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Abstract

Negative list (NL) detection, commonly re-
ferred as open-set multi-target speaker detec-
tion, attempts to match a test utterance with
any one of a set of known utterances enrolled
in the negative list. A number of normaliza-
tion techniques have been developed for simi-
larity score calibration in order to increase the
detection accuracy. While these normalization
methods apply to both single-target verifica-
tion and multi-target detection, in this work we
propose NL-Norm, a novel normalization tech-
nique that is designed specifically for multi-
target detection by considering scores between
all enrolled NL utterances and the normal-
ization cohort as a single distribution. Fur-
thermore, we propose using Locality Sensi-
tive Hashing (LSH) to efficiently find a small
subset of utterances from enrolled NL utter-
ances and the normalization cohort that are
most similar to the test utterance, so that the
number of similarity score computations can
be significantly reduced. The combination
of these novel techniques is evaluated on the
MCE 2018 datasets. Applying LSH and NL-
Norm, our approach demonstrated significant
improvements in both speed and accuracy over
using PLDA only in the backend, resulting in
88% reduction in detection time while decreas-
ing the equal-error rate (EER) from 6.49% to
5.48% for MCE2018 dataset.

1 Introduction

Much progress has been made in speaker recogni-
tion, as demonstrated by continuously improving
results in US National Institute of Standards and
Technology (NIST) Speaker Recognition Evalua-
tion series (Greenberg et al., 2020; Sadjadi et al.,
2020). Meanwhile, in real world applications such
as call center services, Negative List (NL) detec-
tion is often a crucial component of fraud detection
based on voice biometrics. In NL detection, a call
is flagged for investigation if an utterance is deter-
mined to be spoken by one of the known fraudulent
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speakers that are enrolled in the NL, without need-
ing to identify which specific NL speaker the caller
is matched with.

NL detection is often referred as open-set multi-
target speaker detection. While most speaker recog-
nition studies focus on the single-target problem,
in recent years there have been efforts to develop
methods used for multi-target speaker recognition
(Singer and Reynolds, 2004; Zigel and Wasserblat,
2006; Malegaonkar and Ariyaeeinia, 2011; Gunson
et al., 2015) For example, MCE 2018 (Shon et al.,
2019) is a challenge designed specifically to pro-
mote methods for multi-target cohort detection and
multi-target identification: the former, also known
as Top-S detction, is aimed to only detect whether
the input speech is spoken by a member of the NL
cohort; the latter, referred as Top-1 detection, not
only detects membership in the NL cohort but fur-
ther identifies the specific speaker within the NL.
In this paper we focus on the Top-S detection only,
and use the call center industry term Negative List
detection to distinguish it from Top-1 detection or
open-set speaker identification.

The techniques used by NL detection are mostly
common with that of single-target speaker recog-
nition and are depicted in Figure 1. During the
training phase (Figure 1(a)), a front-end Gaussian
Mixture Model with Universal Background Model
(GMM/UBM) (Reynolds et al., 2000; Dehak et al.,
2011)) or a Deep Neural Network (DNN) model
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(Snyder et al., 2018) is trained to extract the speaker
embedding i-vector or x-vector, respectively. (For
brevity, Figure 1 only shows x-vector.) Subse-
quently, a back-end model such as Probabilistic
Linear Discriminant Analysis (PLDA) is trained
to produce a matching score between a pair of
input i-vectors or x-vectors representing the log-
likelihood ratio of the two vectors belonging to the
same speaker.

Next, during the speaker enrollment phase (Fig-
ure 1(b)), i-vectors or Xx-vectors are extracted
from a known speaker’s utterances and stored in
the database as voice biometric signature of that
speaker. Finally, for speaker recognition (Figure
1(c)), the i-vector or x-vector extracted from an
out-of-sample test utterance is paired with the en-
rolled i-vector or x-vector of a known speaker for
the PLDA model to compute the matching score
in order to determine whether the test utterance
matches the enrolled speaker (Prince and Elder,
2007). Score normalization (Fortuna et al., 2004,
2005; Zigel and Wasserblat, 2006; Matéjka et al.,
2017) is typically performed on the PLDA output
before it is compared with a pre-determined thresh-
old for the match/no-match decision.

Since single-target and multi-target speaker
recognitions share the same techniques described
above, a multi-target speaker recognition problem
can be effectively treated as multiple single-target
recognitions. However, for call center services,
there are often thousands of fraudulent speakers
in the NL, which poses some unique challenges:
with the increase in the NL size, the detection error
as measured by equal error rate (EER ) becomes
higher (Shon et al., 2019), and the computing cost
in the form of detection latency for each test grows
as well. These challenges impede an effective real-
time NL detection implementation. In this work,
we propose enhancements to back-end processing
for multi-target applications with the twin objec-
tives of lowering EER and achieving a faster time
for NL detection in the face of an increasing num-
ber of speakers in the NL list.

Our contributions are:

e A normalization technique (NL-Norm) to
calibrate consistent scores for NL detec-
tion. We describe a normalization technique
that considers similarity scores between the
normalization cohort and all enrolled NL
speakers as a single distribution; this helps
to better calibrate test scores and select a con-

sistent threshold for NL detection;

¢ Reduction of the computation cost at infer-
ence time. Locality Senstive Hashing (LSH
(Indyk and Motwani, 1998)) is used to find a
subset of NL speakers and a subset of the nor-
malization cohort that are most similar to the
test utterance, so that the similarity scores are
evaluated between the test utterance and these
two subsets only, which reduces the compu-
tation cost at inference time. The advantage
of LSH is further amplified when different
adaptive lengths for Z-Norm and T-Norm are
allowed within AS-Norm.

2 Preliminaries

In existing literature, the PLDA model is often
combined with score normalization to create an
effective backend processing of a speaker recogni-
tion system (Fortuna et al., 2004, 2005; Zigel and
Wasserblat, 2006; Matéjka et al., 2017). Once the
PLDA score, s(e, t), between a test utterance ¢ and
an NL-enrolled utterance e is generated, various
normalization techniques can be applied for score
calibration in order to derive a consistent matching
threshold. For NL detection, ¢ is determined as an
NL match if the highest normalized score between
t and all NL utterances is above the threshold; this
results in a Top-S set from which the EER metric is
drawn to measure the accuracy of the model (Shon
et al., 2019; Singer and Reynolds, 2004).

2.1 Score Normalization

All score normalizations require a normalization
cohort consisting utterances from speakers that are
neither in NL nor part of the test cohorts. We de-
note NL-enrolled utterance set and the normaliza-
tion cohort as £ and C, respectively:

E={e;|1<i<E}

C={c|1<i<N} M

where F and N are the size of NL and the normal-
ization cohort, respectively.

Z-Norm (Li and Porter, 1988) utilizes the scores
between an NL speaker utterance e and every utter-
ance ¢; in the normalization cohort:

Se ={s(e,c;) |1 <i< N} 2)

resulting in the normalized score:

s(e,t) — p(Se)
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where (Se) and o(S,) are the mean and standard
deviation of S, respectively. For NL detection,
Eq.(2) needs to be evaluated for every enrolled
speaker e € £. However, these evaluations can
be carried out during NL enrollment instead of at
inference time. At each NL detection, the most
computationally expensive task is to calculate &/
similarity scores {s(e;,t) | 1 <+ < E}, which is
required regardless of score normalization.

T-Norm (Auckenthaler et al., 2000) uses the
scores between ¢ and every utterance c; in the nor-
malization cohort:

Se={s(t,c;) | 1<i< N}
s(e, t) — u(St) “
o(St)

3(67 t)t—no'r'm -

In contrast to Z-Norm, Eq.(4) is evaluated at infer-
ence time for a given ¢, therefor there are (N + E)
similarity scores to be computed at each NL detec-
tion using T-Norm.

AS-Norm (Karam et al., 2011; Cumani et al.,
2011) is often found to have the best performance,
especially for multi-target recognitions. It is de-
fined as the average of adaptive Z-Norm and T-
Norm, namely, for an adaptive length K:

1 <s(e7 t) — u(SéK))

8(67 t)asfnorm =3
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where ST and St(K) denote the subsets consisting

of the highest K scores in S, and Sy, respectively.
For NL detection, S, (thus SéK)) can be evaluated
as soon as the NL is constructed, however .S; (thus
St(K)) can only be calculated when the test utter-
ance t is present. Therefore at inference time for

each ¢ the number of similarity scores to be gener-
atedis (N + E).

2.2 MCE 2018 dataset description

The work reported in this paper is conducted on
the MCE 2018 dataset, a public dataset curated
from recordings of customer-agent conversations
to an operational call center (Shon et al., 2019).
The dataset, consisting of negative list speakers
and background speakers (i.e. not on the negative
list), is summarized in Table 1.

The MCE 2018 dataset is provided in the form
of i-vectors corresponding to each of the negative
list and background speaker utterances. Using this
dataset has several advantages: NL detection (Top-
S detection) is one of the tasks in MCE challenge;

Table 1: MCE 2018 dataset description

Set Subset No. of Total
speakers | utterances

Train Negative list 3,631 10,893
Background 500 30,952

Dev Negative list 3,631 3,631
" | Background 5,000 5,000
Test Negative list 3,631 3,631
Background 12,386 12,386

the dataset consists of 600-dimension i-vectors ex-
tracted from call center conversations, the domain
of interest in our study; and the large number of
enrolled NL speakers E' = 3631 is within range of
real-world NL sizes. In addition, the techniques in-
vestigated in this work are part of the speaker recog-
nition backend process, therefore using a set of
i-vectors that has been validated by previous stud-
ies (Khoury et al., 2019; Font, 2019; Wilkinghoff,
2020) eliminates the need for vector extraction, and
prevents introducing unnecessary variabilities for
the purpose of this work.

2.3 Using LSH for low-latency search at
inference time

PLDA model is the preferred method for similarity
score generation due to its accuracy as measured in
EER (Prince and Elder, 2007; Matejka et al., 2011).
However, PLDA is computationally expensive for
NL detection as it requires computing a large num-
ber of pairwise scores to determine the membership
of a test utterance in the NL set. While Linear Dis-
criminant Analysis (LDA) (Matejka et al., 2011)
can be applied prior to PLDA to reduce dimensions
and speed up computation of the score, the limiting
factor will be the size of the NL. In commercial
call-center applications it is not uncommon for the
NL to contain thousands of entries, making the
PLDA approach unfeasible for real-time detection.

To speed up the search, we propose using LSH, a
family of functions used to solve the nearest neigh-
bor problem by finding approximate — instead of
exact — matches (Indyk and Motwani, 1998). LSH
hashes the data and a query point in a way that max-
imizes the probability of a collision for points that
are close to each other than for those which are
farther apart. This approximation allows efficient
solutions to exist when the dimensionality, m, is
large. Further, Indyk and Motwani (Indyk and Mot-
wani, 1998) show that LSH requires O (mn'*1/¢)
processing time and O(mn'/¢) query time, where
c is a constant that constrains the radius around
which points should match. A crucial parameter
in LSH is the choice of a distance function; exist-



ing literature (Charikar, 2002; Schmidt et al., 2014)
demonstrates that the cosine similarity measure can
be approximated well with locality sensitive hash
functions.

LSH minimizes run time at the expense of accu-
racy, however, as our results in Section 6 demon-
strate, the approximate matches retrieved by LSH
have a high probability of being correct as reflected
in the lowered EER.

3 Related Work

Open-set speaker recognition techniques using
PLDA are often enhanced with score normaliza-
tion. Li and Porter (Li and Porter, 1988) propose Z-
Norm, which normalizes the PLDA score between
the test and target utterances to the distribution
of scores between the target and a normalization
cohort. Auckenthaler et al. (Auckenthaler et al.,
2000) present T-Norm, which applies the score
distribution between the test utterance and the nor-
malization cohort. S-Norm (Kenny, 2010) is de-
fined as the average of Z-Norm and T-Norm, while
Karam et al. (Karam et al., 2011) and Cumani et
al. (Cumani et al., 2011) suggest AS-Norm, which
constrains the S-Norm computations to subsets that
contain the highest normalization scores from the
T-Norm and the Z-Norm in order to produce the
most relevant PLDA score distributions (Eq.(5)).

Our contribution, NL-Norm, is fashioned after
AS-Norm with one distinction unique to the Neg-
ative List detection. Instead of normalizing to the
score distribution of a single target utterance as
Z-Norm, NL-Norm constructs the normalization
distribution using the collection of PLDA scores
between the normalization cohort and all enrolled
utterances in the NL. In addition, by allowing dif-
ferent adaptive lengths for T-Norm and (modified)
Z-Norm terms in AS-Norm and NL-Norm, we can
take full advantage of LSH for optimal speed and
accuracy in NL detection. The detailed description
is provided in Section 4.

There exists a large body of literature on the use
of LSH for audio data, especially in discovering
similar songs and de-duplicating remixes. How-
ever, our literature review restricts itself to those
works that use LSH in the context of NL detection.
The most closely related work on using LSH for NL
detection is Schmidt et al. (Schmidt et al., 2014),
which uses LSH to quickly approximate the cosine
distance in their retrieval process. They eschew
the use of PLDA because “this method performs a
more complicated hypothesis for i-vector matching,

which impedes its use with LSH." (Schmidt et al.,
2014). While the computationally expensive nature
of PLDA precludes its use as a distance function
in LSH, our work demonstrates that PLDA can
nonetheless be used effectively by allowing LSH
to constrain the number of PLDA operations re-
quired to determine a match from the NL. Ma et al.
(Ma et al., 2015) create clusters of low dimensional
i-vectors and restrict PLDA score computation to
the top-n closest clusters. They compare their ap-
proach to LSH, but unlike our work, they do not
use LSH to restrict the PLDA score computations
to a small set. Other surveyed works use LSH,
however, unlike our work, they do not consider in
in the context of PLDA computations: Jeon et al.
(Jeon and Cheng, 2012) use kernelized LSH for
speaker identification, while Leary et al. (Leary
and Andrews, 2014) substitute the Hamming dis-
tance for cosine distance in LSH; and finally, Shon
et al. (Shon et al., 2018) use random projects gener-
ated from a speaker variability space to derive the
characteristic matrix in LSH.

4 Negative List Specific Techniques

In this section we propose novel techniques devised
for NL detection, including: using NL-Norm, a NL-
specific score normalization, to improve detection
accuracy; taking advantage of different adaptive
lengths for S, and S; in AS-Norm (Eq.(5)) and
NL-Norm; and applying LSH in conjunction with
NL-Norm to reduce detection latency at inference
time.

4.1 NL-Norm

Z-Norm in Eq.(3) is designed to compensate sim-
ilarity score variations against a single target
speaker e, so that the scores between e and all
test utterances can be normalized to the same dis-
tribution in order to apply a consistent threshold
for speaker verification. For NL detection, since all
enrolled speaker utterances are present at testing
time, and a single threshold for normalized scores
is needed for all speakers in NL, it is reasonable to
introduce a normalization over the entire NL cohort
which we refer as NL-Norm. Formally, the scores
used for NL-Norm consists of pairwise scores be-
tween every normalization cohort member c; and
every NL member e;:

Snp ={8,; |1<j< E} (6)
where S, is a rewrite of Eq.(2):

Se; = {s(ej,ci) [ 1 <i < N} )



Practically, we define NL-Norm with an adaptive
length K that is analogous to AS-Norm in Eq.(5):

5(67 t)nlfno'rm =3

1 (s(enﬁ) — u(S5Y)

2 o(Sy1)
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L s(et) — (S >>
(K)
a(S;)
where p
SW ={s8911<j <k} ©)

with Sg.() denoting the subset consisting of the

highest K socres in Se;.

4.2 Different Adaptive Lengths

Even though Eq.(5) is commonly used for AS-
Norm, there is no theoretical constraint that the
same adaptive length K must be used for Z-Norm
and T-Norm terms. By allowing different adap-
tive lengths K. and K for Z-Norm and T-Norm,
respectively, Eq.(5) can be modified as:

S/(€7 t)as—norm = 5 O_(SéKe))

L slest) = (S
o(5:")

1 <s(e, t) — (S

10)

Similarly, Eq.(8) for NL-Norm can be modified
with different adaptive lengths K; and K,:

et — 1 (3060 = 55
s U)nl—morm 2 U(S](vlif))

L slest) = (S
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(1)

While employing different K. and K; in AS-
Norm is not a novel approach (it was previously
used in (Wilkinghoff, 2020)), here we explicitly ex-
plore its advantages when applied to NL detection:
decoupling K, and K; not only enables further op-
timization of detection accuracy, it also allows the
selection of a small K; value without sacrificing
the benefit of Z-Norm that may require a larger
K.. The combination of LSH with a small K; can
significantly improve the speed of NL detection by
reducing the number score computations between
the test utterance ¢ and the normalization cohort,
which is described further in the next section.

4.3 Reducing inference latency through LSH

In NL detection, for a given test utterance ¢, its
similarity scores with all members of the NL are
computed and ranked, with or without score nor-
malization. The top ranked score is then compared

with the pre-determined threshold to reach a deci-
sion. The search time here will be dominated by
O(E), where E = |£|.

As discussed in Section 2.3, LSH is used to
speed up the search process. For the work de-
scribed here, this means the following: First, the
LSH pipeline is “trained” on the i-vectors or x-
vectors associated with the £ and C. (Recall from
Section 2 that C is the normalization cohort.) Here,
“training” implies deriving shorter characteristic
vector for each of the 600-dimension vectors in £
and C using a set of random hyperplane-based hash
functions (Charikar, 2002). Given a collection of
vectors in R™, we choose a random vector 7 from
the m—dimension Gaussian distribution and define
a hash function h; as follows:

(1 Fa>0
hF(“)_{o P <0 (12)
Then, for any vectors @ and ¥,
0(i, V)

Pr{hz(i) = hx(v)] =1 — (13)
where (i, ¥) is the angle between vectors u and
v. Further, for n vectors, the hash functions can be
chosen by picking O(log?n) random bits, thereby
restricting the random hyperplanes to be in a fam-
ily of size 90 (log®n) (Charikar, 2002). For a given
test i-vector t, we use LSH twice: once to discover
K. nearest neighbors to ¢ from &, and the second
time to discover K; nearest neighbors to ¢ from
C (the K; mentioned in Section 4.2). Therefore,
in Eq.(10) and Eq.(11), SgKt) is constructed by
identifying K; members in C using LSH followed
by the generation of K scores, instead of gener-
ating all IV scores followed by the identification
of top K; scores. (Recall that N = |C|.) Using
such an approach, for each ¢, the number of PLDA
score evaluations is reduced from O(E + N) to
O(K. + K;). Because LSH search time is negligi-
ble comparing with PLDA score evaluation, this ap-
proach can significantly reduce the computational
cost and latency of NL detection.

S Experimental Setup

The training set of MCE dataset, consisting of
3,631 NL speakers and 5,000 background (non-
NL) speakers, is used for PLDA model training.
There are three utterances from each NL speaker,
the mean of the three i-vectors is enrolled in NL as
the utterance of the corresponding fraudster. Fur-
thermore, similar to Khoury et al. (Khoury et al.,



2019), a normalization cohort of 4,000 augmented
i-vectors is generated by applying at random a
weighted sum between non-NL speaker i-vectors
and NL speaker i-vectors, limiting the maximum
weight for NL speakers to 20%. The Development
set, consisting of one utterance from each of 3,631
NL speakers and 5,000 non-NL speakers, is used
to verify the baseline approach of PLDA with AS-
Norm, including the tuning of adaptive length K
in AS-Norm for baseline EER computation on the
Test set.

A stratified 50/50 random split of MCE Test
set, consisting of one utterance from each of 3,631
NL speakers and 12,386 non-NL speakers, pro-
duces equal-sized Validation set and Evaluation
set. The Validation set is used for tuning of hyper-
parameters including LSH depth L, adaptive length
K in NL-Norm Eq.(8), and K; and K, in Eqs.(10)
and (11). Evaluation set is reserved for holdout
testing only. Unless specified otherwise, all re-
sults presented in this paper are obtained using the
Evaluation set. The motivation for generating the
Validation and Evaluation sets from MCE Test set
is that the 50/50 stratified split preserves the ratio
of non-NL to NL speakers of the Test set, which is
significantly higher than that of the Development
set. It is worth noting that in real-world call center
applications this ratio is much higher (Khoury et al.,
2019). In addition, it is desirable that Validation
and Evaluation sets have similar distributions and
behaviors, whereas MCE Development set exhibits
much lower EER than the Test set (Shon et al.,
2019).

In contrast to MCE 2018 Challenge participating
studies where the goal is to achieve the lowest EER,
the aim of this work is to examine the effectiveness
of the novel NL detection techniques outlined in
Section 4. Therefore we adopt a minimal base-
line approach: PLDA followed by AS-Norm, in
order to remove potential variations introduced by
nonessential steps. For example, LDA is elimi-
nated even though it is often used prior to PLDA
for dimension reduction. With this baseline, we ob-
served NL detection EER of 1.25% and 5.66% for
MCE Development and the entire Test set, respec-
tively, which are comparable to published results
in MCE 2018 Challenge (Shon et al., 2019).

PLDA implementation in the Kaldi toolkit
(Povey et al., 2011) is used to generate similar-
ity scores s(e, t), s(e, ¢;) and s(t, ¢;). After score
normalization, for each test utterance ¢ the high-

est score among its normalized scores with NL
utterances is used for the overall EER calculation
(Singer and Reynolds, 2004). In our work, LSH
is applied prior to PLDA to reduce the number of
similarity score computations. We use the NearPy
Python framework! as the LSH implementation
with random hyperplane-based hash functions.
All computation times (i.e., detection latency)
indicated in this paper were measured on an Intel
Core 17-7700HQ 2.8GHz CPU with 16GB RAM.

6 Results and Discussion

6.1 NL-Norm

Applying Eq.(8) of NL-Norm, the resulting EER
of NL detection is 5.57%, reduced from 5.69% for
AS-Norm. To verify the stability and consistency
of this result, a cross validation is performed by
repeating 10 times the stratified random 50/50 split
of MCE Test set into validation and evaluation sets,
the outcome is shown in Table 2, where an aver-
age of 0.11% reduction in EER absolute value is
observed.

Table 2: NL-Norm vs AS-Norm EER

AS-Norm | NL-Norm
EER (Evaluation Set) 5.69% 5.57%
o mean 5.64% 5.53%
EER (Cross Validation) sid 036% 038%

It is worth noting that because NL-Norm con-
siders the scores between the normalization cohort
and the entire NL cohort as a single distribution, it
can diminish the distinctions among individual NL
speakers. Therefore we postulate that NL-Norm
may not improve multi-target speaker identifica-
tion (i.e. Top-1 identification). This is beyond
the current NL detection study and remains to be
examined in the future.

6.2 Adaptive Length K, and K;

Comparing AS-Norm of Eq.(10) with Eq.(5), with
the additional tuning parameter, a lower EER can
be reached when separate adaptive lengths K,
and K; are employed. Table 3 shows the tuning
progress on the Validation Set, where the first row
represents AS-Norm that requires K. = Ky, and
the second row represents the best result found with
K. = 1600 and K; = 600. In addition to the gain
in accuracy, more importantly, this approach of-
fers the flexibility of selecting a low K value that
yields a close-to-optimal EER, as demonstrated by
the last row of Table 3, where K; = 200. A low K4,

"https://github.com/pixelogik/NearPy



combined with LSH, enables a significant reduc-
tion in the number of score computations between
the test utterance ¢ and the normalization cohort,
which in turn increases the NL detection speed.
The detail is presented in the next section.

Table 3: AS-Norm with Different Adaptive Lengths
K. | K: | EER (%)
300 | 300 | 5.69
1600 | 600 | 5.61

3800 | 200 | 5.62

6.3 The utility of LSH

Consider a test vector, ¢, which must be compared
against a NL of size ¥ = 3,631. As Table 4 shows,
the fastest distance algorithm for comparison is co-
sine distance, which takes 4ms to compare ¢ against
all of the NL entries. However, its speed is achieved
at the cost of accuracy: the cosine distance yields
an EER of 7.40%. PLDA improves on the EER
but at the expense of an increased latency. LSH
followed by PLDA allows us to not only derive an
EER similar to that of PLDA only, but it also does
so at a fraction of time: 28ms compared to 864ms
for PLDA. For the test vector ¢, LSH search is first
conducted to find L members of NL that are most
similar to ¢, then PLDA scores between ¢ and these
L utterances are computed, with the highest score
selected for EER calculation.

Table 4: Accuracy and Latency

Algorithm EER (%) | Time (ms)
Cosine distance 7.40 4
PLDA 6.49 864

LSH + PLDA (L=30) 6.46 28

When the LSH depth L increases, it is expected
the resulting EER will approach the EER exhibited
by PLDA if a greedy score calculation strategy is
used across the entire NL. Such an expectation is
demonstrated empirically in Figure 2, where the
red line represents the EER obtained from PLDA
(without score normalization). For the NL dataset
with size £ = 3,631, an LSH depth L = 30 is
already sufficient to match the EER of PLDA only.

It should be noted that even though EER =
6.46% at L = 30, which is slightly better than
the EER of 6.49% without LSH, it is not an indi-
cation that LSH can help improve NL detection
accuracy. The reason for the occasionally lower
EER when performing LSH first is that for a test
utterance not spoken by any NL speaker, LSH may
fail to find the NL member that would have pro-
duced the highest PLDA score, thus eliminating
a false-match instance from the EER evaluation.
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Figure 2: EER vs.LSH depth L without score normal-
ization

As seen in Fig. 2, this effect quickly disappears
with increasing LSH depth L. The results in Fig.
2 are obtained without score normalization. Score
normalization improves EER, we thus examine the
effect of combining LSH, PLDA and score normal-
ization next.

6.4 Putting it together: LSH and NL-Norm

Algorithm 1 presents our use of LSH and NL-Norm.
Lines 1-12 establish the normalization over the en-
tire NL cohort as discussed in Section 4.1; this step
is done only once, during initialization. Each en-
rolled speaker’s utterances are scored against all of
the normalization cohorts and the top K, matches
for that speaker and the normalization cohort are
saved (line 10). At the end of the loop on line 11,
S](VI%) is populated and will be used to compute the
NL-Norm later. As part of populating S](VI%), it is
possible that the eventual top-ranked NL speaker
which induces the highest normalized PLDA score
is not among the top K. NL members identified
by the LSH search, resulting in a decrease in the
NL detection accuracy. This deficiency can be mit-
igated by expanding LSH search depth K. Line
12 invokes the NL-Norm computation function that
returns true if a match is found.

For a given target vector ¢, we first find the top-L
nearest neighbours of ¢ from the NL £ (line 14).
To apply normalization, PLDA scores between ¢
and utterances in the normalization cohort C are
also needed; LSH can be utilitized once more to
find K utterances in C that are most similar to
t (line 15). By the end of the loop on line 19,
both the sets St(Kt) and S](V[%) are available, the
latter populated during initialization as described
in the preceding paragraph. Finally, lines 21-25
computes the normalized PLDA score between ¢
and each NL list member, saving the results in a list
(Line 25) that is checked against the threshold to
determine an NL match. With Algorithm 1 the total



number of PLDA evaluations are reduced from
O(FE + N) without LSH to O(L + K;) with LSH,
where L < F and Ky < N.

Algorithm 1: LSH and NL-Norm

Data: ¢: Test vector to be matched in £
Data: T': Threshold for NL detection
Data: L, K;, K.: LSH depth and adaptive lengths,
selected using Validation set (Sec. 5)
Data: C: The normalization cohort
Data: £: The negative list
1 initialized <+ False;
2 if (linitialized) then

3 initialized < True;

4 S](\,KL“) «— 0;

5 for (e € £) do

6 Se + 0;

7 for (c € C) do

8 \ Se < Se U score(e, ¢);

9 end

10 S;VKLO — 51<VKLC) U top_n(Se, Ke) // £q.9
11 end

12 return NL_norm(g,C,S](VKL"’>,t,L,Kt,T)

function boolean NL_norm(&: list, C: list, SE\,I%):

list, t: vector, L: int, Ky: int, T: float):

w

14 t_E_set < LSH_lookup(t,E, L);
15 t_C_set < LSH_lookup(t,C, K);
16 S g,
17 for (¢ € t_C_set) do
18 ‘ St(K") +— St(Kt) U score(t,q) // £q.4
19 end
20 result_set + 0;
21 for (e € t_E_set) do
2 s < score(e, t);
23 Sni_norm <
1 ((smnEED | smnsY)
2\ ol (5750,
// Eq.11
24 result_set < results_set U {sni_norm };
25 end
26 return maz(result_set) > T? True False;

Table 5 lists the results obtained using various
approaches, including the NL detection time per
test utterance along with parameters L, K. and K;
which, as described in Section 5, are selected via
a grid search for the lowest EER on the Valida-
tion set, then applied to the Evaluation set . As
demonstrated in Section 4.2, if multiple { K., K;}
pairs yield near-lowest EERs for the Validation set,
then the one with a low K is selected to take full
advantage of LSH.

The first two rows in Table 5 are results of the
baseline model, with and without score normaliza-
tion. By applying LSH without score normaliza-
tion, the NL detection time per test utterance is
reduced from 864ms to 28ms, with little change
in EER. When adopting Eq.(11) for score normal-
ization, EER is lowered to 5.48% by taking advan-

Table 5: EER and NL Detection Time (per utterance)

Method '?;‘; L | K. | K E;';‘;’
PLDA, no score norm 6.49 | - - - 864
AS-Norm (Eq.(5)) 5.69 | - 300 | 300 | 1975
NL-Norm (Eq.(8)) 557 | - 500 | 500 | 1981
AS-Norm (Eq.(10)) 552 | - 3800 | 200 | 2051
NL-Norm (Eq.(11)) 557 | - 400 | 500 | 1976
LSH + PLDA, no score norm | 6.46 | 30 - - 28

LSH + AS-Norm (Eq.(10)) 5.66 | 50
LSH + NL-Norm (Eq.(11)) 5.48 | 50

2000 | 250 | 114
3700 | 200 | 102

tage of NL-Norm and allowing different adaptive
lengths K; and K., at the same time the NL detec-
tion time is shortened significantly from 1975ms
to 102ms, a beneficiary of LSH search. As noted
previously, these results are obtained using the 600-
dimension i-vector as input to PLDA model di-
rectly. A dimension reduction step such as LDA
can be inserted before PLDA to reduce the infer-
ence time further for all approaches listed in Table
5, with or without LSH search. Nonetheless the use
of LSH already make real-time NL detection feasi-
ble for applications such as call center services.

7 Conclusion

Negative list detection is an important application
for fraud detection in various industries such as
call center services. This work explored novel tech-
niques specifically devised for NL detection, with
the aim of improving both accuracy and speed. NL-
Norm considers similarity scores between the nor-
malization cohort and all enrolled NL speakers as a
single distribution, which helps calibrate test scores
and select a consistent threshold over the entire NL.
LSH is applied to find NL speakers as well as ut-
terances in the normalization cohort that are most
similar to a test utterance, so that PLDA scoring
is performed only on a small subsets of utterances,
which significantly lowers the computation cost
and latency of the NL detection. The effectiveness
of LSH is further amplified when using different
adaptive lengths for Z-Norm and T-Norm terms in
AS-Norm and NL-Norm, so that evaluating a rela-
tively small number of similarity scores between a
test utterance and the normalization cohort is suffi-
cient to reach optimal accuracy.

While the experiments are conducted on i-
vectors, none of the techniques proposed in this
paper is specific to i-vector, therefore we expect
these approaches can be applied to x-vectors as
well, which will be the subject of a future study,
along with more direct comparisons with results
from other NL detection methods.
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