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Abstract

We present a novel procedure for acquir-
ing productive knowledge of restrictions on
adjective ordering from counts of adjective-
bigrams, which are readily obtainable from nat-
ural language corpora. The procedure uses a
model-based Collaborative Filtering (CF) algo-
rithm, and is the first computational model of
adjective-ordering to do so. We consider two
widely-used model-based CF algorithms, Sin-
gular Value Decomposition and Non-negative
Matrix Factorization. We evaluated the pro-
cedure by first training the underlying CF
model on subsets of the largest publicly avail-
able dataset of English adjective-bigrams, the
Google Books NGram database, and then mea-
suring the model’s capacity to predict the or-
dering of (unseen) pairs of adjectives. Our re-
sults show that both CF models exhibit good
performance on the task of predicting adjec-
tive ordering. Moreover, the CF models con-
sistently outperform a baseline model that is
grounded in a ranking of adjectives intended
to align with a (linear) hierarchy of adjective-
classes, suggesting that CF models make use
adjective-ordering data that does not neatly fit
into (proposed) hierarchies of adjective-classes.

1 Introduction

Linguists have long been observing, studying and
characterizing restrictions on the ordering of adjec-
tives – e.g. native English speakers will say “the
big red ball” and not “the red big ball” (Rizzi
and Cinque, 2016; Trotzke and Wittenberg, 2019).
Typically, linguists have grouped adjectives into se-
mantic classes over which an ordering is proposed -
e.g. (Goyvaerts, 1968; Vendler, 1968; Dixon, 1982;
Shaw and Hatzivassiloglou, 1999; Cinque, 1994)
propose an ordering over the following classes of
adjectives (where A>B indicates A precedes B):

SIZE > SHAPE > AGE > COLOR > PROVENANCE

Moreover, linguists have noted recurring patterns
of restrictions on adjective ordering that appear

over a wide and diverse range of languages, and
these patterns can be assembled together to form a
cross-linguistic hierarchy of adjectives that informs
the ordering of adjectives that (directly) modify a
noun phrase (Sproat and Shih, 1991; LaPolla and
Huang, 2004; Trainin and Shetreet, 2021).1 Given
that these tacit restrictions on adjective ordering
appear consistently across languages, it is puzzling
how, and the degree to which, learners acquire this
knowledge of language from the primary linguistic
data. This study addresses this puzzle by intro-
ducing a novel procedure for acquiring productive
knowledge of restrictions on adjective ordering.

Our procedure, implemented as a working com-
puter program, takes as input adjective-bigram
statistics listed in the Google Books NGram
database, and outputs a (learned) model of
adjective-ordering preferences. Importantly, the
procedure learns a model of adjective-ordering
preferences that is productive in that it can pre-
dict that a speaker would prefer to say “the big
red ball” and not “the red big ball” even if it has
never seen the adjective bigrams “big red” and

“red big”, so long as the input data includes other
adjective bigrams that involve “big” and “red”.
In this way, the model output by the procedure
goes beyond the null-hypothesis of learners simply
repeating back what they have heard (Bar-Sever
et al., 2018). The procedure centers on a model-
based Collaborative Filtering (CF) algorithm that
maps adjectives-ordering data to a low-dimensional
embedding space where latent relationships be-
tween adjectives are surfaced; our approach is in-
formed by earlier work suggesting that CF can
be employed to model constituent selection more
broadly (Indurkhya, 2021). Our experiments show
that model-based CF algorithms perform well on

1This led to the cartographic enterprise, which aims (in
part) to provide a syntactic accounting, in the form of a
detailed map, of the observed cross-linguistic hierarchy of
adjective-classes (Scott, 2002; Laenzlinger, 2005; Cinque,
2010; Shlonsky, 2010; Cinque and Rizzi, 2012; Cinque, 2014).



the task of predicting the ordering relation (if there
is one) between the two (input) adjectives. More-
over, the CF algorithms substantively outperform
a baseline model that computes the relative differ-
ence in the ranking of the two (input) adjectives –
this baseline model is informed by prior work that
suggested that a ranking of adjectives that corre-
lates with a (linear) hierarchy of adjective-classes
can be used to determine restrictions on adjective
ordering. Our experiments thus suggest that model-
based CF algorithms leverage adjective-ordering
data that does not neatly align with proposed hier-
archies of adjective-classes.

The remainder of this study is organized as fol-
lows. We begin by discussing prior work that
(computationally) modeled restrictions on adjec-
tive ordering (see §2) and review established meth-
ods for CF (see §3). Next, we walkthrough
the construction of an Adjective Ordering matrix
from adjective-bigram data drawn from the Google
Books NGram database, and make note of cylical
orderings over adjective that defy the organization
of adjectives into a hierarchy (see §4). We then
detail the computational experiments central to this
study, and analyze the information used by the CF
models we evaluated (see §5). Finally, we conclude
by discussing the broader implications of our study,
especially in light of the minimal assumptions our
approach aims to make (see §6).

2 Prior Studies of Adjective Ordering

Previous (computational) models of adjective or-
dering can broadly be construed as falling into one
of two categories that are distinguished by what
they aim to explain. The first category of work
includes empirically-grounded methods that aim
to explain the distribution of adjective orderings
observed in corpus data. The second category of
work includes models that encode some proposed
measure of adjectives and that aim to explain the
proposed cross-linguistic hierarchy of adjectives
(from which the ordering of adjectives can be de-
duced).2 Note that this two-fold categorization of
prior work is not a strict dichotomomy - e.g. work
aiming to explain how a cross-linguistic hierarchy
is learned may involve an empirically grounded ap-
proach. Let us now examine these two categories
of prior work in more detail.

2As (Svenonius, 2008) notes, each adjective-class in the
hierarchy can be mapped to a functional head that may be
incorporated into a determiner phrase.

Figure 1: CF model for predicting the ordering of ad-
jective pairs. Evidence supporting the prediction is: (i)
destructive is similar to dark w.r.t. preceding military
and following dangerous, and dark precedes foreign; (ii)
foreign behaves like military w.r.t. preceding political
and following dark, and destructive precedes military.

Prior work falling into the first category relies
on corpus data from which the statistics of nouns
and their adjectival pre-modifiers can be derived.
Shaw and Hatzivassiloglou (1999) outline some of
the standard methodologies employed, which we
briefly describe here:
(a) Direct Evidence method: if the counts of

adjective-bigrams “A B” and “B A” are cAB

and cBA (respectively), a binomial test is used
to determine whether the ratio of cAB to cBA

differs significantly from the null-hypothesis of
a 1:1 ratio – if the null-hypothesis is rejected,
then we know speakers prefer “A B” over “B
A” if cAB > cBA (and vice versa). A weak-
ness of this method is that it is not productive
as it can only predict ordering preferences for
adjective pairs that appeared as bigrams in the
input corpus data.

(b) Transitivity method: given adjectives A, B and
C, and evidence that A > B and B > C (per-
haps determined via the binomial test outlined
in the Direct Evidence method), this method
will infer via transitivity that A > C. This
method, which relates to the notion of ordering
being derived from a hierarchy of adjective-
classes, runs into difficulty when adjective or-
dering preferences inferred from the (input)
corpus data violate transitivity. (See Table 1
for examples of adjective-bigram cycles.)

(c) Clustering method: adjectives are clustered
together (e.g. via k-Nearest Neighbors) based
on their ordering relation to other adjectives
(with ordering determined via the binomial test
as outlined in the Direct Evidence method),
and the ordering of adjectives (A,B) is made
by examining how other adjectives similar to
A are ordered with respect to B. Similar to



memory-based CF algorithms (reviewed in §3),
this approach suffers from sparsity of adjective-
bigrams in the (input) corpus data, with many
adjective pairings appearing only once in the
data (Malouf, 2000).3

Although these empirically-grounded methods
achieve reasonably good performance when ap-
plied to specific or restricted domains of text
(where there are fewer occurrences of polysemy),
their performance declines when applied to broader
corpora of text that span multiple domains.

The second category of prior work aims to
account for the (cross-linguistic) hierarchy of
adjectives-classes. Some work in this category
introduces a metric that can be used to rank ad-
jectives, with the ordering over a pair of adjectives
determined by comparing the rank of the two adjec-
tives. For example, Hahn et al. (2018) introduces
a metric that computes the mutual information be-
tween an adjective and the nominal head it modifies,
so that given a nominal head, N , adjectives hav-
ing higher mutual information with N will appear
closer to N ; this metric was grounded in the sub-
jectivity theory of Hill (2012) and Scontras et al.
(2017), with the latter carrying out experiments
showing that property-subjectivity is what predicts
adjective ordering - i.e. adjectives that are less
subjective appear closer to the (modified) nominal
head.4 Alternatively, other work takes the approach
of directly inferring a hierarchy of adjective classes.
For example, recent work by Leung et al. (2020)
demonstrates that latent-variable models (that pre-
dict adjective ordering) can learn cross-linguistic
adjective hierarchies that align with Cinque’s hi-
erarchy – their model represents adjectives using
multi-lingual word embeddings, which can (im-
plicitly) encode information pertaining to adjective
ordering in the form of the presence or absence
of (nearby) non-adjectival tokens - e.g. the non-
adjectival tokens that form the context of a word
(that is being embedded) may encode the semantic
category the word belongs to, in turn allowing it to

3Malouf (2000) also notes that trying to incorporate infor-
mation from the text surrounding an adjective bigram doesn’t
provide sufficient syntagmatic information because the left
side is usually a determiner and the right hand side (typically
a nominal) only worsens the data sparsity issue.

4Note that this approach only partly aligns with there being
a hierarchy of adjective classes as the experiments in Scon-
tras et al. (2017) showed that users sometimes have differing
subjectivity ratings for adjectives – this aligns with our obser-
vation (detailed in §4) that there are large numbers of adjective
pairings for which there is no clearly preferred ordering. (See
also Scontras et al. (2019).)

be placed within Cinque’s hierarchy.5

To summarize, this study primarily falls under
the first category of work, although it is informed
by prior work from both categories of prior work
in so far as: (i) we employ a binomial test to de-
termine adjective ordering from bigram counts as
in Shaw and Hatzivassiloglou (1999); (ii) based
on the assessment of Malouf (2000), we opt to di-
rectly work with the adjective-bigram counts listed
in the Google Books NGram database, and thus do
not consider the words surrounding the adjective-
bigrams (see §4); (iii) the baseline model we test
the CF models (output by our procedure) against is
informed by observations in (Scontras et al., 2017;
Hahn et al., 2018) that adjectives can be ranked,
with an adjective’s ranking determining it’s order-
ing relative to other adjectives (and with the ranking
meant to correlate with the hierarchy of adjective-
classes). Finally, as we discuss in §3, our decision
to use model-based CF algorithms is motivated in
part by the need for a productive model that ro-
bustly deals with sparse (adjective-bigram) data
drawn from a single language (i.e. no use of multi-
lingual word embeddings), builds on the ideas un-
derlying the memory-based models referenced in
Shaw and Hatzivassiloglou (1999), and does not
make assumptions about the transitivity of restric-
tions on adjective ordering.

3 A Review of Collaborative Filtering

The Collaborative Filtering (CF) algorithms used
in this study are (widely used) examples of Recom-
mender Systems (Herlocker et al., 2004; Su and
Khoshgoftaar, 2009; Lü et al., 2012; Bobadilla
et al., 2013). Given a finite set of users (e.g. sub-
scribers), a finite set of items (e.g. movies), and
a user-item rating matrix that encodes ratings as-
signed by (some) users to (some) items, a Recom-
mender System is tasked with predicting the rating
a given user would assign to a given item; these
predictions may then be used to enumerate a list of
recommended items for the given user. This study
takes the users to be the first adjective in an adjec-
tive bigram, the items to be the second adjective
in an adjective bigram, and the user-item rating
matrix to be an adjective-ordering matrix (detailed

5The experiments detailed in Leung et al. (2020) control for
explicitly encoded information about adjective ordering in the
text from which the word-embedding models are learned; they
do not, however control for implicitly encoded information in
the form of the presence or absence of non-adjectival tokens
incorporated into the word-embedding model.



Adj. Type Examples

Ordered Adj. Pairs Unordered Adj. Pairs Adj. Cycles of Length 3

all (important, private), (relative, domestic), (permanent, unconscious, young),
(abbreviated, new) (foreign, strategic) (acoustic, grand, old)

pure (intriguing, new), (recent, substantial), (ethical, foreign, institutional),
(international, technological) (everyday, practical) (elementary, historical, prospective)

noun (independent, moral), (overall, specific), (aged, former, intermediate),
(radical, socialist) (fundamental, common) (medium, stiff, ordinary)

verb (certified, registered), (dry, round), (flat, major, long),
(corresponding, free) (open, parallel) (appropriate, major, free)

Table 1: Examples for each subset of the adjective-bigram data. An ordered pair of adjectives, (a, b), indicates that
a typically precedes b (as determined by the test outlined in §4). An unordered pair of adjectives, (a, b), indicates
that there is no preference of either a preceding b or b preceding a. Finally, an adjective cycle, (a, b, c), indicates the
presence of three ordered pairs, {(a, b), (b, c), (c, a)}, that together form a cycle (and cannot be folded into a strictly
linear hierarchy of adjectives).

in §4) – then a Recommender System may be used
to predict, for a given adjective, which adjectives
may follow it to form an adjective bigram.

Recommender Systems are typically divided into
Content-Based (CB) recommendation algorithms
and CF recommendation algorithms.6 CB recom-
mendation algorithms make use of similiarities be-
tween the valuations of features associated with
each item (or alternatively, between the valuations
of features associated with each user). For exam-
ple, a CB recommendation algorithm can predict
whether the adjective “red” can follow the adjec-
tive “large” by comparing the syntactic and seman-
tic features associated with “large” with those asso-
ciated with other adjectives known to follow “large”
(such as “blue”). If these semantic and syntactic
features are unavailable – e.g. as in this study, in
which we intentionally restrict our attention to ad-
jective bigram statistics derived from (unannotated)
corpus data – then we can instead use CF recom-
mendation algorithms, which can simultaneously
take into account: (i) similarities between users, as
measured by how similarly they rate items; (ii) sim-
ilarities between items, as measured by how sim-
ilarly they are rated by users. Conventionally, CF
algorithms are grouped into two classes, memory-
based CF algorithms and model-based CF algo-
rithms, which we will now describe in turn.

Memory-based CF algorithms operate on the
assumption that the more similar two users are
(with respect to the ratings they assign), the more
likely they are to assign similar ratings to items.

6(Burke, 2002, 2007) detail hybrid recommender systems
that fuse together aspects of CB and CF algorithms.

A Memory-based CF algorithm predicts the rat-
ing a user, u, would assign to an item, i, by: (i)
identifying a set of users, S, that are similar to
u – e.g. by computing the k Nearest Neighbors
using a similarity measure such as the Pearson cor-
relation coefficient; (ii) computing the predicted
rating as the weighted average of ratings assigned
by each s ∈ S to i, with the weights corresponding
to the degree-of-similarity of each s to u (Schafer
et al., 2007). More broadly, a memory-based CF
algorithm is either an instance of user-based col-
laborative filtering, in which case it operates by
identifying similar users (as described above), or
alternatively, item-based collaborative filtering, in
which case it identifies similar items. See (Sarwar
et al., 2001) for a review of item-based CF.

Despite enjoying widespread usage, memory-
based CF algorithms struggle in two scenarios:
first, the quality of their predictions quickly de-
grades when the user-item rating matrix is sparse,
and second, they do not scale well (with respect
to memory consumption) as the number of users
and items grow (Adomavicius and Tuzhilin, 2005).
These difficulties are addressed by Model-based
CF algorithms, which center on a learned pre-
dictive model. Notable examples of model-based
CF algorithms include Non-negative Matrix Fac-
torization (NMF) and Singular Value Decompo-
sition (SVD). NMF and SVD, both instances of
latent factor models, work by factoring apart the
user-item rating matrix, so that the user and item
profiles (corresponding to the rows and columns
of the user-item rating matrix) are embedded in a
lower-dimensional space where latent relationships



between users and items are more readily apparent;
in this way, NMF and SVD address two weaknesses
of memory-based CF algorithms, sparsity and scal-
ability. Finally, we note that NMF and SVD yield
linear models that have the capacity to encode a
hierarchy of adjective-classes (e.g. Cinque’s hierar-
chy).7 For these reasons, the present study opts to
use two (latent factor) model-based CF algorithms,
NMF and SVD, to model adjective-ordering.

4 Constructing an Adj. Ordering Matrix

We now detail how to derive an adjective-ordering
matrix (i.e. the CF-model’s input) using bigram
data taken from the American-English (2019) sub-
set of the Google Books NGram database (for the
years 1969-2019) (Michel et al., 2011; Lin et al.,
2012).

To begin, we define a word pair to be a two-tuple
of words, (x, y), such that x lexicographically pre-
cedes y. We restricted our analysis to only consider
a word pair (x, y) if met three conditions:
(a) let A be the set of all adjectives appearing in

the Google Books NGram database (as marked
by the Part-of-Speech tagging of each ngram
in the database), then x, y ∈ A;

(b) the sum of the frequencies of the bigrams “x y”
and “y x” is at least 100 – this eliminates word
pairs with insufficient samples for statistical
hypothesis testing;

(c) let W be the set of adjectives in the WordNet
database (Miller et al., 1990; Miller, 1995),
and let W

′
be the set of adjective lemmas ob-

tained by lemmatizing members of W – then
lemma(x) ∈W

′
and lemma(y) ∈W

′
.89

There were 491499 distinct word pairs that met
these conditions.

Next we define an adjective pair as a two-tuple
of lemmas, (s, t), such that s and t are both lem-
mas of adjectives that make up a word pair; there
are 472823 distinct adjective pairs, and 10041 dis-
tinct adjective-lemmas appeared in these adjective

7This is possible if each adjective is mapped (via it’s em-
bedding vector) to a weighted sum of adjective classes – then
the learned matrix can encode information about which adjec-
tive classes can precede which other adjective classes.

8Checking for membership in WordNet’s list of adjectives
guards against potential mislabeling of Part-of-Speech tags in
the Google Books NGram database, spelling errors, etc, and
enables identification of adjectives that are also verbs or nouns
(using WordNet’s lists of nouns and verbs).

9The lemmatized form serves to normalize the various
forms of adjectives (e.g. superlatives and comparatives). of
W

′
. We used spaCy (v3.2.0) to lemmatize words.

pairs. Given an adjective pair (s, t), we define
its forward frequency, f(s, t), as the sum of the
frequencies of bigrams of the form “x y” where
s = lemma(x) and t = lemma(y).10 Likewise,
we define the backward frequency, b(s, t), as the
sum of the frequencies of bigrams of the form “y
x” where s = lemma(x) and t = lemma(y). Fi-
nally, we define the ratio, r(s, t), as f(s,t)

f(s,t)+b(s,t) .
We then marked each adjective pair as either be-

ing ordered or unordered. To make this determina-
tion for an adjective pair (s, t), we used a two-tailed
binomial test, with probability of success r(s, t), to
evaluate the null hypothesis that bigrams “x y” and
“y x”, where s = lemma(x) and y = lemma(y),
are equally likely to appear (because there is no
significant preference in the ordering of the two
adjectives, and thus the adjective pair is determined
to be unordered). We rejected the null hypothesis
(implying the adjective pair is ordered) if p < 0.01

n2 ,
where n = 10041 is the number of distinct (lemma-
tized) adjectives and n2 is the Bonferroni correc-
tion factor.11 Of the adjective pairs, 344228 were
found to be ordered and 128595 were found to be
unordered. Table 1 shows examples of ordered and
unordered adjective-pairs.12

We can now define the adjective-ordering matrix,
Q (a 10041×10041 matrix), as follows. Let L be
the set of adjectives pairs. Then for each (s, t) ∈ L,
(i) if (s, t) is unordered, thenQ[s, t] = Q[t, s] = 1;
(ii) if (s, t) is ordered, then Q[s, t] = 2 if r(s, t) >
0.5, otherwise Q[t, s] = 2. Any entry in Q not
defined above has value 0.13

To better understand how the (alternative) lexical
categories that a polysemous adjective can appear
as may impact a model’s ability to learn ordering
information,14 we also produced adjective-ordering
matrices for subsets of the set of adjective pairs -
these subsets are labeled as follows: all denotes

10The frequency of a bigram is the number of times it ap-
pears in the Google Books corpus, as recorded in the Google
Books Ngram database. Our measurement of bigrams fre-
quency was case-insensitive.

11Bonferroni correction counteracts the propensity for false-
positives arising when doing multiple comparison testing.

12The reader can inspect an example of an adjective
pair (a, b) by going to the google-ngrams website (https:
//books.google.com/ngrams) and running the query
“a_ADJ b_ADJ, b_ADJ a_ADJ” with the queried data
restricted to the years 1969-2019.

13We use values of 2 and 1 so that the adjective-ordering
matrix can serve as input to the Non-negative Matrix Factor-
ization (NMF) CF model; the CF models ignore the 0 values.

14E.g. the polysemous word “sound” can appear as a noun
or as an adjective, each having a different meaning. See also
(Taylor, 2003; Baker and Baker, 2003; Falkum, 2015).

https://books.google.com/ngrams
https://books.google.com/ngrams


Adj. Type Adjective-Ordering Matrix Statistics Model Performance (AUROC) t-Test Statistic

Adjs. Adj. Pairs Ordered Pairs Cycles NMF SVD Baseline (γ) NMF SVD

all 10041 472823 72.8% 970527 0.788 0.770 0.716 28.972 33.420
pure 6817 76228 70.3% 15661 0.756 0.738 0.676 5.915 26.799
noun 2688 130701 75.6% 311491 0.767 0.734 0.710 23.431 10.143
verb 1755 26284 71.2% 22430 0.716 0.689 0.662 10.426 13.654

acyclic-all 9296 382335 66.6% 0 0.867 0.862 0.791 45.505 46.278
acyclic-pure 4776 64843 66.3% 0 0.813 0.809 0.755 6.239 27.481
acyclic-noun 2450 105938 70.0% 0 0.858 0.853 0.795 29.530 9.344
acyclic-verb 1265 21657 65.8% 0 0.797 0.788 0.758 10.367 9.586

Table 2: Performance of two Collaborative Filtering models (NMF and SVD) and a baseline (γ) model on each
adjective-ordering matrix that was derived from the (Google NGrams) Adjective Bigram data. Notably, the NMF
model consistently has the top performance, and both Collaborative Filtering models consistently outperform the
baseline model. Adj. Type indicates the subset of the data from which an adjective-ordering matrix was derived and
whether or not adjective cycles are present. Key statistics are presented for each adjective-ordering matrices, and for
each (model, dataset) pair, we report for the median-scoring model: (i) the performance (as measured by AUROC),
and (ii) the Welch’s t-test statistic that is used to compare the distributions of the fraction of adjacent adjective pairs
for correctly and incorrectly classified adjective pairs (see the analysis in §5 for details).

the original set of adjective pairs; noun denotes the
subset of all in which both lemmas in an adjec-
tive pair appear in the lemmatized list of nouns in
WordNet; likewise, verb denotes the subset of all
in which both lemmas in an adjective pair appear
in the lemmatized list of verbs in WordNet; pure
denotes the subset of all in which both lemmas in
an adjective pair are not members of the noun or
verb subsets. Table 2 presents statistics for each
adjective-ordering matrix.

Finally, we note that the ordered adjective pairs
can be modeled as a directed graph: an adjacency
matrix encoding a directed graph, where nodes cor-
respond to distinct lemmatized adjectives, may be
obtained by removing the entries in Q associated
with unordered adjective pairs. Upon constructing
these graphs, we identified the presence of adjec-
tive cycles, which are cycles of edges in the graph
formed by a sequence of adjective bigrams - see Ta-
ble 1 for examples of these cycles, and see Table 2
for counts of adjective cycles of length three. The
presence of these adjective cycles surprised us as
it seems to rebut the ordering hierarchy over adjec-
tives proposed by the Cartographic Enterprise. To
better understand the role that the presence of these
cycles may play in a model’s ability to learn the
ordering of adjectives, we constructed a directed
acyclic graph (DAG) that was a subgraph of the
directed graph derived from the adjective-ordering
matrix. We did this by identifying a feedback arc
set, which is a set of adjective pairs that contains at
least one adjective pair in each cycle in the graph,
using the method introduced by (Eades et al., 1993);

note that this method divides the original directed
graph into two DAGs, and we selected the larger
DAG. The resulting DAG was then used to reformu-
late an adjective-ordering matrix, with the entry for
an unordered adjective pair (s, t) carried over from
the source adjective-ordering matrix if s and t were
both present in the DAG. This process was repeated
for each subset of adjective pairs, yielding four new
subsets labeled acyclic-noun, acyclic-verb, acyclic-
all and acyclic-pure (see Table 2 for details).

5 Experiment

We evaluated two different latent factor model-
based Collaborative Filtering methods (Hofmann,
2004; Koren et al., 2009), Singular Value Decom-
position (SVD) and Non-negative Matrix Factor-
ization (NMF), on the task of predicting, given
adjective pair data in the training set, whether a
given adjective pair (in the test set) is ordered, and
if it is ordered, which direction the ordering is in.15

Methodology. Given an adjective-ordering matrix,
we trained each of the two CF models by employ-
ing nested 5-fold cross-validation with shuffling, in
which the outer loop evaluates trained models, and
the inner loop is used for model selection (hyper-
parameter tuning) and model fitting (i.e. training).
Specifically, the outer-loop consists of 5-fold cross-
validation, with 20% of the data (i.e. entries in
the adjective-ordering matrix) held out as a test

15We used the implementations of NMF and SVD provided
in the (python) library Surprise (v1.1.1) (Hug, 2020). See
Appendix A for details about the computing infrastructure,
software libraries and runtime used for these experiments.



dataset and the remaining data used for training
and validation; the inner-loop consists of 5-fold
cross-validation with 80% of the data used as a
training set and the other 20% of the data held out
as a validation set.16 We evaluated performance
during model selection by computing the mean av-
erage error (MAE), a metric that is commonly used
for evaluating model-based CF algorithms.17

We trained and evaluated each of the two CF-
models on each of the eight adjective-ordering ma-
trices listed in Table 2. Note that a trained CF
model,M , consists of: (i) a mapping, uM , between
(lemmatized) adjectives and embedding vectors of
length nf+1 – this mapping encodes the first item
in an adjective pair (i.e. the s in an adjective pair
(s, t)) into an embedding vector; (ii) a second map-
ping, vM , between (lemmatized) adjectives and
embedding vectors of length nf+1 – this mapping
encodes the second item in an adjective pair into an
embedding vector; (iii) an (nf+1)×(nf+1) ma-
trix, SM – in the case of NMF, SM is the identity
matrix. The model estimates the value for an adjec-
tive bigram (from the test set), (s, t), as:

M(s, t) = uM (s)S(vM (t))T

Given two adjectives a and b, the procedure for
determining adjective ordering (which encapsulates
the CF-modelM ) makes a prediction, P{a,b}, about
the ordering relationship between a and b as:

P{a,b} =

{
A > B, if M(a, b) ≥ ψ > M(b, a)

A < B, if M(a, b) < ψ ≤M(b, a)

No Ordering, Otherwise

Here ψ is a threshold with 1 ≤ ψ ≤ 2, such that we
classify M(s, t) as a high value (2) if M(s, t) ≥ ψ
and a low value (1) otherwise. As the accuracy of
the model depends on the value ψ, we thus eval-
uated model-performance by computing the Area
Under the Receiver Operating Characteristic (AU-
ROC) curve (Fawcett, 2006).
Results. Table 2 summarizes the results of our ex-
periments. Notably, the CF models, NMF and SVD,
achieved high AUROCs of 0.87 and 0.86 (respec-
tively) on the acyclic-all adjective-pair data, and

16An adjective-ordering matrixQ can be represented as a set
of tuples of the form (A,B,QA,B) where A is an adjective
coding for a row, rA ∈ Q, B is an adjective coding for a
column, cB ∈ Q, and QA,B is the value Q[rA, cB ] – then
(A,B) is the model’s input, and QA,B is the model’s output.

17Model selection for both models, NMF and SVD, in-
volved optimizing the hyperparameter for the number of latent
factors, nf ∈ {4, 6, 8, . . . , 16, 18}, and both models were
trained for 450 epochs. The NMF model used a regularization
rate of 0.06, and the SVD model used a learning rate of 0.005
and a regularization rate of 0.02.

0.79 and 0.78 (respectively) on the all adjective-
pair data. Overall, NMF achieved the highest AU-
ROC on each of the adjective pairs datasets. We
also observed that both NMF and SVD performed
better on the acyclic datasets than on their cyclic
counterparts, and that for datasets both with and
without cycles, both CF-models performed better
on larger and less restricted datasets, all and noun
(c.f. the smaller, more restricted datasets, pure).

We also evaluated a baseline model, referred to
as the γ baseline, that serves as a reference point
against which we compared the performance of
the CF models. The γ baseline, which takes into
account both input adjectives, is defined as follows.
For an adjective z, let ρz,1 be the multiset of val-
ues for entries in the training data18 where the first
adjective is z, let ρz,2 be the multiset of values for
entries in the training data where the second adjec-
tive is z, and let h(z) be the weighted harmonic
mean of avg(ρz,1) and (3− avg(ρz,2)), so that:

h(z) =
|ρz,1|+ |ρz,2|

|ρz,1|(ρz,1)−1 + |ρz,2| (3− (ρz,2))
−1

Here, h(z) is a ranking of the adjective z that is
intended to correlate with z’s position in the hier-
archy of adjective-classes.19 Given adjective pair
(s, t) in the test data, the γ baseline is a linear trans-
form20 of the difference between the rankings of
the two adjectives s and t:

γ(s, t) =
3

2
+

1

2
(h(s)− h(t))

Importantly, by using the γ baseline (in place of the
CF models), our procedure can predict the ordering
of adjectives, s and t, by comparing their rankings
(per h) – importantly, this grounds the γ baseline
in the second category of work described in §2.

Notably, the two CF models, NMF and SVD,
outperformed the γ-baseline on each of the eight
adjective-ordering matrices (see Table 2). We also
observed that the γ baseline performed better on
the acyclic datasets than on the full datasets – this
was not surprising as the γ baseline is a model of
a linear hierarchy of adjectives (i.e. h(z) forms
a total preordering over adjectives). Overall, our
results show that both model-based CF algorithms:
(i) perform well on the task of predicting adjec-
tive ordering, and (ii) outperform a baseline model

18The training data does not include any zero-valued entries
in the adjective-ordering matrix from which it is derived.

19N.b. the greater the number of adjectives that z precedes
(as measured by ρz,1), and the fewer the number of adjectives
that precede z (as measured by 3−ρz,2), the larger h(z) is.

20As h(z) ∈ [1, 2], this transform ensures γ(s, t) ∈ [1, 2].



grounded in a ranking (of adjectives) meant to cor-
relate with a (linear) hierarchy of adjective-classes.

Analysis. We analyzed the degree to which the CF
models, when predicting adjective ordering, utilize
information about related adjective pairs. Let ω
be the set of adjective pairs (in the training data),
and let ψ be the set of all adjectives appearing in ω.
Given an adjective pair (s, t), we define its adjacent
adjective pairs (AAP) as the set µ(s,t) ∩ ω where:
µ(s,t) = {(x, y) ∈ ψ×ψ|(s, y)∈ω ∧ (x, t)∈ω}

We define the fraction of adjacent adjective pairs
(FAAP) for (s, t) as the ratio:

|µ(s,t) ∩ ω|/|µ(s,t)|
Given an adjective pair (s, t), FAAP is the ratio of
AAP present in the training data vs. the maximum
number of AAP that could have been in the training
data; the smaller the FAAP of (s, t) is, the more
discriminating s and t are in the adjectives they
appear with (in a bigram).

We now consider, for each (model, dataset) pair,
how FAAP relates to model performance. We
first computed the threshold21 that maximized the
model’s F1-score, and then determined, for each
adjective pair (s, t) in the test data, whether the
model’s output, M(s, t), was correct (as classified
by Ps,t).22 We then computed the means and vari-
ances for the distributions of FAAP for adjective
pairs that were correctly and incorrectly (respec-
tively) classified, and we found that the mean of
the former distribution was consistently lower than
the mean of the latter.23 We thus evaluated whether
these two distributions of FAAP differed substan-
tively. We used Welch’s t-test (Welch, 1947) to test
the null-hypothesis (α=0.01) that there is no (statis-
tically) significant difference between the means of
the two distributions (e.g. see Fig. 2); in each case,
the null-hypothesis was rejected as the p-value was
at most 3.5×10−9, which was well below the crit-
ical value (α). We inferred that, consistently, the
means of the two distributions differ significantly.

Moreoever, the t-test statistic appeared to corre-
late with the model’s maximum F1-score, and is
generally greater in the acyclic datasets (cf. the
cyclic datasets) and in the all and noun subsets (cf.
verb and pure). To validate this observation, we
used linear regression to analyze the correlation be-

21I.e. the threshold used to classify the model’s (continuous)
output as 1 (low) or 2 (high).

22We used, for each (model, dataset) pair, the model in-
stance with median AUROC during cross-validation.

23Table 3 in the appendix details these distributions and lists
the maximum F1-score for each (model, dataset) pair.

Figure 2: Given the ordering classifications made by
the NMF model on the all test set, the distributions
of FAAP for correctly and incorrectly classified adjec-
tive pairs have (mean, variance) of (0.237, 0.008) and
(0.253, 0.008) respectively. Welch’s t-test yields a test
statistic of 28.97 and a p-value of 1.93×10−183, which
falls well below a critical p-value of 0.01 – hence, the
means of the two distributions differ significantly.

tween the t-test statistic of a model and the optimal
F1-score of the model, which yielded a coefficient
of determination (R2) of 0.61 (p=3.7×10−4). This
suggests that the difference between the means of
the correct and incorrect FAAP distributions is a
significant factor in explaining model performance.

6 Conclusion

This study showed that CF models, when trained
on adjective bigram data readibly obtained from
a corpus, perform well on the task of predicting
the ordering of (unseen) adjective pairs. We com-
pared the CF models with a baseline model, γ, that
is grounded in a ranking of adjectives intended to
parallel a (linear) hierarchy of adjective-classes.
Notably, our results show that the CF models (con-
sistently) perform markedly better than the base-
line model, suggesting that CF models leverage
adjective-ordering data that does not neatly align
with proposed hierarchies of adjective-classes.

More broadly, the present study was motivated
by the desire to see how far productive corpus-
based models can be taken when they: (i) are re-
stricted to adjective bigram statistics, (ii) do not re-
quire retention of the entire adjective-cooccurrence
matrix after training, (iii) are robust in the face
of sparse datasets, and (iv) must make predictions
about the ordering of previously unseen adjective
pairs. Moreoever, we made minimal assumptions
about a learner’s innate knowledge of language, the
kind of data they have access to, and the size of
their memory. To this extent, our procedure is a
baseline that other models should aim to surpass to
better justify any stronger assumptions they make.
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A Computing Infrastructure and
Runtime

The experiments described in this paper were car-
ried out on a linux server with the following spec-
ifications: Intel(R) Core(TM) i7-3930K CPU @
3.20GHz; 54 GB of RAM; 1 TB of HDD. We
used Python (v3.9.7) and the following libraries:
pandas (v1.2.3) and matplotlib (v3.4.3), and scipy
(v1.6.2); we used the implementation of Student’s
t-test and linear regression found in the python
library, scipy (v1.6.2). The data-processing and
experiment (i.e. model selection and training, eval-
uation and analysis-routines) took ≈30 hours of
total runtime.

B Applications

The procedure introduced in this study makes min-
imal assumptions about a learner’s innate knowl-
edge of language, the kind of data they have ac-
cess to, and the size of their memory. For this
reason, we believe that upon further analysis of the
procedure’s performance on smaller corpora that
reflect the primary linguistic data a child learner
would encounter (MacWhinney and Snow, 1985;
MacWhinney, 2000; Sanchez et al., 2019), our pro-
cedure may prove to be a suitable candidate for aug-
menting computational models of child language
acquisition – see (Yang, 2011) for a review of com-
putational models of language acquisition, and see
(Indurkhya, 2020, 2022) for examples of models
that this procedure could augment. Specifically,
the procedure may be used to augment models that
aim to explain how children acquire knowledge
of restrictions on constituent selection (Svenonius,
1994) when forming syntactic structures, and in par-
ticular, when forming the fine structure of the De-
terminer Phrase (DP) in which a sequence of adjec-
tives may be (hierarchically) embedded (Bernstein,
1993; Alexiadou, 2001; Baker and Croft, 2017).
E.g. the productive model learned by this pro-
cedure can be used to score (or rank) candidate
sequences of adjectival modifiers within a syntac-
tic structure produced via a generative procedure,
thereby serving as a filter on the production of ad-
jective bigrams that the learner did not see in the
primary linguistic data.
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