
Scaling Native Language Identification with Transformer Adapters

Ahmet Yavuz Uluslu
Universität Zürich & PRODAFT

ahmetyavuz.uluslu@uzh.ch

Gerold Schneider
Universität Zürich
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Abstract

Native language identification (NLI) is the
task of automatically identifying the native lan-
guage (L1) of an individual based on their lan-
guage production in a learned language. It
is useful for a variety of purposes including
marketing, security and educational applica-
tions. NLI is usually framed as a multi-class
classification task, where numerous designed
features are combined to achieve state-of-the-
art results. Recently deep generative approach
based on transformer decoders (GPT-2) outper-
formed its counterparts and achieved the best
results on the NLI benchmark datasets. We in-
vestigate this approach to determine the practi-
cal implications compared to traditional state-
of-the-art NLI systems. We introduce trans-
former adapters to address memory limitations
and improve training/inference speed to scale
NLI applications for production.

1 Introduction

Native Language Identification (NLI) is the task of
automatically identifying the native language (L1)
of an individual based on their writing or speech
in another language (L2). It is used for a variety
of purposes including marketing, security and edu-
cational applications. The growing interest in NLI
from various research fields can be partly attributed
to the outstanding performance of automated NLI
systems against human annotators. A study of hu-
man performance in NLI (Malmasi et al., 2015)
showed that NLI systems perform in the 80%–90%
accuracy range while humans achieved 37.3% av-
erage accuracy. The experimentation also con-
strained the number of considered languages and
texts to enable human competition.

NLI is most commonly framed as a multi-class
classification problem. For text-based NLI, fea-
tures are extracted from written resources produced
by non-native speakers to train a classification

model. The underlying hypothesis is that the L1
influences learners’ second language writing as a
result of the language transfer effect (Odlin, 1989).
A variety of feature types have been explored to
capture distinct features of the language interfer-
ence phenomenon: spelling errors (Koppel et al.,
2005; Chen et al., 2017); word and lemma n-grams
(Tetreault et al., 2013); character n-grams (Kul-
mizev et al., 2017), dependency parsing and mor-
phosyntax (Cimino et al., 2013). As seen by the
two shared tasks on the NLI task organized in 2013
and 2017, the combination of such features pro-
duces the best outcomes for NLI (Tetreault et al.,
2013; Malmasi et al., 2017). The top ranked sys-
tems made use of Support Vector Machine (SVM)
models trained on a diverse set of linguistic features
that can capture word, sentence and document level
characteristics. (Markov et al., 2017; Cimino and
Dell’Orletta, 2017)

Deep neural network based approaches were
also considered for the NLI task. Bjerva et al.
(2017) experimented with deep residual networks
(DNN), long short-term memory networks (LSTM)
and continuous bag-of-words embeddings to create
meta classifiers. Li and Zou (2017) built an ensem-
ble of single-feature SVMs fed into a multi-layer
perceptron (MLP). Habic et al. (2020) integrated
multi-task learning into convolutional neural net-
works (CNN) to create shared representations from
multiple datasets. The studies concluded that tradi-
tional methods, i.e., SVM with engineered features,
appear to work better than deep learning-based
standalone and meta-classification approaches. Re-
cently Lotfi et al. (2020) introduced the deep gen-
erative modelling approach to NLI which consists
of fine-tuning a GPT-2 model to identify each lan-
guage. Their method outperforms traditional ma-
chine learning approaches and currently achieves
the best results on the benchmark NLI datasets.



The contributions of the work presented here
are the following: (i) We investigate the resource
requirements and inference performance for the
deep generative approach in comparison to tradi-
tional state-of-the-art NLI systems, and (ii) we in-
troduce ProDAPT, transformer adapters based on
deep generative model to optimize memory and
storage space, and (iii) we evaluate our approach
on the NLI task and explore the tradeoffs.

2 Related Work

Deep Generative Approach. OpenAI’s Genera-
tive Pre-trained Transformer-2 (GPT-2) is a unidi-
rectional transformer-based language model pre-
trained on 40 GB of text data with the objective of
predicting the next word given the context (Radford
et al., 2019). It can generate coherent paragraphs
of text and achieves state-of-the-art performance
on many language modelling benchmarks without
any task-specific training. Instead of training a
classifier, the deep generative approach finetunes a
generative model (GPT-2) on texts written by native
speakers of each language (L1) to capture peculiar-
ities of language transfer (Lotfi et al., 2020). After
training N (number of target languages) models to
learn the characteristics of each L1, they can be
used to discriminate between unseen text samples
based on the language model (LM) loss. The least
LM loss is expected from the model that is trained
on the same class (L1). Although there are exam-
ples of the LM loss as a ranking feature for other
tasks such as substitute selection for text simplifica-
tion (Uluslu, 2022), the deep generative approach
is the first method to use such value as the only
discriminator for text classification.

Figure 1: An example inference of an unseen text writ-
ten by a Turkish native speaker.

Transformer Adapters. Adapters have been in-
troduced as an alternative lightweight fine-tuning

strategy that achieves equal performance to full
fine-tuning on most tasks (Houlsby et al., 2019).
They consist of a small set of additional newly ini-
tialized weights at every layer of the transformer.
While the rest of the pretrained parameters of
the large model are kept frozen during the fine-
tuning process, these new parameters are actively
trained on the target task. Efficient parameter shar-
ing between tasks is possible by training several
task-specific and language-specific adapters for the
same model, which can be exchanged and com-
bined afterwards. The code base for different state-
of-the-art adapter architectures was integrated into
the transformers library and released under the
name adapter-transformers (Pfeiffer et al., 2020a).
Recently, their adapters implementation started to
support generative and seq2seq models such as
GPT-2 (Sterz et al., 2021).

3 Data

We evaluate our approach on the most commonly
used dataset in NLI research: the ETS Corpus of
Non-Native Written English (TOEFL11) (Blan-
chard et al., 2013). The dataset contains 1,100
essays in English written by native speakers (L1)
of 11 different languages: Arabic (ARA), Chinese
(CHI), French (FRE), German (GER), Hindi (HIN),
Italian (ITA), Japanese (JPN), Korean (KOR), Span-
ish (SPA), Telugu (TEL), and Turkish (TUR). In
total there are 12,100 essays with on average 348
tokens per essay. The essays were written in re-
sponse to eight different writing prompts, all of
which appear in all 11 L1 groups, by authors with
low, medium, or high English proficiency. The
dataset is considered a benchmark dataset for NLI
and was used in two shared tasks on the NLI task
(Tetreault et al., 2013; Malmasi et al., 2017).

4 Methodology

We investigate the resource requirements and in-
ference speed for the deep generative approach in
three different subsections: storage requirements,
memory requirements and inference speed.

Storage Requirements. The full deep genera-
tive approach from Lotfi et al. (2020) finetunes 11
gpt2-medium models to cover every language in
the TOEFL11 dataset. A fine-tuned gpt2-medium
model requires 1.4 GB of storage space. The train-
ing process with the early stopping of three valida-
tions is expected to take up to 61.6 GB of storage
space upon completion. The inference (test) stage



only requires the best-performing models for every
language to be kept. Therefore, 15.4 GB of storage
space in total is needed to fully store the system.

Memory Requirements. To reach the final in-
ference (target native language), each model needs
to calculate the LM loss value for the given input.
To fully load the parameters of 11 models in mem-
ory, 16.6 GB of GPU memory is required.

Speed Constraints. The deep generative ap-
proach does not inherently support parallelism. Fur-
ther configuration in multi-threading and memory
management is needed to accommodate different
models in the GPU. The final inference still needs
to be calculated in CPU time (argmin) and requires
all model calculations to be completed beforehand.
The number of models loaded simultaneously is
constrained by the GPU requirements. In case all
models are not available simultaneously, the mem-
ory operations to load/unload language models are
part of the inference process and directly interfere
with the performance.

Adapter Configurations. Two different con-
figurations have been proposed for transformer
adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020b). Rücklé et al. (2020) investigated the effi-
ciency of two adapter architectures at training and
inference time and found that they achieved compa-
rable performance. Sterz et al. (2021) compared the
performance of two architectures for adapter-based
GPT-2 models on the GLUE benchmark and re-
ported on-par results on different tasks. We also ex-
perimented with both architectures and found that
Houlsby et al. (2019) produced better results for
standalone GPT-2 models trained on NLI data and
decided to implement our full architecture based
on this configuration.

Figure 2: The ProDAPT architecture

The number of target languages for the NLI task
can increase depending on the use case. In forensic

linguistic investigations, particularly in the area of
cybercrime, it may be necessary to cover up to 20-
30 languages depending on the region and nature
of crime, all of which may be in non-standardised
forms, requiring the development of further models.
To create a scalable NLI system, the memory bottle-
neck caused by the model size and the non-parallel
nature of the deep generative approach should be
addressed.

We implement ProDAPT architecture with trans-
former adapters to address these issues. We train
an adapter for every L1 for 15 epochs with a learn-
ing rate of 1e-4. The original pretrained weights
for the GPT-2 are kept intact, and the L1 (tar-
get language) information is compressed into the
newly initialized parameters and the classification
head. The storage space required for every lan-
guage model (adapter + head) decreases to 218.7
MB. All adapters and their classification heads are
loaded into a single gpt2-medium model and share
the pretrained weights. To support parallel infer-
ence, the input is replicated at the first layer with
L1 adapters. For every adapter, calculations are
completed in parallel until the classification head
is reached. The GPU memory required to load the
ProDAPT architecture is 4.1 GB and the storage
space requirement is 2.4 GB.

5 Results and Discussion

To compare the performance of our system with
the state-of-the-art deep generative approach (Lotfi
et al., 2020), we report the results in terms of classi-
fication accuracy on the TOEFL11 test set, as well
as on the TOEFL11 dataset under 10-fold cross-
validation (10FCV). We also report the storage and
memory requirements to deploy our model in com-
parison to their approach. We use Titan T4 16 GB
graphics card for the deep generative models and
AMD EPYC 7702 64-Core CPU for Support Vec-
tor Machine (SVM) baselines where the GPU is
not required. We think this is an acceptable choice
since our work focuses on creating scalable NLI
systems that can be easily deployed with widely
available GPUs. We measure the inference speed
with the time spent between CUDA events until
the inference is finalized. We warm up the GPU
before the test and repeat the experiment 100 times
to enable robust results. Since the deep generative
approach does not require feature engineering, we
create a unigram SVM baseline to ensure a fair
comparison. We compare the performance against



the default deep generative approach where one
model at a time can be loaded into the GPU and
the LM loss for the batch (4) is computed linearly.

Model Storage Space GPU Memory Inference Speed
Unigram SVM 79.6 MB [CPU] 84x
Lotfi et al. (2020) 15.95 GB 16.6 GB x
ProDAPT 2.4 GB 4.1 GB 13x

Table 1: Results in terms of the storage space, GPU
memory and inference speed.

Model
TOEFL11
(test set)

TOEFL11
10FCV

Unigram SVM 75.8 76.6
Lotfi et al. (2020) 89.0 86.8
ProDAPT 84.2 82.4

Table 2: Results in terms of classification accuracy (%)
on the TOEFL11 dataset.

The results presented in Table 1 demonstrate how
the ProDAPT architecture optimises the state-of-
the-art hardware requirements. The full paralleliza-
tion support enables a considerable increase of 13x
in the inference speed in comparison to the deep
generative approach. As the number of supported
languages (L1) increases, we predict that this per-
formance gap will widen and become more sig-
nificant. The unigram SVM baseline proves to be
the most lightweight approach, and it provides the
best results in terms of the inference speed. How-
ever, in order to achieve comparable performance
to that of the deep generative approach, other ap-
proaches need to make use of ensemble learning
and feature engineering. The extensive feature en-
gineering in state-of-the-art systems, which can
include hundreds of linguistic features, also comes
at the expense of inference and training speed. The
results shown in Table 2 indicate that our system
outperforms the baseline and achieves an on-par
performance with the deep generative approach.
We found that the performance decline in our ap-
proach was caused by the difficulty of distinguish-
ing between similar language pairs, such as Hindi-
Telugu and Japanese-Korean, also noted by Lotfi
et al. (2020). We did not observe convergence
problems based on the LM loss for any of the L1
models, but we speculate that the restricted number
of parameters in the adapters results in a reduced
capacity to capture discriminative features that can
distinguish between similar languages compared to
full model fine-tuning.

6 Conclusion

We proposed an efficient and scalable NLI sys-
tem based on the state-of-the-art deep generative
approach. The method consists of training a trans-
formers adapter for every L1 which can be attached
simultaneously to a GPT-2 model for parallel in-
ference. We showed that it is possible to optimize
the hardware requirements and the inference speed
at the cost of a slight decrease in the model perfor-
mance.
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