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Abstract

The integration of knowledge graphs with deep
learning is thriving in improving the perfor-
mance of various natural language process-
ing (NLP) tasks. In this paper, we focus on
knowledge-infused link prediction and ques-
tion answering using language models, T5,
and BLOOM across three domains: Aviation,
Movie, and Web. In this context, we infuse
knowledge in large and small language mod-
els and study their performance, and find the
performance to be similar. For the link predic-
tion task on the Aviation Knowledge Graph, we
obtain a 0.2 hits@1 score using T5-small, T5-
base, T5-large, and BLOOM. Using template-
based scripts, we create a set of 1 million syn-
thetic factoid QA pairs in the aviation domain
from National Transportation Safety Board
(NTSB) reports. On our curated QA pairs, the
three models of T5 achieve a 0.7 hits@]1 score.
We validate our findings with the paired stu-
dent t-test and Cohen’s kappa scores. For link
prediction on Aviation Knowledge Graph using
T5-small and T5-large, we obtain a Cohen’s
kappa score of 0.76, showing substantial agree-
ment between the models. Thus, we infer that
small language models perform similar to large
language models with the infusion of knowl-
edge.

1 Introduction

A large number of pre-trained language models
(LMs) are used for downstream tasks, such as Ques-
tion Answering (QA). Generally, these language
models are trained on generic domain data, such
as Web data and News Forums. Recently, LMs
are used for downstream tasks in domain-specific
fields, namely, healthcare (Michalopoulos et al.,
2021), radiology (Kale et al., 2022), and aviation
(Agarwal et al., 2022). For tasks such as Informa-
tion Extraction (IE) and Question Answering (QA),
Knowledge Graphs (KGs) are used as a source of

*Equal contribution

external knowledge to boost the performance of
models. To a great extent, researchers focus on the
synergy of Knowledge Graph and Deep Learning
(Miller et al., 2016a; Saxena et al., 2020, 2022).
With the increase in data, it is observed that larger
models are preferred for different tasks across vari-
ous domains.

The Large Language Models (LLMs) are pre-
ferred to obtain better results than small or non-
pre-trained models as they have a vast number of
parameters and have been trained on a large amount
of data. But, the larger model increases the need
for computation power and training time. In this
paper, we show that small and large models per-
form likewise with the infusion of knowledge. We
can use non-pre-trained models for different tasks
across domains that require less computation power
and time and still attain the same performance as
pre-trained models.

We validate our hypothesis with the LLMs, i.e.,
T5 (Raffel et al., 2020) & BLOOM'. We perform
two tasks: a) Link Prediction, and b) Question An-
swering on different datasets: a) Aviation Knowl-
edge Graph (AviationKG) (Agarwal et al., 2022),
and Aviation QA pairs (section 4.4), b) Movie
Knowledge Base (MovieKB) & MetaQA (a set
of QA pairs), both present in the MetaQA dataset
(Zhang et al., 2018), and ¢) Complex Web Ques-
tions (CWQ) (Talmor and Berant, 2018), which
uses subsets of Freebase (Chah, 2017). We perform
hypothesis testing to validate our hypothesis. We
use paired Student T-test and attempt to reject our
hypothesis that models have a negligible difference
in performance. But, we were not able to repudi-
ate our hypothesis. To strengthen our findings, we
use Cohen’s kappa measure and show significant
agreement between models.

Our contributions are as follows:

"https://huggingface.co/bigscience/
bloom
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1. We create a synthetic dataset, AviationQA 2 a
set of 1 million factoid QA pairs from 12,000
National Transportation Safety Board (NTSB)
reports using templates explained in section
4.4. These QA pairs contain questions such
that answers to them are entities occurring in
the AviationKG (Agarwal et al., 2022). Avia-
tionQA will be helpful to researchers in find-
ing insights into aircraft accidents and their
prevention.

2. We show that the size of a language model
is inconsequential when knowledge is in-
fused from the knowledge graphs. With Avia-
tionKG, we obtain 0.22, 0.23, and 0.23 hits@1
scores for link prediction using T5-small, T5-
base, and T5-large, respectively. On Avia-
tionQA, we get a 0.70 hits@]1 score on the
three sizes of the TS model. We validate our
hypothesis with paired student t-test, and Co-
hen’s kappa explained in section 6. We obtain
a substantial Cohen’s kappa score of 0.76 for
link prediction on AviationKG using T5-small
and T5-large. For Question Answering us-
ing T5-small and T5-large, we get a Cohen’s
kappa score of 0.53 on the MetaQA dataset.
Hence, we provide evidence that we can sub-
stitute larger models with smaller ones and
achieve the same performance with less com-
putational cost and power.

2 Motivation

As stated earlier, in Section 1, LMs are trained
on generic datasets. So, knowledge from differ-
ent sources, i.e., KGs, are used to perform down-
stream tasks in specific domain areas. LLMs in-
fused with knowledge are required to perform such
tasks, namely, QA and link prediction, which in-
creases the need for computation power and time.
We show that computational resources can be saved
by using smaller language models for tasks.

It is rare to obtain datasets related to the aviation
domain, which is in increased demand. We scrape
NTSB reports from NTSB’s website > and create
QA pairs that can be used by the aviation industry
and researchers for Information Retrieval (IR) and
QA purposes. The created dataset will help find in-
sights into aircraft accidents and develop solutions

2https ://github.com/ankush9812/
Aviation—-Question—-Answer—-Pairs

Shttps://www.ntsb.gov/Pages/
AviationQuery.aspx

to prevent accidents.

3 Background & Related Work

A Knowledge Graph is a collection of entities and
relations represented in the form of triplets (sub-
ject, relation, object). Querying KG in Natural
Language (NL) is a long-standing work. Early
work focused on rule-based and pattern-based sys-
tems (Affolter et al., 2019). Recently, the work is
shifted to seq2seq architecture (Zhong et al., 2017)
and pre-trained models with the advent of neural
networks. Querying KGs remains a challenge be-
cause of the conversion of NL to the graph query
language, namely, SPARQL, Cypher, etc.

With the value increase of knowledge in the
world, the popularity of the KG has escalated. Re-
searchers are keenly interested in the synergy of
knowledge graphs and deep learning. Several meth-
ods are exploited considering synergy: a) Integrat-
ing triplets of KG into the neural network (Liu
et al., 2020; Saxena et al., 2022), b) Computing the
relevance of entity and relations in a KG using a
neural network (Sun et al., 2019; Yasunaga et al.,
2021).

Deep Learning models use representations of
entities and relations to integrate triplets of KG.
Knowledge Graph Embeddings are widely used
to obtain representations (Dai et al., 2020). The
KG embedding models are trained on link predic-
tion over triplets to obtain representations (Wang
et al., 2021). Recent work has focused on using
fine-tuned language models over KGE models for
link prediction to reduce the number of parameters
required to obtain the representations (Saxena et al.,
2022).

LMs and KGs are extensively used to improve
task-specific performance. Still, no study has been
done to understand the characteristics of a language
model during the synergy of KG and DL. In this
paper, we observe the behavior of language models
after knowledge infusion with different domain
datasets.

4 Methodology and Experimental Design

This section presents our approach (flow diagram
in figure 1), discusses the experiment datasets, cre-
ation of AviationQA, describes the model configu-
rations, and explains the evaluation technique.
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4.1 Approach

We observe the performance of small and large
language models with the infusion of knowledge
for link prediction and QA. Experiments are per-
formed with the following models (detailed in sec-
tion 4.6): a) T5-small non-pre-trained, b) T5-base
pre-trained, c) T5-large pre-trained, and SOTA d)
BLOOM 1b7. We make use of different domain
datasets for our approach, explained in section 4.2.
Figure 1 demonstrates link prediction and question
answering on the data after pre-processing.

We inject knowledge into the LMs. The knowl-
edge is injected by the process of fine-tuning the
pre-trained LM. Fine-tuning requires a learning
objective and training data. In our case, the train-
ing data is triplets from the KG (table 1), and the
learning objective is triple completion. Triple com-
pletion involves getting tail entity given head entity
and relation. Triple completion is also called link
prediction. Thus, the LM absorbs the knowledge.
The link prediction results with triplets are shown
in table 3.

After fine-tuning on triplets for link prediction,
the language model learns representations of en-
tities and relations. The checkpoint with the best
result on link prediction is used for the question-
answering task. We again fine-tune the selected
checkpoint with QA pairs (table 2) and obtain the
QA results shown in table 4.

4.2 Experiment Data

We are using three datasets: a) Aviation Knowledge
Graph (AviationKG) (Agarwal et al., 2022) & Avi-
ation QA pairs (section 4.4), b) MetaQA (Zhang
et al., 2018), which consists of a KB constructed
from WikiMovies dataset (Miller et al., 2016b) and
question-answer pairs, and ¢) Complex Web Ques-
tions (CWQ) (Talmor and Berant, 2018), which
uses subsets of Freebase (Chah, 2017). The statis-
tic of these datasets is shown in table 1 & 2. We
chose these datasets because they belong to differ-
ent domains and vary in size.

MetaQA KB & AviationKG are from the movie
and aviation domains, respectively, which is useful
to represent the diversity of datasets and validate
our hypothesis. CWQ is based on Freebase, a huge
KG, which is crowd-sourced. We require a knowl-
edge base and the corresponding QA pairs for our
experimentation, described in section 4.5. MetaQA
and CWQ are openly available datasets. But, there
is no available QA pairs dataset for the aviation

domain. We create a set of QA pairs in the aviation
domain and contribute to the research community,
detailed in section 4.4. The datasets used in the
paper are pre-processed and split before running
experiments, as explained in section 4.3 and 4.5.

Dataset Train Validation Test
AviationKG 173,372 10,000 10,000
MovieKB 249,482 10,000 10,000
CWQ 27,590,648 10,000 10,000

Table 1: Statistics of triplets (subject, relation, object)
for three knowledge bases: AviationKG (Agarwal et al.,
2022), MetaKB (Zhang et al., 2018), and Complex Web
Question (CWQ) (Talmor and Berant, 2018). Subsets
of Freebase (Chah, 2017) are used for CWQ.

Dataset Train Validation Test
AviationQA 367,304 10,000 10,000
MetaQA 184,230 10,000 10,000
CWQ 61,619 3,519 3,531

Table 2: Statistics of Question Answer pairs from three
domains: Aviation, Movie, and Web. For MetaQA, we
use 1-hop questions. For more details, refer to section
4.5.

4.3 Data Pre-processing

We make use of KG and QA pairs (section 4.2)
from 3 domains, Aviation, Movie, and General do-
main. These datasets are cleaned and structured for
our experiments. For the link prediction task, the
dataset is created similar to Saxena et al. (2022),
described below:

predict head: subject | relation | object

predict tail: object | relation | subject

The triplets {subject, relation, object} are extracted
from the AviationKG, MovieKB, and Freebase in-
dividually.

All these knowledge bases are associated with
the corresponding QA pairs. As explained in sec-
tion 4.4, we construct the AviationQA pairs and
use MetaQA 1-hop and CWQ for question answer-
ing. For QA fine-tuning, the dataset is in the given
format:
predict answer: question | answer.

E.g., predict answer: What is the capital of India?
| New Delhi.

Multiple answers exist for a question in Avia-
tionQA, MetaQA, and CWQ. These collective in-
stances are separated as individual QA pairs.
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Figure 1: Flow diagram of the approach adopted in our paper. The model is first fine-tuned on KG triplets for Link
Prediction. Next, the fine-tuned model is again fine-tuned on question answering. Because of the link-prediction
task, the model learns KG completion and can answer multi-hop questions. E.g., If the model knows India’s capital
is New Delhi and New Delhi’s area size, then the model should predict the area of India’s capital correctly without

explicitly mentioning New Delhi in the question

E.g., What countries did Narendra Modi visit in the
year 2021? Answers: United States, Italy. Every
QA pair is segregated in the current layout: a) What
countries did Narendra Modi visit in the year 20217
| United States. b) What countries did Narendra
Modi visit in the year 20217 | Italy.

With small KGs, ie., AviationKG, and
MovieKB, triplet samples are added during QA
fine-tuning to avoid overfitting. The added triplets
are in the same format as mentioned for the link
prediction task. The pre-processing of triplets and
QA pairs is shown in figure 1.

4.4 Creation of AviationQA

We web scrape the National Transportation Safety
Board (NTSB) website and download 12k reports
from 2009-2022. A set of 90 question templates is
prepared using the common structure of documents
in the format:

* Where did the accident [ ] take place?

* What is the model/series of the aircraft bearing
accident number [ ]?

¢ Was there fire on the aircraft of the accident
number [ ]?

The template of questions is created, and answers
to those questions are extracted from every NTSB
report. Because every report is associated with an
accident number, we place [ ] in the template to
indicate which report the question pertains to, e.g.,
CHIO7LA273, LAX07LA148. NTSB reports are
semi-structured, containing unstructured data in
paragraphs and structured data in tabular format.
We extract answers from each report w.r.t the tem-
plate using the regular expression method. Later,

QA pairs are scrutinized. As some reports’ struc-
ture varies, different scripts are written to fetch
answers for those reports.

We successfully created 1 million factoid QA
pairs in the aviation domain using the template-
based method. The dataset will contribute to re-
search and development in the aviation industry.

4.5 Dataset Description

After pre-processing the data (section 4.3), we split
it to train, validate, and test for link prediction and
question answering. Table 1 shows the split of
triplets from AviationKG, MovieKB, and subsets
of Freebase. CWQ uses subsets of Freebase, which
is of size 27 million. AviationKG and MovieKB are
domain-specific datasets of sizes 170k and 250k.
Valid and test splits are equal in size to 10k each.

Our motive for considering different sizes and
domain datasets is to strengthen our intuition that
the performance of varying size models remains
the same with an infusion of knowledge in lan-
guage models. Table 3 shows the correctness of
our intuition with the link prediction task.

Table 2 shows the split of QA pairs for question-
answering. We use 387,304 instances for Avia-
tionQA from 1 million QA pairs (section 4.4). The
scrutinization is based on reports used to create Avi-
ationKG (Agarwal et al., 2022) from 1962 to 2015.
We use QA pairs that have information available
in the AviationKG. Moreover, we ensured that an
answer to a question is an entity in the AviationKG.

For comparison between the movie and the avia-
tion data, the split of valid and test set is the same
in both, i.e., 10k. CWQ dataset is smaller than
AviationQA and MetaQA, so we use the same vali-
dation and test split, as mentioned in Saxena et al.
(2022).
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4.6 Model Configuration

In this paper, we are using four models: T5-small
non-pretrained (60 million parameters), T5-base
pre-trained (220 million parameters), T5-large pre-
trained (770 million parameters), and BLOOM
(1.72 billion parameters). These models are consid-
ered to validate our statement that with the injection
of knowledge, small and large model performs the
same. Both tasks, link prediction and question an-
swering, are performed using these models. The
TS5 model is considered in our experiment as it
is trained to perform multiple downstream tasks,
i.e., translation, classification, and question answer-
ing. We use BLOOM as it is similar to the SOTA
model GPT-3 (Brown et al., 2020), which has out-
performed other language models on tasks such as
QA and summarization.

4.7 Evaluation Technique

We evaluate the performance of our models using
the hits@1 score for link prediction and question
answering. Table 3 and 4 show the hits@1 score
for link prediction and question answering, respec-
tively, on different datasets. We choose the hits@1
score for evaluation as it is more precise than other
hits@k scores. If the first predicted value matches
the actual answer, then the score is 1; otherwise,
0. We are using the hits@1 metric and not other
metrics such as BLEU score (Papineni et al., 2002)
and semantic similarity (Miller and Charles, 1991)
to validate the correctness of our hypothesis (in-
troduced in section 1). BLEU score is generally
used for comparing sentences, whereas, for link
prediction and QA tasks, the answer is a compound
noun, i.e., an entity in the knowledge graph. Since
the entities are ranked for tasks, the hits@1 score is
the best metric. As the answers to link prediction
and QA are entities of KG, the semantic similarity
would not be able to distinguish between 2 differ-
ent entities with semantically the same meaning.
After considering all drawbacks of other metrics,
we adapted the hits@]1 score for the evaluation.

5 Results and Analysis

This section analyzes the performance of two mod-
els: TS and BLOOM. Table 3 & 4 show the hits@1
score for link prediction and QA tasks, respec-
tively. With table 3, we can clearly observe that the
hits@1 score for three variations of the TS5 model
& BLOOM is proximate for three different datasets
(section 4.5). The three TS5 models score 0.22 &

Model AviationKG MetaKB CWQ
T5-small 0.2258 0.0257 0.2153
T5-base 0.2387 0.0286 0.2273
T5-large 0.2323 0.0301 0.2207
BLOOM 1b7 0.2163 0.0365 0.2155

Table 3: Link Prediction results on three knowledge
bases: Aviation Knowledge Graph (KG) (Agarwal et al.,
2022), Meta Knowledge Base (Zhang et al., 2018), and
subsets of Freebase (Chah, 2017) for Complex Web
Questions (CWQ) (Talmor and Berant, 2018).

Model AviationQA MetaQA CWQ
T5-small 0.7031 0.2144 0.2225
T5-base 0.7093 0.2158 0.2736
T5-large 0.7013 0.2371 0.2632
BLOOM 1b7 0.5507 0.2386 0.1517

Table 4: Question Answering (QA) results in three
QA datasets: AviationQA (4.4), MetaQA (Zhang et al.,
2018), and Complex Web Questions (CWQ) (Talmor
and Berant, 2018).

0.23 hits@1 for link prediction on AviationKG.
Similarly, scores with MetaKB and CWQ have very
less differences among models. LMs on MetaKB
perform poorly for link prediction compared to
other datasets; 0.02 & 0.03 are the hits@1 scores
on the TS5 model & BLOOM. The reason is the
extensiveness of triplets in the MetaKB and the
presence of noise in the dataset. We chose MetaKB
to have a diversity of datasets and justify our claim
(explained in section 1).

The main observation with the link prediction
task is that the T5-small non-pre-trained model per-
forms alike to pre-trained models. The T5-base
with 220 million parameters shows results like T5-
large & BLOOM, which comprises 770 million &
1.7 billion parameters, respectively. Link predic-
tion results (in table 3) infers our claim that small
and large models perform the same with the infu-
sion of knowledge.

To support our claim, we also performed QA
with the same set of models as used for the link
prediction task. With the AviationQA dataset, we
achieved 0.7 hits@1 scores on T5-small, T5-base,
and T5-large. LLMs such as T5-large & BLOOM
are expected to perform better for QA than small
models as they are trained with a large amount of
data and vice-versa, T5-small non-pre-trained, and
T5-base are expected to perform direly. But, we
observe that the performance of all three T5 models
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Hypothesis Testing AviationKG MetaQA
T5-small T5-base TS5-large  T5-small T5-base T5-large
T5-large T5-large Bloom T5-large T5-large Bloom
Paired Student T-test Cannot Cannot Cannot Cannot Cannot Cannot
Reject Reject Reject Reject Reject Reject
Cohen’s kappa Score 0.76 0.75 0.68 0.49 0.53 0.33
Agreement (%) 91.77 91.36 89.16 82.50 83.62 75.73

Table 5: Hypothesis Testing on link prediction with ‘AviationKG’ and question-answering with ‘MetaQA’ datasets.
We choose two measures for the test: a) paired Student T-test (Hsu and Lachenbruch, 2014), and b) Cohen’s kappa
Score (Cohen, 1968), to prove our hypothesis- after injection of knowledge, small and large models perform the
same. Student T-test with 0.1 significance value is done on 2000 instances of the test set selected randomly, and
our hypothesis is not rejected 7 out of 10 times. We use the entire test set of 10,000 instances for the kappa score.
Cohen’s kappa scores on link prediction for AviationKG are between 0.6 and 0.8, and on question-answering for
MetaQA, between 0.4 and 0.6. With these scores, we are able to prove that our claim is correct.

is the same for QA with the AviationQA dataset.
Similarly, we observe that MetaQA achieves 0.2
hits@1 scores for non-pre-trained TS5, pre-trained
T5-base, T5-large, and BLOOM.

Through our experiments, we have shown how
different model sizes perform on QA after infusion
of knowledge using link prediction. Pre-trained
and non-pre-trained models of different sizes have
shown similar results on different domain datasets
for link prediction and QA tasks. This contribu-
tion to the research community is pivotal as high
accuracy can be achieved efficiently with less com-
putation power, time, and cost.

The source code for our paper is publicly avail-
able on GitHub®.

6 Hypothesis Testing

We attempt to contradict our hypothesis (1) that
the difference in scores for the two models is neg-
ligible. We choose paired student t-test (Hsu and
Lachenbruch, 2014) to refute our hypothesis. In
our testing, the significance level (p-value) is 0.1,
and the sample size is 20% of the test set selected
randomly. In comparing the pair of models (section
4.6), we predicted T5-large to perform better than
T5-base & T5-small and Bloom to perform better
than all three models of TS5 because of its large
size. But, 7 out of 10 times student t-test was un-
able to reject our hypothesis, and the significance
level among the pair of models was greater than
0.1. Table 5 clearly shows the paired student t-test
on AviationKG (table 1) and MetaQA (table 2) for
different pairs of models, and the result is the same,

*nttps://github.com/ankush9812/
Knowledge-Infusion-in-1LM-for-QA

our hypothesis cannot be rejected.

After not being able to reject the hypothesis, our
next step was to strengthen it, so, we calculate
Cohen’s kappa (Cohen, 1968) score of the pair of
models with different datasets (table 1 & 2). We
consider a pair of models as two annotators and the
hits@1 score corresponding to each sample in the
test set as their annotations. Since our evaluation
technique (section 4.7) uses hits@1 score and the
score is binary for each sample, Cohen’s kappa
score is used to measure the reliability between the
two models. The kappa score is calculated for all
instances of the test set. Table 5 shows the Cohen’s
kappa score and % agreement for AviationKG and
MetaQA datasets between pair of models. For link
prediction on AviationKG, the kappa score is be-
tween 0.6 and 0.8, and agreement is near 90%.
These results clearly denote the substantiality of
our claim with high scores. We extend the test
for question-answering with MetaQA. The pair of
TS5 models score 0.4-0.6, denoting moderate agree-
ment as more than 80% of agreement. T5-large
and Bloom pair scores 0.33 with 75.7% agreement,
which is fair.

Thus, the testing supports our hypothesis, and
we prove that the level of performance of different
models with the infusion of knowledge remains the
same.

7 Conclusion and Future Work

We have successfully created a million factoid QA
pairs from the NTSB aircraft accident reports. The
QA pairs are used in our experiments with Avia-
tionKG. We have validated our claim that with the
infusion of knowledge to language models, the per-
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formance of the small language model is similar to
the large language model. We substantiate with dif-
ferent language models and a diversity of datasets.
Our investigation will benefit researchers in select-
ing the appropriate language model when working
with knowledge and save computation power and
time.

The future line of work is to investigate the per-
formance of models with incomplete and noisy
knowledge graphs and study the extent to which
the models can outright the domain knowledge.
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A Appendix
A.1 Examples of AviationQA

Below, we mention some examples from our cre-
ated Aviation question-answering dataset (section
4.4):
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* Q: Which seat was occupied by the pilot re-
sponsible for accident no. CEN18LA272?
A: Left

* Q: Are there other Aircraft Rating(s) for the
pilot of accident no. GAA18CA489?
A: None

* Q: What is the make of the aircraft bearing
accident no. CEN18LA272?
A: Cessna

* Q: What is the category of the aircraft in-
volved in accident no. GAA18CA489?
A: Gyroplane

e Q: What is the Airworthiness Certificate of
accident no. GAA18CA297?
A: Normal


https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.3390/sym13030485
https://doi.org/10.3390/sym13030485
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45

