PACMAN: PArallel CodeMixed dAta generatioN for POS tagging

Arindam Chatterjee!'?; Chhavi Sharma'; Ayush Raj', Asif Ekbal?
'Wipro AI Research Lab45, Bangalore, India
?Indian Institute of Technology, Patna, India

{arindam. chatterjee4, chhavi.sharma5, ayush. raj3}@wipro .com

asif@iitp.ac.in

Abstract

Code-mixing or Code-switching is the mixing
of languages in the same context, predomi-
nantly observed in multilingual societies. The
existing code-mixed datasets are small and pri-
marily contain social media text that does not
adhere to standard spelling and grammar. Com-
putational models built on such data fail to gen-
eralise on unseen code-mixed data. To address
the unavailability of quality code-mixed anno-
tated datasets, we explore the combined task
of generating annotated code-mixed data, and
building computational models from this gen-
erated data, specifically for code-mixed Part-
Of-Speech (POS) tagging. We introduce PAC-
MAN' (PArallel CodeMixed dAta generatioN)
- a synthetically generated code-mixed POS
tagged dataset, with above 50K samples, which
is the largest annotated code-mixed dataset.
We build POS taggers using classical machine
learning and deep learning based techniques on
the generated data to report an F;-score of 98%
(8% above current State-of-the-art (SOTA)). To
determine the efficacy of our data, we com-
pare it against the existing benchmark in code-
mixed POS tagging. PACMAN outperforms
the benchmark, ratifying that our dataset and,
subsequently, our POS tagging models are gen-
eralised and capable of handling even natural
code-mixed and monolingual data.

1 Introduction

Code-Mixing or Code-Switching is primarily ob-
served and archetypal in multilingual societies
across the globe (Gumperz, 1964; Thompson, 2009;
Auer, 2020; Schwab, 2021). Although linguists dif-
ferentiate between code-mixing (Boggs, 1983) and
code-switching (Myers-Scotton, 1993), we use CM
to mean both. CM has recently garnered significant
interest for researchers because of its gradual emer-
gence as the prima lingua for social media posts,
blogs, chats, and messages.

*denotes equal contribution
'"PACMAN dataset to be released later

The first computational work on CM text was
explored by Solorio and Liu (2008) for English-
Spanish POS tagging. They used individual POS
taggers for English and Spanish and heuristics, ma-
chine learning, and word-level language informa-
tion (WLI) to find the optimal tag for each word.
Subsequent work on POS Tagging for CM text like
Jamatia et al. (2015); Vyas et al. (2014) use sim-
ilar approaches, using language information and
a combination tagger on social media CM text.
They emphasize that WLI is a mandatory ingre-
dient for CM POS tagging, necessitating the use
of a combination tagger. Recent work by Singh
et al. (2018) applies a set of hand-crafted features
(including WLI) to POS tag CM text, with higher
accuracy, and without using a combination tagger.
This establishes that CM computational models can
be independently built without using models from
constituent languages.

Code-mixing is abundantly observed in our daily
lives through personal chats, messages efc., apart
from social media. Since code-mixing is majorly
used on social media, CM datasets are built primar-
ily on social media data, which is domain-specific,
noisy, and has non-standard spellings and gram-
mar, especially for languages written in scripts
other than Roman (Vyas et al., 2014). This makes
annotation of such data a separate challenge in
itself. Additionally, extracting genuine CM data
from social media is a difficult task, accounting
for: (i) inadequate code-mixed datasets (Jose et al.,
2020), (ii) small sizes of available CM datasets and
(iii) low Code-mixing Ratio (CMR) (discussed in
Section 2) of such datasets (Jamatia et al., 2015;
Singh et al., 2018). To address these existing bottle-
necks of CM language research, through this work,
we explore the following fundamental question:

Can we generate high-quality annotated CM data
and build computational models with it,
comparable to natural CM data and its

subsequent computational models?
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To address the above question, we explore the
dual task of annotated CM data generation and
building computational models from this gener-
ated data, specifically for CM POS tagging. We
introduce PACMAN (PArallel CodeMixed dAta
generatioN) for CM POS tagging. Through PAC-
MAN, our motivation is to address the gaps in the
existing CM datasets and computational models.

First, we generate annotated CM POS tagged
data for Hinglish, through an alignment, annota-
tion and replacement strategy from parallel Hindi-
English corpus. The generated data has standard
spelling and grammar, unlike social media datasets.
Further, this alleviates the strenuous and difficult
task of annotating social media CM data. CM
datasets usually have sizes equal to or less than
a meagre 1000 samples (Jose et al., 2020). We re-
port a corpus of above 50K annotated POS tagged
CM samples, which are 100% code-mixed. Al-
though our data is generated for Hinglish, we claim
that our technique can be used to generate anno-
tated data for any CM language pair, provided a
parallel corpus and POS taggers are available for
both languages. To our knowledge, our work is
a first-of-a-kind, with respect to the generation of
CM annotated data. We discuss our data generation
pipeline in detail in Section 3.

Second, we build POS taggers using both Ma-
chine Learning (ML) and Deep Learning (DL)
based techniques on PACMAN data. Singh et al.
(2018) reports better accuracy with ML techniques
than DL models. Through this work, we illustrate
that this is predominantly due to the inadequacy of
data, typically required to build better deep learn-
ing models. Our DL model outperforms our ML
model by 1.5%. We would like to assert here that
we build our models independently on CM data
itself and not using a combination tagging strategy.
We also analyse the contribution of WLI on the
CM POS tagging task by infusing language infor-
mation into the models. The results obtained reveal
that with sizeable data, instances where language
information is useful, dwindle to a small fraction,
as we obtain similar accuracy without language in-
formation. We discuss our POS taggers in detail in
Section 4.

Third, in order to gauge the quality of our data
and models, we test them against the existing
benchmark in CM POS tagging (Aguilar et al.,
2020), which is based on social media text. Our
models outperform the SOTA benchmark by 10%,

despite having a higher CMR. Our results also
show that our models built on PACMAN data are
able to handle social media text as well as monolin-
gual text. This is largely because of the size of our
dataset, standard spelling and grammar integral to
PACMAN, and uniform distribution of words and
POS tags across Hindi and English. This makes our
models more generalized and equipped to handle
different types of CM data. We discuss qualitative
analysis of our data in Section 5, error analysis in
Section 6 and conclude in Section 7.

2 Code-mixing Terminology

In this section we define a few terms akin to code-
mixing, that we use in later sections of the paper:

* Matrix Language (MtxL) and Embedded
Language (EL): In a code-mixed sentence,
containing two (2) languages, the base lan-
guage, or the language from which the sen-
tence is ‘coming from’ is called the matrix
language and the other language is the embed-
ded language (Joshi, 1982)

* Switching Point (SP): Switching Points are
the junctions in a code-mixed text, where the
language switches (Chatterjee et al., 2020).

* Code-Mixing Index (CMI): It is the mea-
surement of the level of mixing between the

constituent languages in a code-mixed context
(Gambick, 2014).

* Code-Mixing Ratio (CMR): CMR is the frac-
tion of samples in a code-mixed corpus that
are actually code-mixed.

3 Data Generation Pipeline

Code-mixed language research has recently re-
ceived a lot of attention in the NLP community.
Despite the recent interest, Jose et al. (2020) report
that there is a scarcity of datasets in the domain,
and existing datasets are very small ( /000 sam-
ples per dataset on average). Besides, as CM is
prevalent on social media, the existing CM datasets
contain only social media text, which have non-
standard spelling and grammar and are difficult to
annotate. In order to bridge this gap, in the present
work, we endeavour to generate an exhaustive cor-
pus of annotated code-mixed data, that is generic
across domains and has standardised spelling and
grammar, unlike social media data.
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Figure 1: Data generation pipeline for PACMAN

We introduce PACMAN (PArallel CodeMixed
dAta generatioN a one-of-a-kind data generation
framework for CM POS tagging. It is a synthet-
ically generated data framework, curated via an
alignment, annotation and replacement based strat-
egy. Our approach is similar to the one applied by
Srivastava and Singh (2021), but with the added ob-
jective of uniform distribution of words across con-
stituent languages of the CM language pair. Cur-
rently, PACMAN is implemented for Hinglish, but
using the same strategy will work for any CM lan-
guage pair. The subsequent subsections present the
details involved in creating the PACMAN dataset.

3.1 Resources and Tools

As already discussed, we generate the PACMAN
dataset using an align, annotate, and replace strat-
egy. In order to facilitate this, we use the following
resources and tools:

¢ Parallel Corpus: We have used the
Hindi-English parallel corpus proposed by
Kunchukuttan et al. (2018) containing 1.6M
English-Hindi parallel sentences. The Hindi
counterpart of the corpus is available in De-
vanagari script.

* Fast Align: It is a fast, simple and unsuper-
vised aligner introduced by Dyer et al. (2013)
that learns the word alignment between the
parallel sentences using log-linear reparame-
terisation of IBM Model 2, based on a varia-
tion of the lexical translation models proposed
by Brown et al. (1993).

» Stanza: An open-source python NLP toolkit
proposed by Qi et al. (2020), that covers a
wide range of text analytics tools, such as tok-
enization, lemmatization, POS tagging etc. in
66 languages.

* Indic-trans: It is used for transliteration
framework proposed by Bhat et al. (2014) to
convert the Devandagari script to Roman and
vice-versa, based on a structured perceptron
model that uses letter alignments learned from
GIZA++ (Och and Ney, 2003).

3.2 Methodology

For generating annotated POS tagged Hinglish data,
we use a Hindi-English parallel corpus and com-
bine parallel sentences following the matrix lan-
guage theory introduced by Joshi (1982), using an
elegant rule-based algorithm illustrated in Figure 1.
A similar strategy was proposed by Srivastava and
Singh (2021), but they only embed English words
in Hindi sentences (Hindi as matrix language). We
additionally embed Hindi words in English sen-
tences (English as matrix language). This ensures
a uniform distribution of words and subsequently
POS tags across both the constituent languages
viz., Hindi and English. These word replacements
account for the introduction of switching points
and hence code-mixing of the generated sentences.
Analysis of code-mixed sentences reveals that the
words where the switch in languages happens, are
primarily nouns and in some cases adjectives (Sri-
vastava and Singh, 2021). We discuss each step of
our data generation pipeline in detail below:

1. Data Extraction: From the parallel corpus,
we filter out sentences of either language with
less than five (5) words and instances where
the Hindi parallel sentence contains English
words. We pre-process and clean the resulting
samples by removing unimportant tokens like
URLs etc.

2. Alignment: Next, we train fast aligner on the
pre-processed sample, which provides aligned
indices of words for Hindi to English as well
as English to Hindi, for each parallel sentence.

3. Annotation: Once the alignment is done, we
POS tag both the Hindi and English sentences
using Stanza POS tagger. We use the uni-
versal POS tagset (discussed in Section 4.1),
which is available as part of Stanza to annotate
the parallel sentences.

4. Replacement: This step is the most critical
step in our strategy. Once the Hindi and En-
glish parallel sentences are aligned and POS
tagged, we look for one-one word mappings in
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1. Data Extraction: Clean and extract sentences with at least 5 words

Hindi Sentence: 3+ TeleTgaT 1 {AT foies Rwhioe &9 & ffSha fvar arar &

English Sentence: A list of plugins that are disabled by default

2. Alignment: Hi-En | En-Hi - Hindi as matrix language | English as matrix language

Hi-En: 1-0 3-1 2-2 5-3 5-4 5-5 8-6 9-7 5-8
En-Hi: 0-3 1-3 2-2 3-1 4-3 5-3 6-3 7-7 8-6 9-6 10-6 11-8

3. Annotation: POS tagging using Stanza POS tagger

Hindi: 3A\DET SeRTS#NNOUN $FnADP FENNOUN fSi=\PRON f2hiee\ADJ FNOUN TADP fAfSHADJ fFaMVERB JR—IMAUX B\AUX
English: ADET listtNOUN of\ADP plugins\NOUN that\PRON are\AUX disabled\VERB by\ADP defaulttNOUN

Embedding Alignments: Hindi - English: {'{Eﬂ' — list} | English - Hindi: {plugins —-‘ﬂ?ﬁ?ﬁ}

4. Replacement: Replace words with one-one mapping that are either nouns or adjectives. Add word-level language information.
Intermediate Code-mixed Text (MtxL: Hindi): 3a\hi\DET Terergaihi\NOUN nhi\ADP list\en\NOUN fSi=§\hi\PRON f3wlee\hi\ADJ

Fhi\NOUN Ihi\ADP fATSFahi\ADJ fFamhi\VERB araMhilAUX B\hi\AUX

Intermediate Code-mixed Text (MtxL: English): A\en\DET list\ien\NOUN oflen\ADP TeRTS=i1hi\NOUN that\en\PRON are\en\AUX

disabled\en\VERB by\en\ADP default\en\NOUN

5. Transliteration: Transliterate Devanagari script to Roman script.

Hindi as MtxL: un\hi\DET pluginon\hi\NOUN kii\hi\ADP list\en\NOUN jinhen\hi\PRON difolt\hi\ADJ rup\hi\NOUN se\hi\ADP niskriy\hi\ADJ

kiya\hi\VERB gaya\hi\AUX he\hi\AUX

English as MtxL: A\en\DET list\en\NOUN of\en\ADP pluginon\hi\NOUN that\en\PRON are\en\AUX disabled\en\VERB by\en\ADP

default\en\NOUN

Figure 2: A sample execution of our data generation pipeline on example parallel sentences. A sample token in
PACMAN is of the form: <word/LID/POS>. We have used the universal POS tagset. For the language identifier
(LID), each token is tagged as hi (Hindi), en (English) or rest (others). The final generated text for PACMAN data
both for Hindi and English as matrix languages can be observed.

the alignment that are either a noun or an ad-
Jjective. If such a mapping exists, from either
Hindi to English or English to Hindi align-
ments, we call them embedding alignments.
Essentially, we locate junctions in the paral-
lel sentences where code-mixing can happen.
For the Hindi parallel sentence, we replace the
words in Hindi with the words in English that
constitute the embedding alignments. This is
the case where Hindi is the matrix language,
and English is the embedded language. The
same is actuated for English as the MtxL and
Hindi as the EL. Using both Hindi and En-
glish as matrix languages ensures that the vo-
cabulary as well as the POS tag distribution
is uniform across both languages. We add the
word-level language information (ki for Hindi,
en for English, rest for others) in the gener-
ated sentences, as the information is known
based on the matrix and embedded language.

5. Transliteration: The Hindi words in the gen-
erated data, are in Devandagari script, as they
occur in the same form in the parallel corpus.
We use Indic-trans to transliterate the words
in Devandgari to Roman script in order to
generate the final PACMAN code-mixed an-
notated data, which is completely in Roman
script.

The generated PACMAN dataset is Roman in
form and each word (token) is annotated with a
language identifier (LID) (Ai for Hindi, en for En-
glish, rest for others) and POS label from Stanza.
A sample token of PACMAN is of the form:
<word/LID/POS>. We have demonstrated the
execution of our data generation pipeline for a sam-
ple set of parallel sentences in Figure 2. An ex-
ample of generated PACMAN data can also be
visualized in this figure.

POS Distribution

21.25

Percentage (%)

NUM  NOUN VERB DET  ADP CONJ PRON PART ADJ  ADV X PUNCT

Part-Of-Speech Tags

Figure 3: Percentage-wise POS distribution of PAC-
MAN over 12 universal POS tags

3.3 Corpus Statistics

We generate the PACMAN dataset through an
alignment, annotation and replacement based strat-
egy discussed in Section 3.2. The generated dataset
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contains 51118 unique pure CM Hinglish POS
tagged sentences, with an average CMI of 14.61
and 100% CMR. The average sample length in
the dataset is 28 as shown in Table 2. The POS
distribution over 12 universal POS tags is shown in
Figure 3.

4 Part-Of-Speech Tagging

In this section, we discuss the tagset used for
POS annotation, details and performance of the se-
quence labeling models applied on the PACMAN
dataset for word-level POS prediction. In addition,
we also analyse the contribution of WLI for the
CM POS labeling task.

4.1 Part-Of-Speech tagset

We have already discussed earlier that during our
data generation phase, we use the Universal POS
tagset introduced by Petrov et al. (2012), who
established that a coarse-grained POS tagset of 12
tags is sufficient for POS tagging and performs
well for the task, compared to a fine-grained
tagset as in Marcus et al. (1993). The Stanza
POS tagger has provision for the universal POS
tagset (called upos), but has /7 unique POS tags.
In order to maintain the 12 POS tags proposed
by Petrov et al. (2012), we have post-processed
our data by replacing AUX to VERB, PROPN to
NOUN, SCONJ and CCONJ to CONJ. Further,
from the POS distribution statistics shared in
Figure 3, it can be seen that tag X contributes only
0.02% of total tag counts. Hence, we remove
the samples containing X tag from our dataset,
as it is statistically insignificant. The final set of
11 POS tags are: ADJ, ADP, ADV, VERB,
CONJ, DET, NOUN, NUM, PART, PRON,
PUNCT.

4.2 Sequence Labeling Models

To establish the efficacy of the generated PAC-
MAN dataset, we built sequence labeling models
on it. We experimented with an ML model and a
DL model viz., Conditional Random Field (CRF)
and Bidirectional LSTM (BiLSTM). Previous re-
search has validated the use of CRFs (Toutanova
et al., 2003; Choi et al., 2005; Peng and McCal-
lum, 2006) and LSTMs / BiLSTMs (Ghosh et al.,
2016; Wang et al., 2015) for POS tagging and other
sequence labeling NLP tasks. We experimented
with the transformer-based models as in Aguilar
et al. (2020), but do not report them, as they were

outperformed by CRF and BiLSTM.

We have used the CRF model proposed by Laf-
ferty et al. (2001), using the faster ”L-BFGS” (Liu
and Nocedal, 1989) optimization. We used the fol-
lowing set of hand-crafted linguistic features for
the CREF classifier: (i) The current token W, (ii)
index of the W, (iii) affixes of length 1 to 3, (iv) a
binary feature indicating whether all characters in
W are uppercase or lowercase, (v) a binary feature
indicating whether W has any upper case character,
(vi) a binary feature indicating whether there is any
digit character in W, (vii) previous and next word
of W, (viii) a binary feature indicating whether W
has a hyphen (-). To prevent over-fitting, we use
L; and L, regularization. We used grid search to
extract the optimal hyper-parameters for the CRF
model. We call this model PACMAN¢kE.

We do not use any hand-crafted features for our
BiLSTM model. Instead, we train a set of word
embeddings as part of the neural network designed
for the word level POS prediction task. This en-
sures that word embeddings are tuned for the POS
tagging task. We have kept the dimension of the
word embeddings as /28. These embeddings are
passed on to the BILSTM layer (output dimension
512), followed by a set of feed forward layers (di-
mensions 5/2 and 256), and finally a softmax layer
for the POS prediction. To prevent over-fitting, we
add a dropout (0.25) layer and L, L, regulariza-
tions. We experimented with different sets of hyper-
parameters, layer sequences, and dimensions, but
this configuration yielded the best performance.
We call this model PACMANGRB;1.s7M -

For both the sequence labeling tasks, we take a
75:5:20 split for training, validation and testing
sets for our models. The Precision, Recall and F;-
score for PACMANCRF and PACMANBZ‘LSTM
are reported in the first half of Table 1. It
can be observed that the PACMANcrr model
achieves an overall Fi-score of 0.965, whereas
the PACMANGE; sy model outperforms the
PACMAN¢rr model with an overall Fi-score of
0.979. Singh et al. (2018) reports that ML-based
techniques work better than DL-based techniques
for CM POS labeling. Our results show that this is
predominantly due to the inadequacy of data, typi-
cally required to build better deep learning models.
Since, our data is almost 50 times that of Singh et al.
(2018), our DL model viz., PACMAN ;1,573 With
an Fy-score of 98% performs better than our ML
model PACMAN¢cRgr by 1.5%.
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Without WLI With WLI

POS PACMANG PACMAN ;;1.5701 PACMANZ, . PACMANY., , o7/

P R F P R F P R F P R F
ADJ | 0939 | 0.92 | 0.929 | 0.955 | 0.946 | 0.95 | 0.943 | 0.912 | 0.927 | 0.95 | 0.948 | 0.949
ADP | 0.983 | 0.987 | 0.985 | 0.983 | 0.99 | 0.989 || 0.985 | 0.989 | 0.987 | 0.988 | 0.991 | 0.99
ADV | 0.914 | 0.908 | 0.911 | 0.947 | 0.956 | 0.952 || 0.915 | 0.902 | 0.909 | 0.951 | 0.956 | 0.954
CONJ | 0.959 | 0.968 | 0.963 | 0.978 | 0.976 | 0.977 | 0.959 | 0.97 | 0.964 | 0.979 | 0.975 | 0.977
DET | 0.972 | 0.956 | 0.964 | 0.983 | 0.984 | 0.986 || 0.978 | 0.962 | 0.97 | 0.99 | 0.983 | 0.987
NOUN | 0.974 | 0.975 | 0.974 | 0.983 | 0.981 | 0.982 | 0.97 | 0.977 | 0.974 | 0.981 | 0.983 | 0.982
NUM | 0.963 | 0.978 | 0.97 | 0.974 | 0.984 | 0.979 | 0.993 | 0.988 | 0.991 | 0.99 | 0.987 | 0.988
PART | 0.987 | 0.989 | 0.988 | 0.994 | 0.993 | 0.993 || 0.99 | 0.99 | 0.99 | 0.993 | 0.992 | 0.993
PRON | 0.975 | 0.978 | 0.976 | 0.99 | 0.991 | 0.99 || 0.978 | 0.98 | 0.979 | 0.99 | 0.993 | 0.991
VERB | 0.971 | 0.973 | 0.972 | 0.988 | 0.99 | 0.989 || 0.975 | 0.976 | 0.975 | 0.99 | 0.988 | 0.989
PUNCT | 0.983 | 0.983 | 0.983 | 0.992 | 0.981 | 0.986 | 0.985 | 0.983 | 0.984 | 0.99 | 0.983 | 0.986
Avg | 0.965 | 0.965 | 0.965 | 0.98 | 0.979 | 0.979 | 0.97 | 0.966 | 0.968 | 0.981 | 0.98 | 0.981

Table 1: Precision (P), Recall (R) and F;-score (F) for CRF and BiLSTM sequence labeling models, on PACMAN
data, with and without WLI. It can be observed that the PACMAN g, 1, s performs better than the PACMANcgrp.
Also, infusing WLI parameter does not boost the F;-scores for both models.

4.3 Contribution of Word-Level Language
Information

Solorio and Liu (2008); Vyas et al. (2014) empha-
size that word-level language information (WLI) is
a requisite for POS tagging CM text. Singh et al.
(2018) have shown a slight increase in the overall
Fi-score (2%) when language information is con-
sidered. In Section 4.2, we observed the accuracy
of our sequence labeling models on CM POS tag-
ging without language information for each word.
To gauge the effect of language information on CM
POS tagging, we model the POS sequence labeling
task with the annotated WLI, which is captured
during data generation. We do not build a language
identifier (LID) model. The WLI tags are added to
the train, validation, and test data, split in 75:5:20,
as discussed in Section 4.2. For the PACMANcRrF
model, we add a language feature for word W,
and for PACMANBE; 1570, we model the language
information for each word, as part of the word em-
beddings. We name the models PACMANé rr and
PACMANZE, | o7,/ respectively.

The Precision, Recall and Fj-score for
PACMANL . . and PACMANY, |, o, , are reported
in the second half of Table 1. It is evident from
the results that post the infusion of WLI, there
is almost no increase in performance (0.3% for
CRF and 0.2% for BILSTM) of the CM POS label
prediction, even though ground-truth WLI labels
are provided in test data and not probabilistic la-
bels from a LID model. We also found that the
predicted POS labels for PACMANBg; s and
PACMANYE; o1, differ by only 1.13%. As our
findings are contrary to previous research in CM
POS tagging, we investigated the statistical signif-

icance of our findings. We obtained a p-value of
9.6e~? (<< 0.05 threshold), validating that our
observations are statistically significant.

This establishes that for a significantly large
dataset, that is uniformly distributed across con-
stituent languages of a CM setting, the models learn
the sequential data better and are able to assign
classes to each word based on the context, inher-
ently capturing the language information for each
word. Thus, the requirement of WLI is nullified for
the CM POS labeling task.

It can be observed in Table 1 that despite similar
overall F1-scores, there is a dissimilarity in Preci-
sion, Recall, and F;-scores of individual POS tags.
To understand this, we did further analysis on the
impact of WLI on our sequential models. We found
that WLI aids in the correct POS category identi-
fication of words when they have the exact same
spelling in both English and transliterated Hindi.
Words like the (was), he (is), main (me) which
are also English words, are some examples of such
cases (example shown in Appendix A through Fig-
ure 5). These cases are just a handful though, and
hence do not affect the overall accuracy of the se-
quence labeling models.

5 PACMAN: Qualitative Evaluation

In this section, we gauge the quality of our dataset
and models against the existing benchmark for CM
POS tagging i.e., Linguistic Code-switching Eval-
uation (LinCE), reported by Aguilar et al. (2020).
Since PACMAN is synthetically generated, it is cru-
cial that its efficacy is tested against a benchmark
social media dataset (LinCE), which is considered
natural CM data. To this end, we devise a set of
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intricately designed experimental scenarios for this
comparative investigation.

5.1 Dataset Statistics Comparison

We first compare the statistical parameters across
the proposed PACMAN dataset and the benchmark
dataset LinCE, exhibited in Table 2. The compar-
ison of POS distributions between PACMAN and
LinCE are also shown in Appendix A through Fig-
ure 4.

Parameters PACMAN | LinCE
# Code-mixed samples 51118 1077
# English samples 0 343
# Hindi samples 0 69
CMR (%) 100 72.33
Average CMI 14.12 14.16
Avg. Sample Length 28.16 15.11
Total # tags | 1477765 | 26416

Table 2: Comparison of statistics between PACMAN
and LinCE code-mixed datasets. The key parameters to
note here are the avg CMI, CMR and avg sample length.

In terms of the number of samples and tags, PAC-
MAN is almost 50 times that of LinCE. Jamatia
et al. (2015) stated that in order to compare, two
CM datasets, it is imperative that their complexi-
ties are similar i.e., their average CMIs are close to
each other. The average CMIs of both PACMAN
and LinCE are around 14 and thus comparable. As
for the number of actual CM samples, PACMAN
and LinCE have CMR values of 100% and 72%,
respectively. The average sample length in LinCE
is 15 and that of PACMAN is 28.

5.2 Experimental Setup

Comparing code-mixed datasets is tough, due
to differences in source and level of mixing ob-
served across such datasets. The benchmark LinCE
dataset is based on tweets, extracted over a hand-
ful of fopics, making it domain-specific and noisy
in nature. Whereas PACMAN is domain agnos-
tic and has standard spelling and grammar. We
pre-processed both PACMAN and LinCE, for ho-
mogeneity, and built a set of customised scenarios
to compare them.

5.2.1 Data Pre-processing

For the LinCE dataset, we observed that the authors
had followed a customised annotation scheme,
with 3 extra tags viz., PART_NEG, PRON_WH and
PROPN. To map LinCE to the standard universal
POS tagset, we converted PART_NEG to PART,

PRON_WH to PRON and PROPN to NOUN. Further,
the LinCE dataset does not contain the PUNCT
tag and PACMAN does not contain X tag. We
remove all occurrences of PUNCT from PACMAN
and X from LinCE, without affecting the context/
meaning of the samples, resulting in a total of 10
POS tags across both datasets. We name these pre-
processed datasets PACMANpcp and LinCEpcp.

5.2.2 Comparison Scenarios

We gauge the quality of the PACMAN dataset
against the LinCE benchmark, without language
information, as we have already established in
Section 4.3 that WLI does not affect the accu-
racy of the sequence labeling models. To com-
pare the pre-processed datasets (PACMANpcp
and LinCEpcp), we devised a set of experimen-
tal scenarios. For actuating the best performance
framework, we utilise the highest performing mod-
els for LinCE (CRF which is the SOTA, as reported
by Singh et al. (2018)), and PACMAN (BiLSTM)
as discussed in Section 4) on the following care-
fully devised experimental scenarios:

1. S;: Trained and tested on LinCE data.
Train: LinCEpcp | Test: LinCEpcp
Purpose: Estimate benchmark accuracy

2. Sy: Trained and tested on PACMAN data.
Train: PACMAN pcp | Test: PACMAN peop
Purpose: Measure PACMAN accuracy

3. S3: Trained on LinCE, tested on PACMAN.
Train: LinCEpcp | Test: PACMAN pop
Purpose: Evaluate how well LinCE gener-
alises on PACMAN data (standard spelling
and grammar)

4. S4: Trained on PACMAN, tested on LinCE.
Train: PACMANpcp | Test: LinCEpcp
Purpose: Gauge how well PACMAN gener-
alises on LinCE data (social media text)

5.3 Results and Discussion

The results of the experiments proposed in Sec-
tion 5.2.2 are shown in Table 3. For scenarios
S; and So, it can be seen that PACMAN outper-
forms the benchmark LinCE, by 9% and 14%
for CRF and BiLSTM, respectively. Essentially,
PACMAN ;.sTm (So: BiLSTM, with an f-score
of 98%) surpasses the SOTA benchmark (S;: CRF,
with an f;-score of 88%) by 10%.

Comparing the scenarios S3 and Sy, it can be
seen that the models that are trained on PACMAN
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data perform better than the ones trained on LinCE
data (7% and 10% for CRF and BiLSTM respec-
tively). Also, CRF outperforms BiLSTM with
LinCE data, as LinCE dataset is small and not ad-
equate for training/testing the BILSTM model (as
discussed in Section 4.2).

CRF BiLSTM

POS 575 (8 (8 [ S5 S [ S S
ADJ 0.67 | 093 | 0.34 | 0.57 || 0.65 | 095 | 0.27 | 0.50
ADP 094 | 098 | 0.85 | 0.79 || 0.93 | 0.99 | 0.86 | 0.83
ADV 0.82 1091 | 049|062 | 0.80| 098 | 048 | 0.76
CONJ | 091 | 096 |0.79 | 0.58 || 0.92 | 0.99 | 0.79 | 0.75
DET 0.88 | 0.96 | 0.64 | 0.80 || 0.87 | 0.99 | 0.68 | 0.78
NOUN | 0.88 | 097 [ 0.72 | 0.79 || 0.81 | 098 | 0.41 | 0.72
NUM 096 | 097 | 0.76 | 0.86 || 0.92 | 0.94 | 0.70 | 0.59
PART 0.84 1 099 | 0.54 | 0.75 || 0.86 | 0.99 | 0.64 | 0.74
PRON | 0.86 | 098 | 0.67 | 0.72 || 0.83 | 0.98 | 0.58 | 0.66
VERB | 090 | 098 | 0.72 | 0.83 || 0.82 | 0.98 | 0.55 | 0.62
Average | 0.88 | 0.97 | 0.70 | 0.77 || 0.84 | 0.98 | 0.60 | 0.70

Table 3: F;-scores obtained for CRF and BiLSTM on
scenarios S1_4. S; and S5 show that PACMAN out-
performs the benchmark by 9%. S5 and S, show that
PACMAN generalises better on LinCE data, but LinCE
is not able to generalise equally well on PACMAN data.

This essentially emphasizes that: (i) Sequence la-
beling models trained on PACMAN data are able to
generalise better than LinCE, even on social media
data, as PACMAN data follows standard spelling
and grammar. (ii) Models trained on LinCE (social
media data) do not generalise as well on standard-
ised data. (iii) LinCE has 28% monolingual data,
but PACMAN is able to handle monolingual data
as well, due to the exhaustive and uniform word
and POS tag distribution across Hindi and English.
We can conclusively establish that not only is PAC-
MAN larger and standardised, but also computa-
tionally superior, and is capable of generalising on
natural CM data as well as monolingual data.

6 PACMAN: Error Analysis

With the motivation of bridging gaps in existing
CM datasets and computational models we gener-
ate PACMAN, using an alignment, annotation and
replacement strategy from parallel Hindi-English
corpus. Although the generated data is clean, for-
malised, and yields impressive results, our analy-
sis shows that the usage of probabilistic tools and
resources adversely affects the quality of the gen-
erated dataset, although such cases are scarce. We
highlight these inaccuracies with examples, for ev-
ery stage of our data generation pipeline.
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Inaccuracies in the Parallel Corpus: We ob-
served a few errors in the Hindi parallel sentences
in the corpus like:

1. Multiple Devandagari forms of same Hindi
words

e.g., 8/ % - hai (is); A&/ & - nahi (no)

. Hindi translations of English words being
merely their Devanagari forms

e.g., SR (default) , ST (database)
8

This results in incorrect non-standard words
in the dataset, from the transliterations (ke (hai),
nahin (nahi), difolt (default), databes (database)).

Inaccurate Alignment: Due to inherent con-
straints in Fast Align, sometimes the alignment
results rendered are inaccurate. This leads to in-
correct word replacements and redundant words,
resulting in erroneous data. In the example below
it can be observed that the word dhvani (sound)
is redundant and incorrect, due to the inaccurate
alignment of the words egfT(dhvani) and event.

English Sentence: Whether or not to play event sounds

Hindi Sentence: T3t &g tafer s=md ar A&

Alignment: En-Hi: 0-0 1-0 2-6 3-6 4-1 5-2

Final Generated text:

Whether\en\SCONJ or\en\CCONJ not\en\PART to\en\PART play\en\VERB

dhvani\hiiNOUN sounds\en\NOUN

Inaccurate POS tagging: Due to a more flexi-
ble grammatical structure in Hindi, Stanza is occa-
sionally unable to correctly adjudicate the relative
positions of adjectives and adverbs w.r.t nouns and
verbs. For e.g., ADJ: g-fr/ buri (bad) can come in
one of the following orders:

1. Before a NOUN: g’ﬁ' IS / buri cheej (bad
thing)

2. After a NOUN: 3ATad g‘ﬁ' / aadat buri (bad
habit)

Stanza annotates the latter as: aadat\NOUN
buri\NOUN, due to the confusion infused by Hindi
grammar, resulting in an error in the dataset.

Stanza is capable of handling multi-word expres-
sions (MWE), which leads to poor tagging reso-
lutions in some cases. For e.g., for the word se-
quence ambient light is detected as a MWE, result-
ing in ambient being annotated as NOUN instead
of ADJ. This results in the incorrect entry ‘ambi-
ent\en\ADJ prakaash\hi\NOUN’ in the dataset.



Inaccurate Transliteration: In some cases,
Indic-trans renders erroneous transliteration. For
e.g., ‘Q" (hey) in ‘QTFH‘ENT ;TAT” (Hey Ram
come here), is transliterated to ’I’, which leads to
Stanza incorrectly tagging ‘Q" as PRON, instead of
PART, resulting in inefficient data.

7 Conclusion and Future-work

In this paper, we address some of the existing lim-
itations in the datasets and computational models
for code-mixed languages, specifically for the CM
POS tagging task.

We propose a first-of-its-kind work in generating
CM annotated data. We introduce the PACMAN
dataset, generated using an alignment, annotation
and replacement strategy from Hindi-English par-
allel corpus. We claim that PACMAN is the largest
CM annotated dataset (around 50K samples). Al-
though the generated dataset is for Hinglish, the
strategy can be transferred to any CM language pair,
having available parallel corpus and POS taggers.

The PACMAN data adheres to standard spelling
and grammar, unlike social media data, primarily
used in CM research work. The use of both Hindi
and English as matrix languages, ensures uniform
distribution of words in both languages, and the
potential to understand monolingual contexts.

To establish the effectiveness of the dataset, we
build both ML (CRF) and DL (BiLSTM) based se-
quential labeling models on PACMAN data. Unlike
previous work, our DL model outperforms the ML
model by 1.5%.

We analyse the effect of word-level language
information on the CM POS tagging task, which
reveals that, with a larger dataset, cases where WLI
is crucial, are minuscule, thus elevating the need
for WLI in CM POS labeling.

We validate our dataset against the existing
benchmark dataset for CM POS tagging. Our best
model outperforms the SOTA benchmark by 10%
and in all computational scenarios, signifying that
our dataset is more generalised and capable of han-
dling a wide spectrum of CM data as well as mono-
lingual data.

Scrutiny of errors observed in our dataset mani-
fests that inaccuracies in probabilistic tools and
resources used as a part of the data generation
pipeline, adversely affect the quality of the dataset,
although such cases are scarce.

In future, we endeavour to generate more data in
order to build transformer-based models on PAC-

MAN, and use matrix language information to pre-
vent errors actuated by structural differences be-
tween Hindi and English.
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A Appendix

POS Distribution
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Figure 4: Percentage-wise comparison of POS distribution between PACMAN and LinCE over 12 universal POS
tags. The high percentage of the ‘X’ POS tag indicates that the LinCE data is social media based and hence noisy.

Sample sentence: use truth bolke burden kam kar diya
Translation: I lessened his burden by telling him the truth

PACMAN use\VERB truth\NOUN bolke\VERB burden\NOUN kam\ADJ

BiLSTM:
kar\VERB diya\VERB

Sentence with WLI: use, . truth_ bolke  burden  kam  kar,, diya

L .
PACMAN BILSTM® usehi\PRON truthen\NOUN bolkehi\VERB burdenen\NOUN

kam . \ADJ kar, .\VERB diya, .\VERB
Explanation: ‘use’ (his) is used in Hindi (hi) as a pronoun (PRON).

This is confused with ‘use’ is English (en), which is a verb (VERB).

Figure 5: Example showing where word-level language information (WLI) helps in correct POS identification.
It can be seen that the word "use’ (Hindi for his) has different meanings but the same spelling in English and
transliterated Hindi. With WLI, this confusion is resolved, and the correct POS tag is predicted.
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