
Arguments to Key Points Mapping with Prompt-based Learning

Ahnaf Mozib Samin Behrooz Nikandish Jingyan Chen

University of Groningen
Groningen, The Netherlands

{asamin9796, behrooz.nikandish, chenjingyan0722}@gmail.com

Abstract
Handling and digesting a huge amount of in-
formation in an efficient manner has been a
long-term demand in modern society. Some
solutions to map key points (short textual sum-
maries capturing essential information and fil-
tering redundancies) to a large number of ar-
guments/opinions have been provided recently
(Bar-Haim et al., 2020). To complement the
full picture of the argument-to-keypoint map-
ping task, we mainly propose two approaches
in this paper. The first approach is to incor-
porate prompt engineering for fine-tuning the
pre-trained language models (PLMs). The sec-
ond approach utilizes prompt-based learning
in PLMs to generate intermediary texts, which
are then combined with the original argument-
keypoint pairs and fed as inputs to a classifier,
thereby mapping them. Furthermore, we ex-
tend the experiments to cross/in-domain to con-
duct an in-depth analysis. In our evaluation, we
find that i) using prompt engineering in a more
direct way (Approach 1) can yield promising
results and improve the performance; ii) Ap-
proach 2 performs considerably worse than Ap-
proach 1 due to the negation issue of the PLM.

1 Introduction

With internet technology getting more accessible
to the general public, a flood of information in the
digital space can be observed. On online social
media, people tend to provide arguments/counter-
arguments on various topics, including government
policies, movie reviews, and controversial issues
such as gun control, abortion, and global climate
changes, etc. This kind of information is valuable
for government policymakers, business people, and
academicians who conduct research on societal
changes over time. However, due to the abundance
of arguments, it becomes nearly impossible to go
through each one manually and make a decision.
Moreover, manually reading the arguments does
not allow systematic categorization, making it un-
likely to quantify them.

To address the issue, (Bar-Haim et al., 2020) first
proposed a method to categorize the arguments by
mapping them to a set of pre-defined key points
set by the domain experts. They fine-tuned a pre-
trained language model (PLM) using the ArgKP
dataset they built. Fine-tuning PLMs has been
proved to achieve superior results over the con-
ventional approach of training a neural network
model from scratch. However, there are several
limitations to directly fine-tuning PLMs. First, fine-
tuning a PLM requires a substantial amount of data
and computational resources for each downstream
task. Second, the typical way of directly fine-tuning
the PLMs does not simulate how the human brain
performs NLP tasks. Humans need to be prompted
by providing additional task-specific information
at first. For example, if we want to know whether
a review is positive, negative, or neutral from a
human, we would prepare a question like ”Do you
think the review is positive, negative, or neutral?”
to prompt the human to accomplish the task.

Prompt-based learning, built on language mod-
els that model the probability of text directly, has
been a recent revival in NLP and has shown great
potential to address the above limitations. (Brown
et al., 2020) indicated that developing a very large
PLM with 175 billion tokens and prompting the
PLM alleviates the need for additional data for fine-
tuning. Thus, it allows us to perform zero-shot and
few-shot learning for several NLP tasks. Motivated
by this, we exploit prompt-based learning to ac-
complish the argument-to-keypoint summarization
task. More precisely, we would like to shed light
on the following research questions:

• Does prompt-based learning allow better uti-
lization of the PLMs for the argument-to-
keypoint mapping task? In other words, can
it outperform the typical direct fine-tuning
PLMs approach?

• What are the challenges that arise with imple-



menting prompt-based learning for this task?

Our contributions are mainly two-fold:

• First, we implement prompt-based learning
for the argument-to-keypoint mapping task
for the first time, to the best of our knowl-
edge, and compare the results with conven-
tional fine-tuning approaches. To this end,
we fine-tune the T5-base PLM with five dif-
ferent prompt templates and report their final
F1-scores.

• Second, we propose a novel architecture that
takes an argument as input using prompt-
based learning and generates an intermediary
text after fine-tuning the PLMs. Then, we em-
ploy several machine learning classifiers to
decide whether the argument, key point, and
the intermediary text triple are a match. We
demonstrate and analyse the promising results
and shortcomings of the proposed architec-
ture.

2 Related Work

Some researchers have done well-executed and
rigorous studies and provided thoughtful methods
in the field of argument-to-keypoint summariza-
tion. (Bar-Haim et al., 2020) established the ArgKP
dataset which is the first large-scale dataset for this
task and proposed a method to automatically map
many arguments to a small number of given key
points. They analysed and evaluated some unsuper-
vised methods with TF-IDF and word embeddings
and supervised methods like fine-tuning Bidirec-
tional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018). This study made an
excellent basis for next research in this field and is
also the foundation of our project. To improve the
performance of this task, (Kapadnis et al., 2021)
leveraged existing state-of-the-art PLMs along with
incorporating additional datasets (IBM Rank 30k
and STS) and features like the topic of arguments.
But the main shortcoming of these two studies is
that the key points are pre-defined by expert anno-
tators, which is an obstacle to making the process
fully automatic.

Later, (Bar-Haim et al., 2020) made a more in-
depth study to promote the previous line of re-
search, and developed a method for extracting key
points automatically from a set of comments, which
allows fully automatic key point analysis. And

they compared more PLMs including BERT-large-
uncased (Devlin et al., 2018), XLNett-large-cased
(Yang et al., 2019), RoBERTa-large (Liu et al.,
2019), and ALBERT-xxlarge-v1 (Lan et al., 2020),
in terms of run time and accuracy, which showed a
significant improvement above their previous best
results in (Bar-Haim et al., 2020). However, dur-
ing the step of the automatic key point extraction
process, they considered only single sentences and
filtered out long sentences as well as those sen-
tences that start with pronouns. Consequently, the
model likely misses some potential key points.

Prompt engineering has recently become an
emerging field of study in NLP. (Liu et al., 2021)
introduced the basics of this new paradigm in de-
tail, and (Brown et al., 2020) confirmed the advan-
tages of adopting prompt-based learning on various
NLP tasks such as question answering, translation,
and probing tasks for common sense reasoning.
And prompt engineering techniques also work well
on probing factual knowledge in language models
(Jiang et al., 2020). Nonetheless, the suitability of
using prompt-based learning for a wide variety of
NLP tasks has yet to be proven, and prompt-based
learning has not been explored deeply in argument
to key point summarization. In this work, we em-
ploy this promising paradigm to improve the task
of argument-to-keypoint mapping further and pro-
vide two approaches to examine the performance
of prompt-based learning.

3 Methods

We explore two approaches for this task and
compare them with our baselines without any
prompt engineering technique. Approach 1 aims to
make classification using prompt-based learning.
And Approach 2 consists of text generation and
text classification with the help of prompt engi-
neering. We use three different Transformer-based
(Vaswani et al., 2017) PLMs (BERT (Devlin et al.,
2018), BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020)) to implement these approaches. The
following subsections describe how these PLMs
work and why they are appropriate for this task.
Moreover, we introduce prompt engineering and
the structure of the two approaches in this section.

3.1 Pre-trained Language Models

BERT Unidirectional pre-train architectures
limit the choice of architectures during pre-training.



For instance, utilizing left-to-right architecture like
in OpenAI GPT (Radford et al., 2018), each to-
ken can only attend to previous tokens in the self-
attention layer of the Transformer. (Devlin et al.,
2018) proposed BERT to alleviate the limitations
of unidirectional architectures using a masked lan-
guage model. The architecture of the model is a
multi-layer bidirectional Transformer encoder. The
model is pre-trained utilizing two unsupervised
tasks: Masked Language Models and Next Sen-
tence Prediction (NSP). In many downstream tasks
as well as the argument-to-keypoint task, under-
standing the relationship between two sentences is
critical. The BERT model is pre-trained for a bina-
rized NSP task to train the model to understand sen-
tence relationships, which makes the BERT model
a good choice for the key point analysis task.

BART BART (Lewis et al., 2020) is a PLM
that combines Bidirectional and Auto-Regressive
Transformers. The denoising autoencoder is built
using a sequence-to-sequence model and it can
be applied to various downstream tasks. It uses a
standard Transformer-based neural machine trans-
lation architecture with a bidirectional encoder and
a left-to-right decoder. During the pre-training
process, an arbitrary noise function is applied to
the input text, and then a sequence-to-sequence
model is responsible for reconstructing the original
text. Section 3.3.2 describes Approach 2 in which
our model generates an intermediary text. BART
can be a reasonable choice for this task because it
performs effectively in text generation (Yuan et al.,
2021) and text summarization (Huang et al., 2020)
tasks.

T5 (Raffel et al., 2020) proposed a unified text-to-
text Transformer-based model to explore the limita-
tions of transfer learning using an encoder-decoder
architecture. It comprises an encoder that maps
the input words from the source language to an
output representation. The decoder is a conditional
language model that attends to the encoder repre-
sentation and generates target words one by one,
based on the source word and previously generated
target language words at each time step. The main
idea behind this model is to consider all text pro-
cessing tasks as a text-to-text problem, feeding the
model a text as input and generating new text as
output. This provides the ability to apply the model,
loss function, hyperparameters, and other parame-

Figure 1: The architecture of baseline (left) and Ap-
proach 1 (right)

ters to various tasks, including machine translation,
text summarization and classification, and question
answering. We plan to use T5 in both Approach 1
and 2.

3.2 Baseline

The architecture of our baseline which is shown in
Figure 1 on the left is similar to (Bar-Haim et al.,
2020)’s work. We build a classifier to identify
whether a pair of (argument, key point) is matched
or not. To this end, we fine-tune four PLMs, BERT-
base, BERT-large, T5-base, and T5-small. We train
the models with the train set first and adjust the pa-
rameters like epoch with the dev set, and the trained
model is evaluated using the unseen data from the
test set finally. We do not employ any prompt en-
gineering in the baselines to compare our results
with other prompt-based learning approaches in
this work.

3.3 Prompt Engineering

To train a model in traditional supervised learning,
it is required to have large amounts of supervised
data for the task at hand. Prompt-based learning ap-
proaches are an attempt to get around this problem.
We will first explain the basic form of prompting,
and then show how we adopt prompting techniques
in the argument-to-keypoint mapping task.
(Liu et al., 2021) described the basic prompting
process in three steps: The first step is prompt ad-
dition, in which a prompting function is defined to
pre-process the input text. This step consists of two
processes:

1. Creating a template, which consists of some
fixed extra tokens and two slots: input slot [X]
for input text and answer slot [Z] for predicted
output that will be used in the answer mapping
step.



Figure 2: The architecture of Approach 2

2. Filling input slot [X] with the input text.

The output slot [Z] could be either in the middle
of the template (cloze prompt) or at the end (prefix
prompt). Depending on the task, the number of
input and output slots can vary freely. The second
step is answer search. In this step, the output slot
[Z] in the prompt will be filled by a potential an-
swer, which is the highest scoring answer. In the
last step, answer mapping, the highest-scoring an-
swer will be mapped to the highest-scoring output.
This is the case in text generation tasks, but in some
tasks like text classification, each potential answer
has a corresponding output to be mapped to.
To answer the research question, we use prompt
engineering techniques in two separate approaches
for cross/in-domain to investigate if prompt-based
learning can outperform our baselines. The archi-
tectures of our approaches are discussed in the fol-
lowing subsections.

3.3.1 Approach 1
In Approach 1, we use prompt-based learning in
conjunction with fine-tuning a PLM. As the ar-
chitecture illustrated in Figure 1 on the right, the
(argument, key point) pairs are transformed to the
given prompt template and fed to the T5-base as
input. We try various templates shown in table 2
to see how different templates influence our results.
In these templates, taking (argument, key point)
as input texts, [X1] and [X2] represent the argu-
ment and the key point respectively. The answer
space of [Z], which is the output text, can be either
matched/not matched or Yes/No, depending on the
chosen template. The following example shows the
process of creating an input text using a prompt
template:

• Argument [X1]: Urbanization destroys the
enviroment, and mankind should be finding
ways of utilising the space already occupied
more efficiently instead

• Key point [X2]: Urbanization harms the en-
vironment

• Answer space [Z]: matched, not matched

• Template: The argument: [X1] is [Z] with
the key point: [X2]

• Input text: The argument: urbanization de-
stroys the enviroment, and mankind should
be finding ways of utilising the space already
occupied more efficiently instead, is matched
with the key point: Urbanization harms the
environment.

3.3.2 Approach 2
For Approach 2, we want to explore the effect of
adding additional context based on the prior knowl-
edge of the PLMs. Figure 2 illustrates the archi-
tecture of Approach 2. First, the input argument
is transformed into the given prompt template as
[X] and then is fed to the trained PLM (T5-small or
BART-large), which is used for text summarization.
The output slot [Z] is filled by a generated summary
that is called as intermediary text in this paper. To
note that we use different templates displayed in
Table 4 for matching/non-matching pairs to gener-
ate the corresponding intermediary texts, and the
templates for two types of pairs have totally op-
posite connotations (e.g., mean-not mean and
correct-wrong). Lastly, different classifiers
are built to determine whether the generated in-
termediary text, argument, and keypoint triple is
matching or not. In this step, we fine-tune BERT-
base and T5-small PLMs and apply three machine
learning algorithms (Naive Bayes (McCallum et al.,
1998), Support Vector Machine (SVM) (Cortes and
Vapnik, 1995), Decision Tree(Quinlan, 1986)) with
TF-IDF features.

4 Experiments

This section will introduce the ArgKP dataset we
use and elaborate on how we processed the data
and carried out the experiments.

4.1 Data
We use the established ArgKP dataset (Bar-Haim
et al., 2020) in this project. The arguments in
ArgKP revolve around 28 disputed topics, and
they are a subset of the IBM-Rank-30k dataset
(Gretz et al., 2020). The key points were authored
by an expert on those topics. Crowd annotations



Topic Argument Key point Stance Label

We should abandon
the use of school uniform

we should not abandon the use
of school uniforms because
it allows children to not be
concerned with competitiveness
while attempting to learn.

Children can still
express themselves
using other means

-1 0

We should adopt atheism
we should adopt atheism
because religion causes too
much tension and disagreements.

Atheism should be
adopted since we cannot
prove that God exists

1 0

We should end mandatory
retirement

mandatory retirement is a good
way of refreshing the workforce,
motivating those lower in the
pecking order and creating
employment opportunities.

A mandatory retirement
age creates opportunities
for other workers

-1 1

Table 1: Examples from the ArgKP dataset. Stance means the argument support(1) or oppose(-1) the topic; Label
represents the key point is matching (1) or non-matching (0) with the argument.

Number of samples per set
Experiment Class Train Dev Test Total samples

Count (%) Count (%) Count (%) Count (%)

Cross-domain
All 17,019 70.6 2,903 12.1 4,171 17.3 24,093 100.0

Matching 3,510 14.5 728 3.0 760 3.1 4,998 20.7
Non-matching 13,509 56.1 2,175 9.1 3,411 14.2 19,095 79.3

In-domain
All 17,021 70.6 2,904 12.1 4,168 17.3 24,093 100.0

Matching 3563 14.8 593 2.5 842 3.5 4998 20.7
Non-matching 13458 55.8 2311 9.6 3326 13.8 19,095 79.3

Table 2: Dataset distribution for cross/in-domain experiments

were gathered to see if a keypoint represented or
matched an argument, which resulted in (argument,
key point) pairs. As shown in the Table 1, each pair
is assigned a matching or non-matching label and
a stance towards the topic.

There are 24,093 labeled argument-keypoint
pairs, and 20% of them are matching/positive pairs.
Table 2 displays the distribution of each data split
set for cross/in-domain experiments. For the cross-
domain experiments, we split the whole dataset
according to the number of topics, and each topic
only occurs once. We assign 19 topics to the train
set, and the dev and test sets contain 4 and 5 topics,
respectively. The argument-keypoint pair ratio of
the three sets is 71:12:17. For the in-domain exper-
iments, we use the same pair ratio of three split sets
as the cross-domain experiments, and each split set
includes all of those 28 topics.

4.2 Pre-processing
The ArgKP dataset is well-structured and clean
enough so that we do not do much pre-processing
except for some basic steps. Some arguments and
all key points in the dataset do not contain full stops
at the end of the sentence, so our first step is to add
full stops for each full sentence if they are missing.
The second step is tokenization. The PLMs (BERT,
BART, T5) we mainly utilize expect a sequence of
tokens as an input, so the tokenizers those PLMs
were trained on are employed to tokenize the texts.
For the machine learning algorithms (SVM, Naive
Bayes, Decision Tree), we tokenize the texts and
remove stop words using NLTK python package
(Bird et al., 2009).



4.3 Experiment Setup
We implement Approach 1 using OpenPrompt
(Ding et al., 2021) framework1, which is an extensi-
ble and open-source toolkit for prompt engineering.
We replicate their code to train T5-base using the
ArgKP dataset for this task. The code associated
with this paper is available on a GitHub repository.2

Table 3 contains the some of the hyperparame-
ters of each PLM that is fine-tuned in the baselines
and Approach 1 and 2.

PLM Learning Rate Epoch Optimizer
BERT-base
BERT-large

2e-5 3 Adam

T5-base 1e-3/1e-4 3 Adam
T5-small 3e-4 4 Adam
BART-large 2e-5 5 Adam

Table 3: Hyperparameters used for finetuning different
PLMs

4.4 Evaluation
Only about 20% pairs in the dataset are match-
ing/positive pairs, which means the class distribu-
tion is quite imbalanced, and standard metrics such
as classification accuracy would be misleading in
our case. Therefore, we adopt the macro-averaged
F1-score, which takes the arithmetic mean of all
the per-class F1-scores as the evaluation method.

In addition, we also attempt threshold metrics in
order to handle the imbalance problem. Thresholds
are learned from the dev set by maximizing the
macro-averaged F1-score. Pairs whose matching
score exceeds the learned threshold are considered
matched. However, we think it is unfair to com-
pare the results of Approach 1/2 and the baselines
with different thresholds. Furthermore, most of the
learned thresholds are 0.5, which is the same as the
default threshold of binary classification. Account-
ing for these reasons, we ignore threshold metrics
finally.

5 Results & Discussion

5.1 Comparison between baseline and the two
approaches

Table 4 shows the comparison between our base-
lines and the two approaches for both in-domain

1https://github.com/thunlp/OpenPrompt
2https://github.com/samin9796/

arg2keypoint

and cross-domain experiments. We have four base-
lines that do not incorporate prompt engineering.
BERT-base outperforms the rest of the four mod-
els, getting an F1-score of 88.4% in the in-domain
experiment and 72.0% in the cross-domain experi-
ment. For Approach 1, which utilizes prompt engi-
neering and fine-tuning T5-base with the templates,
we get higher F1-scores for each of the five prompt
templates examined in this study compared to our
baselines. Using the five templates, we achieve
almost similar F1-scores for the in-domain exper-
iments, while variations in the F1-scores can be
observed for the cross-domain evaluation. T1 tem-
plate obtains the highest F1-scores with 91.4% for
the in-domain and 76.1% for the cross-domain ex-
periments. T2 also achieves the second-best F1-
score of 91.0% and the equal F1-score to T1. How-
ever, T3 and T4 (template with a definition of the
key point) can get F1-scores below 74%.

As mentioned in section 3.3.2, our Approach 2
explores T5-small and BART-large by fine-tuning
them with two prompt templates (T6 and T7) to
get the intermediary texts. Then a classifier de-
cides whether this is a match or non-match based
on the argument, intermediary text, and key point
as inputs. In the case of the T6 template, with
fine-tuning the BART-large for getting the interme-
diary texts and using BERT-base as a classifier, we
achieve the highest F1-scores of 89.2% and 71.2%
for in-domain and cross-domain experiments, re-
spectively. But the best-performing system using
the T7 template utilizes T5-small to get the interme-
diary texts and BERT-base and T5-small as classi-
fiers for in-domain and cross-domain experiments,
respectively. The final F1-scores from the best-
performing model using the T7 template are 90.0%
and 69.8% for in-domain and cross-domain exper-
iments, accordingly. This experiment shows that
the T6 template is more suitable for BART-large,
whereas the T7 template works well with T5-small.
The F1-scores using the Naive Bayes, SVM, and
Decision Tree as classifiers are poor compared to
T5-small and BERT-base.

Comparing the best-performing models of the
baselines, Approach 1 and Approach 2, it is evident
that Approach 1 outperforms the baseline for both
in-domain and cross-domain datasets. Approach 1
also gets substantial improvement in F1-score get-
ting 76.1%, compared to Approach 2, which gets
69.8% for the cross-domain experiment. While the
difference in F1-scores between Approach 1 and 2

https://github.com/thunlp/OpenPrompt
https://github.com/samin9796/arg2keypoint
https://github.com/samin9796/arg2keypoint


Prompt Template
PLM for

Intermediary
Text

Model F1-score
in-domaincross-domain

Baseline - -

T5-small 0.866 0.700
T5-base 0.842 0.682

BERT-base 0.884 0.720
BERT-large 0.880 0.709

Approach 1

T1: The argument: [X1] and
the keypoint [X2] are [Z].

- T5-base

0.914 0.761

T2: The argument: [X1] is [Z]
with the keypoint: [X2]

0.910 0.761

T3: Does the argument: [X1]
comprise the fact that [X2]? [Z]

0.908 0.732

T4: A keypoint is a summarization
of the corresponding argument.

In other words, an argument
comprises a keypoint. Does

the argument: [X1], comprise the
keypoint [X2]? [Z]

0.913 0.737

T5: Argument: [X1] Keypoint: [X2]
”soft” : ”Does”

”soft” : ”the”, ”softid” : 1
argument matches ”softid” : 1

keypoint? [Z]

0.911 0.754

Approach 2

T6: [X1] This means [Z1].
[X1] This does not mean [Z1]

T5-small

Naive Bayes 0.493 0.450
SVM 0.535 0.480

Decision Tree 0.543 0.498
T5-small 0.845 0.678

BERT-base 0.856 0.671

T6: [X1] This means [Z1].
[X1] This does not mean [Z1]

BART-large

Naive Bayes 0.502 0.527
SVM 0.674 0.513

Decision Tree 0.629 0.512
T5-small 0.830 0.677

BERT-base 0.892 0.712

T7: The correct keypoint for
the argument: ”[X1]” is [Z1]

The wrong keypoint for
the argument: ”[X1]” is [Z1]

T5-small

Naive Bayes 0.485 0.451
SVM 0.573 0.499

Decision Tree 0.549 0.501
T5-small 0.835 0.698

BERT-base 0.900 0.679

T7: The correct keypoint for
the argument: ”[X1]” is [Z1]

The wrong keypoint for
the argument: ”[X1]” is [Z1]

BART-large

Naive Bayes 0.500 0.520
SVM 0.667 0.529

Decision Tree 0.614 0.477
T5-small 0.810 0.678

BERT-base 0.896 0.664

Table 4: Results of baselines and Approach 1 and 2 for cross/in-domain experiments

for the in-domain experiment is minimal, with Ap-
proach 1 getting 91.4% and Approach 2 90.0%. We
obtain a higher F1-score using Approach 2 (90%)

compared to the baselines (88%) on the in-domain
dataset, but on the cross-domain dataset, the F1-
score from Approach 2 (69.8%) is lower than the



baseline (72.0%).

5.2 Error Analysis of Approach 2
Table 4 shows that the overall performance of Ap-
proach 2 is poor in comparison with Approach
1 for cross/in-domain experiments. We dive into
the reason hidden behind this result and make two
assumptions. The first assumption is that the lan-
guage models used for getting the intermediary
texts suffer from negation issue. As explained in
section 3.3.2, we use slightly different templates for
matching/non-matching argument-keypoint pairs
to generate their intermediary texts. The templates
for non-matching pairs contain a negative connota-
tion like not or wrong, but the problem is that the
PLMs (T5-small and BART-large) cannot capture
negation which is demonstrated by the generated
intermediary texts being almost the same regard-
less of whether the template is positive or nega-
tive, and thus it results in lower F1-scores from
Approach 2. To make it clear, the two following
intermediary text examples are extracted from the
train set. Given an argument and matching and
non-matching key points corresponding to the ar-
gument, we can see that their intermediary texts
are the same irrespective of using two versions of
prompt templates (e.g. positive and negative).

• Argument: by copying something you can
not get a pure copy. each copy that is made
is worse then the other meaning that no one
knows what can happen with cloning.

• Keypoints:
matching - Cloning is not understood enough
yet
non-matching - Cloning is unethical/anti-
religious-

• Intermediary texts for both matching/non-
matchin pairs: Cloning is unnatural

The second assumption is a decision-making pro-
cess during the evaluation time. Alluded to previ-
ously, the corresponding template is selected based
on matching/non-matching labels for each pair in
the train set to generate intermediary texts. How-
ever, the labels are hidden in the test set, and the
specific template can not be chosen. On this ac-
count, we always use the non-negative templates
(This means and The correct key point) to get the
intermediary text during the inference time.

Even though the overall results of Approach 2
are not as good as we expect, there are still some

promising aspects. If the negation issue is solved
successfully, Approach 2 could alleviate the need
for predefined key points since it can automatically
generate texts/key points.

6 Conclusions and Future Work

In this work, we first build the baseline models for
the argument to keypoint mapping task by fine-
tuning PLMs without implementing prompt en-
gineering. Then, we take advantage of prompt-
based learning and utilize it while finetuning PLMs
with two different approaches. From the compar-
ison between the baselines and the two specific
approaches, prompt engineering substantially im-
proves the performance of the task. However, it still
includes some challenges and limitations that need
to be investigated more in the case of Approach
2. To be more specific, in Approach 1, we attempt
five different prompt templates with T5-base, and
all of the results are better than the baselines for
both cross/in-domain experiments. While in Ap-
proach 2, the intermediary texts generated from
T5-small and BART-large using two prompt tem-
plates reduce the overall performance compared to
baselines.

The mapping of arguments to key points can be
viewed as an intermediate step toward fully auto-
matic argument summarization. Therefore, in fu-
ture work, we plan to tackle the negation problem
of PLMs in Approach 2, which would be promis-
ing for generating key points automatically. Fur-
thermore, experimenting with other sequence-to-
sequence models using prompt-based learning is
another interesting future direction.

Acknowledgement

The authors would like to thank Dr. Khalid Al-
Khatib of the University of Groningen, The Nether-
lands for his support and assistance.

References
Bar-Haim, R., L. Eden, R. Friedman, Y. Kantor, D. La-

hav, and N. Slonim (2020). From arguments to key
points: Towards automatic argument summarization.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online,
pp. 4029–4039. Association for Computational Lin-
guistics.

Bar-Haim, R., Y. Kantor, L. Eden, R. Friedman, D. La-
hav, and N. Slonim (2020). Quantitative argument
summarization and beyond: Cross-domain key point



analysis. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Online, pp. 39–49. Association for Com-
putational Linguistics.

Bird, S., E. Klein, and E. Loper (2009). Natural lan-
guage processing with Python: analyzing text with
the natural language toolkit. ” O’Reilly Media, Inc.”.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, et al. (2020). Language models are
few-shot learners. Advances in neural information
processing systems 33, 1877–1901.

Cortes, C. and V. Vapnik (1995). Support-vector net-
works. Machine learning 20(3), 273–297.

Devlin, J., M. Chang, K. Lee, and K. Toutanova
(2018). BERT: pre-training of deep bidirec-
tional transformers for language understanding.
CoRR abs/1810.04805.

Ding, N., S. Hu, W. Zhao, Y. Chen, Z. Liu, H.-T. Zheng,
and M. Sun (2021). Openprompt: An open-source
framework for prompt-learning. arXiv preprint
arXiv:2111.01998.

Gretz, S., R. Friedman, E. Cohen-Karlik, A. Toledo,
D. Lahav, R. Aharonov, and N. Slonim (2020). A
large-scale dataset for argument quality ranking: Con-
struction and analysis. In Proceedings of the AAAI
Conference on Artificial Intelligence, Volume 34, pp.
7805–7813.

Huang, D., L. Cui, S. Yang, G. Bao, K. Wang, J. Xie,
and Y. Zhang (2020, November). What have we
achieved on text summarization? In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Online, pp.
446–469. Association for Computational Linguistics.

Jiang, Z., A. Anastasopoulos, J. Araki, H. Ding, and
G. Neubig (2020, November). X-FACTR: Multi-
lingual factual knowledge retrieval from pretrained
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), Online, pp. 5943–5959. Asso-
ciation for Computational Linguistics.

Kapadnis, M., S. Patnaik, S. Panigrahi, V. Madhavan,
and A. Nandy (2021, November). Team enigma at
ArgMining-EMNLP 2021: Leveraging pre-trained
language models for key point matching. In Proceed-
ings of the 8th Workshop on Argument Mining, Punta
Cana, Dominican Republic, pp. 200–205. Associa-
tion for Computational Linguistics.

Lan, Z., M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut (2020). Albert: A lite bert for self-
supervised learning of language representations. In
ICLR. OpenReview.net.

Lewis, M., Y. Liu, N. Goyal, M. Ghazvininejad,
A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle-
moyer (2020, July). BART: Denoising sequence-to-
sequence pre-training for natural language genera-
tion, translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, pp. 7871–7880.
Association for Computational Linguistics.

Liu, P., W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neu-
big (2021). Pre-train, prompt, and predict: A system-
atic survey of prompting methods in natural language
processing. ArXiv abs/2107.13586.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov
(2019). Roberta: A robustly optimized bert pretrain-
ing approach. ArXiv abs/1907.11692.

McCallum, A., K. Nigam, et al. (1998). A comparison
of event models for naive bayes text classification. In
AAAI-98 workshop on learning for text categoriza-
tion, Volume 752, pp. 41–48. Citeseer.

Quinlan, J. R. (1986, March). Induction of decision
trees. Mach. Learn. 1(1), 81–106.

Radford, A., K. Narasimhan, T. Salimans, and
I. Sutskever (2018). Improving language understand-
ing by generative pre-training.

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu (2020). Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learn-
ing Research 21(140), 1–67.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-
sukhin (2017). Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.), Advances in
Neural Information Processing Systems, Volume 30.
Curran Associates, Inc.

Yang, Z., Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhut-
dinov, and Q. V. Le (2019). Xlnet: Generalized
autoregressive pretraining for language understand-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Ad-
vances in Neural Information Processing Systems,
Volume 32. Curran Associates, Inc.

Yuan, W., G. Neubig, and P. Liu (2021). Bartscore:
Evaluating generated text as text generation. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan (Eds.), Advances in Neural Infor-
mation Processing Systems, Volume 34, pp. 27263–
27277. Curran Associates, Inc.


