extractions. The com-
position of spectrograms is known in advance, i.e.,
time is represented on the X-axis and frequency
on the Y-axis. In order to capture frequency-based
and time-based characteristics, customized kernel
designs can be implemented. A number of attempts
have been made to use custom rectangular kernels
for speech emotion detection and music rhythm
classification (Pons et al., 2016; Badshah et al.,
2019).

In this paper, we propose a compact ResNet
architecture, i.e., CNNs with residual learning, that
uses frequency-based non-square kernels to cap-
ture the maximum number of timbral features for
keyword detection. Typically, the timbral features
are taller than they are wide. Also, because a
3 x 1 matrix has fewer parameters than a 3 X 3
matrix, we experimented with non-square kernels
for the KWS use-case, with the goal of reducing
the number of parameters while maintaining decent
accuracy. As a result, it is worthwhile to employ
non-square kernels. Figure 1 depicts an example
non-square frequency-based kernel. Our architec-
ture is a modification of the res8 model (Tang and
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Figure 1: Non-square frequency-based m x 1 kernels

Lin, 2018) with non-square kernels, and it is ap-
proximately 3.5 times more compact than the res8.
In terms of number of parameters, our architecture
also outperforms Google’s best CNN (Sainath and
Parada, 2015). Compared to the res8 model, the
proposed architecture achieves higher evaluation
performance and has a smaller footprint.

The remainder of the article is structured as fol-
lows. Brief summaries of recent and pertinent key-
word spotting research are presented in Section 2.
The functional details of our suggested approach
for the keyword spotting use-case are presented in
Section 3. The experimental setup and results are
presented in Section 4. It also provides a compara-
tive analysis of our proposed approach with respect
to the two SOTA models, Tang and Lin (2018) and
Sainath and Parada (2015), for keyword spotting
use-case. Finally, the paper concludes with a dis-
cussion of future research directions in Section 5.

2 Related Works

Traditionally, hidden Markov models (HMMs)
based approaches were used for KWS (Wilpon
et al., 1990; Rose and Paul, 1990). These mod-
els were challenging to train, were computationally
expensive, and had relatively long latency during
inference. Some other techniques used recurrent
neural networks (RNNs) like in (Ferndandez et al.,
2007), but they suffered from high latency. After
that, Chen et al. (2014) proposed deep neural net-
works (DNNSs) with rectified linear unit (ReLU) ac-
tivation functions that outperformed HMM-based
models with low latency. But the drawback with
DNNss is that they ignores the audio’s local tem-
poral and spectral correlations. To capture these
correlations, variations of CNN-based KWS were

introduced . They achieved better results with re-
duced footprints. Combining the strength of CNNs
and RNNs, Arik et al. (2017) experimented with the
convolution recurrent neural network-based KWS
systems.

In August 2017, the Google’s speech command
dataset by Warden (2018) was released as a bench-
marking dataset for evaluating KWS systems. War-
den (2018) also released a baseline model based on
the convolution architecture of Sainath and Parada
(2015), achieving 85.4% accuracy in v1 version of
the dataset. The related Kaggle competition was
also organized, where the winner achieved 91%
accuracy on the v1 version at that time. Publication
of the Google’s speech command dataset led to an
acceleration in the research. Here, we will discuss
the most relevant work as per the paper’s objective.

He et al. (2016) (ResNets) significantly ad-
vance deep learning, and hence they have also
been adopted in various audio tasks like automatic
speech recognition (Xiong et al., 2018) and speaker
identification (Yun et al., 2019). Tang and Lin
(2018) further experimented with compact residual
architecture using dialated convolution to enlarge
the size of the receptive field exponentially with the
depth of the network, resulting in improved accu-
racy. They also experimented with model width by
decreasing number of filters. Szegedy et al. (2016)
proposed several enhancements to the inception
network (Szegedy et al., 2015). They replaced
several convolutions with lower dimension convo-
lutions to decrease the parameters. For example,
a 7x7 convolution was replaced with four layers
by using 1x7 and 7x1 convolutions twice. To re-
duce model footprint, a number of recent works
like time delay neural network (TDNN), attention
mechanism, and temporal convolutional network
(TCN) are done (Sun et al., 2017; Shan et al., 2018;
Choi et al., 2019).

There have been some attempts to use rectangu-
lar kernels for speech emotion detection and music
rhythm classification (Pons et al., 2016; Badshah
et al., 2019). The authors of (Hoogeboom et al.,
2018) have used hexagonal kernels that utilized
symmetry equivariance and in-variance of images.
Our paper uses 2D convolution with non-square
kernels (m x 1) convoluted in the frequency do-
main to capture the maximum amount of timbral
features, reducing the computation and number of
operations.

This study focuses on the family of CNN mod-
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els, as they continue to serve as the benchmark for
KWS systems. For KWS systems, we desire an
analysis between square and non-square kernels.
Since CNNs have a simple architecture, we have
conducted our experiments with CNN and residual
blocks. In order to perform a more accurate bench-
marking, we have referred to the results that were
published in (Tang and Lin, 2018).

3 Proposed ResNet Architecture with
non-square kernel

In this section, the functional details of our pro-
posed ResNet architecture with non-square ker-
nels are described. Figure 2 provides a visual repre-
sentation of the architectural layout of the proposed
ResNet with non-square kernel.

3.1 Feature Extraction and Preprocessing

Table 1: Parameters used for res8-3x1

Type Height (m) | Width (n) | Filters (N) | #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -
res X 6 3 1 45 36.4K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 43K
Table 2: Parameters used for res8-5x1
Type Height (m) | Width (n) | Filters (N) | #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -
res x 6 5 1 45 60.7K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 67.3K
Table 3: Parameters used for res8-7x1
Type Height (m) | Width (n) | Filters (N) | #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -
res X 6 7 1 45 85K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 91.6K

The input audio stream is converted into mel-
scaled spectrograms with a length of F'F'T'window
as 2048 and 512 samples between successive
frames. The spectrogram is then converted to deci-
bels (dB), with the highest dB being 80. We use
the Librosa Python library to perform the con-
version. Spectrogram data is then normalized, stan-
dardized, and converted to three dimensions by

Table 4: Parameters used for res8-9x1

Type Height (m) | Width (n) | Filters (N) | #Parameters
conv 9 5 45 6,075
avg-pool 3 4 45 -

res X 6 9 1 45 109K
avg-pool 3 4 45 -
softmax - - 12 552
Total - - - 115.9K

repeating the matrix along all three axes [X, X, X].
The spectrogram images are then scaled to 128 x 64
pixels. Figure 3 illustrates a sample of the gener-
ated spectrogram images.

3.2 Proposed Architecture

Our network architecture contains residual blocks,
as described in (He et al., 2016), in which it is
proposed that it is simpler to learn residuals:

H(z)=F(x)+=x

than the actual mapping F'(x) for a model with
greater depth.

Instead of using small squared CNN kernels
(e.g., 3 x 3 or 5 x ), we use non-square kernels of
m x 1 with varying values of m because such ker-
nels may be able to learn more timbral features than
standard square kernels. From an audio standpoint,
these kernels are expected to learn fundamental au-
dio features such as frequency, pitch, and timbre,
among others. Such kernels may be incapable of
learning more about the time axis, i.e., rhythmic
or tempo-related features. Taking into account the
keyword spotting use-case, however, these kernels
reduce the number of parameters and memory foot-
print, motivating us to move in this direction.

Our first layer is a bias-free m x n 2D convolu-
tion kernel, where m and n are, respectively, the
height and width (m =9, n =5). Here, n is greater
than 1 for the first layer to increase the receptive
field, and in subsequent layers, the time axis also
contributes. This layer has a stride of 2 x 2 which
helps to reduce the size of the model. After the
first layer, we added a 3 x 4 average pooling layer
to reduce the input dimensions (3 x 4 kernel size
yielded better results than 4 x 3 in our setup). Our
residual block is comprised of a bias-free m x 1 2D
convolution kernel, an activation function, and a
batch normalization layer. Since the neuron cannot
determine its own firing pattern, an activation func-
tion is used to determine whether or not a neuron
should be activated. Before passing the input to the
subsequent layer, the non-linear transformations
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Figure 2: Architecture of the proposed ResNet with non-square kernel (m x 1)

s 3
yes up

no down left

E ﬂ
off

right on
Figure 3: Spectrogram images of different classes

stop go

identity

Figure 4: A residual block proposed in (He et al., 2016)

are applied. We have used the ReLU activation
function, which outputs the input directly if it is
positive and 0 if it is negative. Formally, it is de-
fined as follows:

Relu(z) = max(0, z)

We added a chain of six residual blocks. In
the end, we included batch normalization and a
non-residual convolution layer. Every mini-batch’s
weights are normalized via batch normalization.
Consequently, it stabilizes the network and drasti-
cally reduces the number of training epochs neces-
sary to train deep neural networks. Following the
addition of a linear layer, the output then passes
through a softmax layer that generates a class
probability distribution (see figure 2).

U(Zz):Ki fOT’L.:172,...7K

N = 45 feature maps are utilized across all con-
volution layers. We tested four ResNet variants
by varying m in the residual block: res8-3x1 with
43K parameters (Table 1), res8-5x1 with 68K pa-
rameters (Table 2), res8-7x1 with 92K parameters
(Table 3), and res8-9x1 with 115K parameters (Ta-
ble 4).
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4 Experimental Setup and Results

This section describes the experimental design and
results. It also provides a comparative analysis of
our proposed method with two SOTA models, Tang
and Lin (2018) and Sainath and Parada (2015), for
keyword spotting use-case.

4.1 Dataset

We use Google’s speech commands dataset v1 by
Warden (2018) for training and benchmarking pur-
poses for our proposed network that was released
in August 2017 under a Creative Commons license.
The dataset includes approximately 64727 one-
second long utterances of 30 short words, sampled
at 16k Hz and recorded by different individuals.
The distribution of words in the dataset is depicted
in Table 5.

In accordance with Google’s implementation,
we categorized the audios into 12 classes — yes,
no, up, down, left, right, on, off, stop, go, un-
known (remaining words), and silence (no speech
detected). The blog post announcing the dataset
mentions Google’s TensorF1low implementation
of Sainath and Parada (2015) models, which are
used for comparison alongside Residual networks
proposed by Tang and Lin (2018). Following the
publication, we compared the results of the exper-
iments to the v1 test data. Based on the Warden
(2018), the dataset is divided into 80% training set,
10% validation set, and 10% test set. This resulted
in approximately 23000 examples for training and
2700 for validation and testing.

Table 5: Word distribution in Google’s speech command
dataset v1

Word | #Utterances | Word #Utterances | Word | #Utterances
bed 1,713 house 1,750 sheila 1,734
bird 1,731 left 2,353 six 2,369
cat 1,733 marvin 1,746 stop 2,380
dog 1,746 nine 2,364 three 2,356
down 2,359 no 2,375 tree 1,733
eight 2,352 off 2,357 two 2,373
five 2,357 on 2,367 up 2,375
four 2,372 one 2,370 WOW 1,745
go 2,372 right 2,367 yes 2,377
happy 1,742 seven 2,377 Zero 2,376

4.2 Evaluation Metrics

The proposed method is evaluated based on its ac-
curacy, which is formally defined using True Posi-
tive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN) values in the following
equation.

TP+TN
TP+TN+ FP+ FN

TP is defined in the preceding equation as the
test result that correctly indicates the presence of a
condition. FP is defined as a test result that incor-
rectly indicates the presence of a specific condition.
The test result that correctly indicates the absence
of a condition is defined as TN. Finally, FN is de-
fined as a test result that incorrectly indicates the
presence of a specific condition.

In addition to accuracy, we have considered the
footprint size of the proposed method in terms of
the number of parameters, which is calculated us-
ing the following formula:

Accuracy =

Parameters = (fsxpf +1)« N

In the above equation, fs represents the
mtimesn dimensions of the kernels used; pf rep-
resents the number of kernels used in the previous
layer; and N represents the number of kernels used
in the current layer. As the bias term, 1 is added to
the previous equation.

4.3 Model Training

Using the PyTorch framework, we trained and
evaluated various models. We used Adamw
(Loshchilov and Hutter, 2017) as our optimizer
with a learning rate of 3e-4 on a mini-batch of 64
samples with 0.001 weight decay at each layer ex-
cept LayerNorm and Bias. For the LR scheduler,
ReduceLROnPlateau is selected as the learning rate
scheduler that reads the metric quantity and reduces
the learning rate by a certain factor (0.8 in our case)
if no improvement is observed for patience num-
ber of epochs (patience is set to 2 in our config-
uration). We utilized down-sampling to address
class imbalance, if any. To prevent the occurrence
of over-fitting, we also utilized early stopping on
the validation loss with a patience of 5. As our
loss function, we employ cross entropy, which is
defined as follows, wherein K is the number of
classes, y is a binary indicator to check whether
the class label c is the correct classification for ob-
servation o, and p is the predicted probability of
observation o for class c.

K
CrossEntropyLoss = — Z Yo.c 10g(po,c)

c=1
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Figure 5: Visualization of accuracy of all models on Google’s speech command dataset v1
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Figure 6: Visualization of footprint size of all models in terms of number of parameters

4.4 Results

For benchmarking, we employ the CNN variants
proposed by Sainath and Parada (2015), namely
trad-fpool3, tpool2, and one-stridel. In addition,
we compared our findings to the compact ResNet
models proposed in the (Tang and Lin, 2018). In
consideration of the small footprint keyword spot-
ting use-case, we employ no. of parameters and
model size (MB) in addition to an evaluation metric
for benchmarking purposes. Our proposed method
yields comparable results with few parameters. As
demonstrated in the table above, as m increases,
the model is able to capture more timbral features,
resulting in a certain degree of accuracy improve-
ment.

Table 6: Test accuracy of our proposed models in terms
of accuracy and number of parameters

Proposed Model | Accuracy | #Parameters
res8-3x1 77.8% 43K
res8-5x1 93.1% 68K
res8-7x1 96.4% 91.6K
res8-9x1 96.5% 1159K

4.5 Comparative Analysis

In this section, we present the results of a com-
parative analysis between our proposed ResNet
model and the Tang and Lin (2018) and Sainath and
Parada (2015) models. These models are briefly
described in the following paragraphs.

1. Sainath and Parada (2015) models

— trad-fpool3: It is their base model. It
consists of 2 convolution, 1 linear layer,
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Figure 7: Number of parameters vs. accuracy over Google’s speech command dataset v1 (see Table 7)

Table 7: Comparative analysis of our proposed model
with other models

Models Accuracy | #Parameters
trad-fpool3 90.5% 1.37M
Sainath and Parada (2015) models | tpool2 91.7% 1.09M
one-stridel 77.9% 954K
resl5 95.8% 238K
res15-narrow 94.0% 42.6K
. res26 95.2% 438K
Tang and Lin (2018) models res26-narrow | 93.3% 784K
res8 94.1% 110K
res8-narrow 90.1% 19.9K
res8-3x1 77.8% 43K
Proposed models res8-5x1 93.1% 68K
res8-7x1 96.4% 91.6K
res8-9x1 96.5% 1159K

hidden and softmax layer with poolng in
frequency axis.

— tpool2: The most accurate variant they

explored. It’s the variant of the base
model with pooling in time axis.

— one-stridel: Their best compact variant

is the variant of the base model with
stride in frequency axis.

2. Tang and Lin (2018) models

— resl5: ResNet model with 15 layers

and 45 kernels

resl15-narrow: ResNet model with 15
layers and 19 kernels

res26: ResNet model with 26 layers
and 45 kernels

res26-narrow: ResNet model with 26
layers and 19 kernels

res8: ResNet model with 8 layers and
45 kernels

res§-narrow: ResNet model with 8 lay-
ers and 19 kernels

Except for res8-3x1, all of our proposed models
(see Table 6) outperform Sainath and Parada (2015)
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Forward/backward pass size (MB): 5.81
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Figure 8: Model size (in terms of MB) comparison between models with square kernel (left) and non-square kernel

(right)

in terms of accuracy (Figure 5) and number of
parameters (Figure 6), as shown in Table 7. Our
res8-5x1 provides slightly less accuracy than the
compact ResNet models proposed in (Tang and
Lin, 2018), but with a much smaller number of
parameters.

With only 91.6K parameters, the res8-7x1 model
that employs a 7 x 1 filter size achieves the optimal
balance between accuracy and number of parame-
ters, outperforming all models proposed in (Sainath
and Parada, 2015) and (Tang and Lin, 2018). Using
non-square kernels has been shown to provide ade-
quate and, in some cases, superior accuracy with a
small number of audio domain parameters.

Figure 6 illustrates the footprint size in terms
of the number of parameters for each model con-
sidered for benchmarking. Except for the narrow
models by Tang and Lin (2018), all of our proposed
models have a smaller number of parameters and
comparable accuracy when compared to the other
models used for benchmarking. According to their
paper, when comparing narrow versus wide mod-
els, the number of kernels has a greater effect on
accuracy than model depth. Our emphasis is on
employing non-square kernels for audio domain
in order to reduce model footprint. We employ
the same number of kernels (/N = 45) as the res8
model from (Tang and Lin, 2018).

Compared to models with squared kernels, mod-
els with non-squared kernels have a tendency to
have a smaller number of parameters with compa-
rable or better accuracy. In addition, we use the
same input size for models with a square (res8)
kernel and a non-square (res8-5x1) kernel. Figure
8 demonstrates that res8-5x1 is approximately 3.5
times smaller than the res8 model.

5 Conclusion and Future Work

In this paper, we have presented a fast, small foot-
print model for real-time KWS with non-square
kernels (m x 1) that may be useful for small em-
bedded devices. Depending on the characteristics

of the spectrogram, non-square kernels may be
a suitable alternative to square kernels, provided
that non-square kernels have fewer trainable pa-
rameters than square kernels. Experiments indi-
cate that non-square kernels reduce model size by
reducing the number of required parameters with-
out degrading performance. The frequency-based
kernels have few parameters, and the proposed ar-
chitecture demonstrates satisfactory performance
during the evaluation phase. Our proposed work
may inspire other researchers and developers to
experiment with network architecture based on the
dataset and use-case. After comprehending the
structure of our data, i.e., spectrogram, we have
utilized non-square kernels in the audio domain for
KWS. It might be worthwhile to consider conduct-
ing additional research on benchmarking different
architectures using non-square kernels in the fu-
ture.
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