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Abstract

Lexical ambiguity is a pervasive feature of nat-
ural language, and a major difficulty in un-
derstanding language is selecting the intended
meaning when more than one are possible.
Despite this difficulty, many studies of sin-
gle word recognition have found a process-
ing advantage for ambiguous words compared
to unambiguous ones. This effect is not ho-
mogeneous however–studies find consistent
advantages for polysemes (words with mul-
tiple related meanings), and inconsistent re-
sults for homonyms (words with multiple un-
related meanings). Complicating this is the
fact that most measures of ambiguity are de-
rived from human- annotated or curated lexi-
cographic resources, and their use is not con-
sistent between studies. Our work investigates
whether contextualized word embeddings are
able to capture human-like distinctions between
senses and meanings, and whether they can
predict human behavior. We reanalyze data
from previous experiments reporting ambigu-
ity (dis)advantages using the lexical decision
times reported in the English Lexicon Project.
We find that our method does replicate the pol-
yseme advantage and homonym disadvantage
previously reported, and the predictors are supe-
rior to binary distinctions derived from lexico-
graphic resources. Our findings point towards
the benefits of using continuous-space repre-
sentations of senses and meanings over more
traditional measures. Additionally, we make
our code publicly available for use in future
research.

1 Introduction

Distributed representations of meaning (word em-
beddings) have brought great advancements to
many natural language processing tasks including
sentiment analysis, text summarization, and transla-
tion, to name just a few. Outside of computational
applications, these embeddings have also been used
successfully in psycholinguisitcs to predict seman-

tic priming data (Ettinger and Linzen, 2016), eye-
tracking data (Søgaard, 2016), and even neural acti-
vations (Honari-Jahromi et al., 2021). Despite their
success in a wide variety of fields and tasks, these
static representations’ performance is greatly lim-
ited because each orthographic wordform is limited
to only one vector representation.

This is problematic because ambiguity is quite
pervasive in natural language. Words that have the
same spelling can have multiple senses (polysemes)
and/or meanings (homonyms). For example, in
Wordsmyth online dictionary, slam has two entries
(meanings). Under the first entry there are multiple
senses–a noun meaning “sharp criticism”, a verb
meaning “shut something loudly”, an additional
noun meaning "the sound made by shutting some-
thing loudly", and others. Under the second there
are additional senses unrelated to the first entry’s
senses–a noun meaning “winning of all tricks in a
card game” and another noun meaning “a poetry
reading event.” Despite all these different usages,
slam has just a single unchanging spelling and pro-
nunciation.

To successfully use language, both humans and
language models must somehow be able to select
a single meaning from a set of multiple candidates
for ambiguous words. For models based on static
representations, this was not a straightforward task
because all of the possible senses and meanings
were collapsed into a single representation that was
used invariantly across any possible context. There
were no senses or meanings for the model to choose
among. This flaw impacts a model’s ability to un-
derstand the true meaning of words when they are
used in changing contexts.

One recent advancement to address this problem
is the use of contextualized word embeddings such
as ELMo and BERT. Instead of having a single rep-
resentation per wordform, these systems produce
embeddings that change dynamically based on the
surrounding context of a single word occurrence.



This way, slam used in the sentences When I’m
mad I slam the door and I attended the poetry slam
last night will have two distinct representations de-
spite sharing the same orthographic form. The use
of these contextualized embeddings have provided
even further progress in a wide variety of com-
putational applications because they successfully
address the ambiguity problem.

While contextualized embeddings and trans-
former architectures have begun to be adopted in
the analysis of human language processing (Jain
and Huth, 2018; Kumar et al., 2022; Heilbron et al.,
2021), this body of work has largely focused on
language processing in context, rather than at the
single-word level. In this work, we attempt to show
that contextual embeddings can also be useful for
analyzing human language processing even in the
absence of context by looking specifically at the
"ambiguity advantage". This is a widely studied
psycholinguistic phenomenon in which ambiguous
words are recognized faster than unambiguous ones
in lexical decision experiments1.

In previous work investigating the ambiguity ad-
vantage, senses and meanings have often been dis-
tinguished based on how they are listed in lexico-
graphic resources (Rodd et al., 2002). Meanings
generally correspond to dictionary entries, while
senses will correspond to the various distinguished
uses within those entries. (Following the previous
example, slam would have two meanings, and at
least five senses). Additionally, senses are gener-
ally assumed to be related and share some semantic
core between them, while meanings have no shared
semantics and are unrelated. For example, two
of slam’s senses both have something to do with
shutting something and making a noise–one is the
action and one is the resulting sound; clearly there
is a shared semantic core here. However, it is not
clear that there is a semantic core shared between
these senses and the senses of the other meaning,
such as winning tricks in a card game.

Even though lexicographic resources do distin-
guish senses and meanings, using them to study the
ambiguity advantage is challenging because they
typically lack explicit criteria or explanations to
why particular distinctions of relatedness are made.

1This finding has been observed in both single word recog-
nition tasks (Rodd et al., 2002; Borowsky and Masson, 1996;
Hino and Lupker, 1996) and sentence presentation contexts
(Frazier and Rayner, 1990; Klepousniotou, 2002). In this
work, we focus exclusively on advantages for single word
recognition.

For example, a door slam and a slam of the produc-
tion are considered related to each other according
to Wordmsyth online dictionary (even though the
latter doesn’t necessarily have any meaning related
to shutting something or a noise), but neither are
related to a poetry slam.

Understandably, extensive discussions of the na-
ture of semantic relatedness is typically outside
the scope of most lexicographic resources, but this
means they are not very well-suited to psycholin-
guistic research where such distinctions are of great
importance. For this purpose, a more useful mea-
sure of a word’s senses and meanings would be
derived from the way speakers use the words at
present as opposed to lexicographer categorizations
and would have clear criteria for what makes some-
thing a sense versus a separate meaning.

In this study, we used BERT to derive a new
measure of a word’s numbers of senses and mean-
ings 2, and we apply this measure to previously
gathered lexical decision data. We compare our
results to those from a previous study which quan-
tified ambiguity using lexicographic resources and
find that ours perform at least as well. This points
to the benefits of further adopting contextualized
embeddings for use in psycholinguistic research.

2 Related Work

Comparing the way that ambiguous and unambigu-
ous words are processed can give information about
the organization of the mental lexicon and ways in
which different kinds of words may be retrieved
and recognized. This is primarily tested in lexical
decision experiments, where a mix of target stimuli
and non-words are presented one at a time, and
participants respond as quickly as possible with
whether or not they recognize the presented string.
Their reaction times on the target stimuli are then
analyzed to determine what variables make word
recognition easier (faster response times) or harder
(slower responses times). These experiments gen-
erally reveal that there is, in fact, a difference in the
way words with multiple senses and/or meanings
are processed as compared to unambiguous words.

Most studies find that multiple senses facilitate
recognition, as evidenced by a faster reaction time
for words with multiple senses in a lexical decision
paradigm (Borowsky and Masson, 1996; Hino and
Lupker, 1996) compared to unambiguous words.

2The tools developed for this study are available at https:
//github.com/kyrawilson/word-senses-from-CWE.

https://github.com/kyrawilson/word-senses-from-CWE
https://github.com/kyrawilson/word-senses-from-CWE


This lends support to a model of word recognition
where words with multiple senses have multiple
semantic representations, leading to easier recog-
nition as a result of increased semantic activation
compared to words with fewer senses.

However, the same result is not as consistent
for words with multiple meanings. Some studies
find increased reaction time compared to unam-
biguous words (Rodd et al., 2002; Beretta et al.,
2005) (suggesting that having multiple unrelated
meanings may make recognition more difficult be-
cause of competing activations), while others find
an equivalent advantage for both multiple senses
and multiple meanings (Hino et al., 2010; Pexman
et al., 2004). Because the results are mixed, it is
unclear whether words with multiple meanings are
stored and accessed in a way similar to those with
multiple senses, or whether they are different in
some critical way.

It has been proposed that the contradictory re-
sults for words with multiple meanings are a con-
sequence of differing methodologies in selecting
ambiguous stimuli (Haro and Ferré, 2018). Namely,
experimenters use a variety of sources for select-
ing ambiguous words because there is no gold
standard resource for differentiating between re-
lated senses and related meanings; thus differences
arise not only in what sources are used, but also in
what the individual sources classify as ambiguous
words since they are curated by different groups
using varied techniques. This paper shows that
that with advances in distributed representations
of meanings, previous measures that relied on lexi-
cographic sources can be exchanged for measures
derived from contextual representations (specifi-
cally contextualized meaning vectors from BERT,
a transformer-based language model) without refer-
ence to any outside resources, and these measures
will perform at least as well as traditional ones.

There have been previous attempts to identify
information about word senses from BERT embed-
dings. Reif et al. (2019) sampled sentences from
Wikipedia and found that similar contextual usages
of words tended to cluster together in meaning vec-
tor space and that the spatial location of a word
could be changed by altering the context sentence.
This suggests that BERT is able to represent mean-
ingful semantic information within a subset of its
vector dimensions 3. Following Reif et al. (2019),

3A similar result was observed by Thompson and Mimno
(2020) in the topic modeling domain.

there have been multiple attempts to use BERT for
word sense disambiguation, including some which
also use lexicographic resources to interpret the
disambiguated senses (Wiedemann et al., 2019; Du
et al., 2019; Vial et al., 2019).

In addition, there has also been research inves-
tigating how BERT represents words with differ-
ent numbers of senses and meanings. Garí Soler
and Apidianaki (2021) investigated both whether
BERT could distinguish words with a single ver-
sus multiple senses and whether the senses cluster
in interpretable ways. First, they found that us-
ages of words with a single sense (according to
WordNet) had a higher similarity than words with
multiple senses. Furthermore, they used a k-means
algorithm to cluster senses of ambiguous words,
and they found that the quality of this clustering
was high and correlated with annotator judgements
about sense similarities. Although this study did
demonstrate the potential of using clustering to an-
alyze BERT embeddings, the use of the k-means
algorithm is suboptimal because the number of
clusters must be known a priori, and thus does not
extend well to applications in which human anno-
tations are unavailable or contradictory.

There has also been work investigating how
BERT’s representations of polysemy may corre-
spond to humans’. Nair et al. (2020) collected
human judgements of meaning relatedness for
homonyms and polysemes and compared them to
distances in BERT embedding space. They found
that homonym meanings were more reliably dis-
tant than related senses. This suggests that the way
BERT represents information is somewhat consis-
tent with human intuitions. However, the experi-
mental task in this study was metalinguistic: people
were asked about how they use language, which
may or may not be consistent with actual language
use.

An additional test of how well BERT corre-
sponds with human language would be to use it
to predict actual human behavior rather than intu-
itions. Therefore in our study, we explore BERT’s
similarities to human language knowledge, ana-
lyzing behavioral reaction time data to potentially
ambiguous and polysemous words and correlating
human reaction times to the numbers of senses and
meanings derived from BERT embeddings.



3 Methods

3.1 Data
For the 182 words (124 ambiguous and 58 unam-
biguous) used in the first experiment of Rodd et al.
(2002), we retrieved their mean reaction time in a
visual lexical decision experiment from the English
Lexicon Project (ELP) (Balota et al., 2007). These
reaction times were used as the response variable
in a linear regression model.

The words used in this experiment were selected
by Rodd et al. (2002) to amplify the differences
between ambiguous and unambiguous words. Of
the 124 ambiguous words, 113 were taken from
the Twilley et al. (1994) homograph norms, and
the remaining 11 were judged to have similar prop-
erties. Most of these words were judged to have
two or three meanings according to the original
annotations, where meanings and senses were con-
flated, and half of them had two distinct entries in
the Wordsmyth dictionary (corresponding to two
meanings). The other half only had a single entry;
the other “meaning” was annotated by Wordsmyth
as a sense instead. This difference in the two groups
allowed for a comparison of meaning relatedness.
The words with two Wordsmyth entries were con-
sidered ambiguous (homonyms) while the remain-
ing 58 words in the stimuli set were identified as
being unambiguous (polysemes, since they were
judged to have multiple senses) and had only one
meaning.

We also included a number of control variables
in our analysis in line with Rodd et al. (2002), in-
cluding log word frequency, length, orthographic
neighborhood, and concreteness. These were also
collected from ELP.

3.2 Number of Senses
Our method for deriving the number of senses for
a word assumes that same senses will be used in
similar contexts, and therefore the contextual em-
beddings for a word in a particular sense will also
be similar to each other. Furthermore, other senses
will have dissimilar enough contexts that we can
derive a measure of the number of senses by ap-
plying a clustering algorithm (HDBSCAN) to the
BERT embeddings, where the identified clusters
will correspond to individual senses of a word.

HDBSCAN (Campello et al., 2013) is a hierar-
chical clustering algorithm which uses the stability
and persistence of clusters in order to select an opti-
mal clustering from the hierarchy. It works by first

identifying areas of high and low density points and
deriving a distance (mutual reachability) metric that
amplifies the distance to sparse points. Next, a min-
imum spanning tree is constructed using the mutual
reachability distance and then converted into a hi-
erarchy by sorting the edges in increasing order
and creating a new cluster for each edge. Finally,
a single clustering is selected from the hierarchy
by selecting the clusters with the greatest stability,
meaning that for a large range of distance values
the cluster remains as a whole and does not split
into two smaller clusters.

The use of HDBSCAN is particularly suited to
the clustering of word senses for two reasons 4.
First, the algorithm allows extreme outlier points to
be categorized as noise rather than coercing them
into a cluster. This is good for our application
because of the flexibility of language. Even though
words have a generally standard and accepted set of
meanings, there is nothing to prevent novel usages
of a word in a new context. For our purposes, we
would like to avoid including very low-frequency
senses or meanings which are unlikely to be known
by a majority of speakers.

Additionally, the only hyperparameter of the al-
gorithm is the minimum number of points a cluster
must contain, in contrast to other clustering algo-
rithms in which the number of clusters must be
specified a priori. We are interested in deriving
the number of different senses from an unlabelled
corpus rather than simply identifying the sense clus-
ters which correspond to entries in lexicographic
resources. Another side effect of this is that we
are able to specify how many usages a particular
sense must have in order to be considered well-
known and avoid contaminating our clusters with
too many “noise usages”. We specified that our
clusters should contain, at minimum, at least one
percent of the points in the total number of embed-
dings for a given word.

Following Reif et al. (2019), we first sampled
1,000 occurrences of each word in Rodd et al.
(2002)’s stimuli set from English Wikipedia5, and
used the publicly available pre-trained BERTBASE
model (Devlin et al., 2019) in combination with
the Hugging Face (Wolf et al., 2020) and Flair li-

4A related algorithm, DBSCAN (Ester et al., 1996), has
also been shown to have success in clustering word embed-
dings (Mohammed et al., 2020). We chose to use HDBSCAN
due to its increased flexibility over DBSCAN.

5For one word (poach), there were only 578 occurrences
in Wikipedia. We used all of the occurrences in this case.



Figure 1: Spearman’s rank correlation between all pre-
dictors.

braries (Akbik et al., 2019) to encode the word in
their context sentences6. The word token of inter-
est was then extracted from each context sentence
and its layers were averaged, resulting in a single
768-dimension embedding for each sentence 7.

Finally, the embedding dimensions were reduced
from 768 to two using t-SNE (Van der Maaten and
Hinton, 2008). HDBSCAN is not guaranteed to per-
form well for high-dimensional data, so we chose
to have it operate over embeddings that were also
used for visualization in order to aid with inter-
pretability of the clustering results. For each word,
the minimum cluster size was one percent of the
total number of embeddings for that word.

3.3 Ambiguity
Since there can be multiple senses of a word within
a single meaning, we were interested in identify-
ing any superstructure amongst the clusters which
might correspond to different meanings. Broadly,
to identify meanings, we are now aiming to clus-
ter the senses of words themselves rather than the
individual usages as an attempt to join senses that
are most similar to each other. We do this by only
clustering a subset of the points used in the the
number of senses calculation as well as increasing
the minimum cluster size hyperparameter in the
HDBSCAN algorithm. This way, we are able to
use the same algorithmic approach to derive unique

6We only selected from sentences in which the target word
appeared a single time.

7Multiple studies have shown that semantic representa-
tions differ depending on the BERT layer (Garí Soler and
Apidianaki, 2021; Jawahar et al., 2019). While we averaged
all layers together, it is possible that selecting a single layer
would yield higher performance. We leave this investigation
for future work.

measures for number of senses and ambiguity.
To begin, we select a subset of points to use for

identifying meaning clusters. This is done in order
to make the data sufficiently different to avoid recre-
ating identical senses clusters as well as eliminating
possible noise usages from the meaning clustering.
The subset of points we used were those identified
as "exemplars" by HDBSCAN within each of the
identified sense clusters. In this implementation,
exemplar points are those which persist in their
cluster for the largest range of distance values and
which are generally centrally located in their re-
spective clusters. In other words, the exemplars
are the points which are identified as being the
strongest members of the cluster and least likely to
be noise.

After identifying the set of exemplar points for
each cluster, we used HDBSCAN clustering again
in order to identify any potential higher order clus-
ters. In contrast to the number of senses clustering,
in this iteration we allowed the clustering algorithm
to assign all the exemplar points to a single cluster,
under the assumption that some subset of the stim-
uli are unambiguous and should thus have only one
meaning.

Another difference between the ambiguity clus-
tering and the number of senses clustering is the
minimum cluster size. It has been observed that
there is interpretable structure even within sense
clusters (Reif et al., 2019). For example, for the
word die, Reif and colleagues found that within a
single sense cluster there was a separation relating
to the number of people who died. We wanted to
avoid the formation of even more granular sense
clusters, so in this iteration we set the minimum
cluster size to be the size of the smallest set of
exemplar points from a single sense cluster. Fi-
nally, if the clustering procedure still resulted in a
larger value for ambiguity (number of meanings)
than the number of senses, we assigned the number
of meanings to be equal to the number of senses
post-hoc.

4 Results

4.1 Qualitative Analysis

An example of the clustering of senses and mean-
ings can be seen in Figure 2 for the word tent,
which has three senses and one meaning according
to our proposed method. The three different shapes
indicate that there were three senses identified–one
that has to do with tent as a physical object used



Figure 2: Example of sense and meaning clustering for tent, including example usages in sentences from Wikipedia.
Different senses are indicated by different shapes, exemplar points used to cluster meanings are larger, and colored
points indicate meaning groups.

for shelter, one that is a part of the phrase big tent
party, and a third where tent is part of a title or used
as a proper noun. The senses are accurately sepa-
rated into groups that have internal cohesion, but
separated from other groups with slightly different
semantics.

The single group of red points indicate that tent
has only one meaning combining the "physical ob-
ject" and "political party" uses. Although these
senses are not interchangeable, they are clearly re-
lated. Just as people might congregate under tents
at a concert, they also metaphorically congregate in
a big tent party. The third sense, however, is both
unrelated to this meaning and also not cohesive
enough to form its own separate meaning. The clus-
ter contains titles and other proper nouns usages, so
tent is both unlikely to have a single shared context
corresponding to a new meaning in this cluster or a
context close enough to the other two senses that it
should be included in the first meaning. Therefore,
it is correctly identified as "noisy" usages of tent
and not analyzed as an additional meaning.

4.2 Number of Senses

To begin, we compared the BERT-derived number
of senses to the number of senses as indicated in
WordNet8. There was a weak positive correlation
between the BERT-derived number of senses and

8The Rodd et al. (2002) study did not indicate how the
number of senses was calculated, so we used WordNet as an
approximation of their metric.

the number of senses reported by WordNet (ρ =
0.26), as shown in Figure 1. We entered both pre-
dictors into a linear regression model with response
time in a lexical decision task as reported in the
ELP as the dependent variable. The full model
results are shown in Figure 3.

Only the number of senses as derived from
BERT was a significant predictor of reaction time,
and the effect replicated what has been reported
in previous studies. Words with more senses were
generally recognized faster than those with fewer
senses. This effect can be seen in Figure 4. Next we
performed an ANOVA to assess whether additional
variance is explained by our predictor. As expected,
the ANOVA indicated that including the number of
senses derived from the contextual embeddings did
improve the model fit (F = 3.78, p = 0.05).

4.3 Ambiguity
We compared the binary ambiguity variable used
by Rodd et al. (2002) with our continuous variable
derived from contextualized embeddings. There
was low correlation between the binary ambiguity
variable and our BERT-derived variable (ρ = 0.11).
In the model with none of our predictors, we did
not replicate the ambiguity effect reported by Rodd
et al. (2002). In fact, we found the opposite; Rodd
et al. (2002) reported an inhibitory effect where
ambiguous words were recognized more slowly
than unambiguous words, but our analysis showed
that ambiguity made reaction time faster (just as



Figure 3: Estimates of linear regression coefficients predicting reaction time. The significant predictors are the
number of senses and meanings derived from contextual embeddings, the binary ambiguity variable from Rodd et al.
(2002), log word frequency, and length.

Figure 4: Regression line showing inverse relationship
between number of senses and reaction time.

multiple senses facilitate recognition).
However, when we included our predictors, we

found that the ambiguity variable as derived from
BERT did produce an inhibitory effect as originally
reported, as shown in Figure 5. Compring models
with and without the ambiguity in ANOVA showed
that our predictors also significantly improved the
fit of the model (F = 6.61, p = 0.01).

5 Discussion

There are multiple important results from this in-
vestigation. First, we found that the contextual

Figure 5: Regression line showing direct relationship
between ambiguity and reaction time.

embeddings not only correspond to human judge-
ments as previously reported (Nair et al., 2020),
but also to human behavior. Our number of senses
measure replicated the well-reported finding that
having multiple senses is facilitatory in word recog-
nition (more senses lead to faster identification). In
fact, for this particular set of stimuli, our measure
outperformed the more traditional measure derived
from WordNet in predicting reaction times in a
lexical decision task.

The results for ambiguity (number of meanings)
are slightly more complex. First, our analysis did



not replicate the original results when using the
binary ambiguous/unambiguous variable as com-
puted by Rodd et al. (2002). We instead found an
additional facilitatory effect for this variable where
multiple meanings correspond to faster recognition
as compared to single meanings. However, our
number of meanings variable, derived from clus-
tering senses using sense exemplars, did result in
words with more meanings having slower reaction
times as previously reported, above and beyond the
effects of the binary variable. For theories of word
recognition, it is not immediately apparent why
these two variables should have opposite effects,
but as our measure has consistent criteria and clear
definitions for deriving predictor values, further
experiments should be able to investigate this in
depth using a wider variety of stimuli.

Finally, another interesting outcome worth fur-
ther investigation is that our results were obtained
using only two-dimensional embeddings derived
from BERT. Previous experiments investigating the
representations of polysemy and ambiguity within
BERT have done so using all 768 dimensions of
the embeddings (Reif et al., 2019; Garí Soler and
Apidianaki, 2021), while our experiment suggests
similar information can be represented using far
fewer dimensions. Determining the optimal num-
ber of dimensions for representing polysemy and
ambiguity using BERT remains an open question
worth further study.

The replication of the previous ambiguity advan-
tage results show how contextual embeddings such
as BERT can be useful in the analysis of experimen-
tal data. For the number of senses advantage, we
showed a stronger effect than more traditional pre-
dictors relying on lexicographers. For the number
of meanings, we also replicated previous findings
and found that our predictor performed just as well
as traditional ones. However, because our predictor
was derived from unlabelled corpora without resort-
ing to any human annotation (which may introduce
bias) we find it methodologically superior to predic-
tors derived from lexicographic resources such as
dictionaries and WordNet. We think that continuing
to use contextual embeddings to derive predictors
will facilitate transparency and replicability across
many different areas of linguistic research as well
as allowing for more flexibility in what words and
languages are able to be studied.

Finally, another potential benefit of this method-
ology is the possibilities of extending it to lan-

guages other than English. Generating high-quality
lexicographic resources is very time- and labor-
intensive, so current research into the ambiguity
advantage is limited to those languages which al-
ready have such resources. Our methodology, on
the other hand, could theoretically be extended to
any language which has a pre-trained model able
to produce contextual embeddings (or for a slightly
higher cost, any language for which a new con-
textual embedding model could be trained and de-
ployed), and further research should be done to
verify that the properties of BERT embeddings ob-
served in this experiment would also be present in
models trained on other languages.

6 Conclusion

This study further supports work which indicates
that contextualized embeddings contain informa-
tion which is able to predict human language pro-
cessing. We extended the approaches of earlier
work by not only deriving a measure of how many
senses a word has, but also finding how many
distinct meanings a word has by clustering those
senses. We used these numbers to replicate the
finding that multiple senses facilitate recognition
in a lexical decision experiment and add support
to the finding that multiple meanings inhibit word
recognition. This is an important result because it
suggests this method can be used as a replacement
for traditional ways of deriving measures of ambi-
guity and polysemy, allowing for standardization
of variable predictors across experiments in order
to facilitate comparison and minimize conflicting
results.
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A Polysemy and Homonymy Values

Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

admit Amb. 8 1 2
advance Amb. 20 8 15
affair Amb. 3 1 14
alone Unamb. 6 2 5
amuse Unamb. 2 1 3
apple Unamb. 2 3 3
arms Amb. 10 8 11
article Amb. 5 5 6
baby Unamb. 8 2 3
badger Amb. 4 3 3
bark Amb. 9 3 3
batter Amb. 5 4 4
Bible Unamb. 2 1 3
blind Amb. 10 2 14
bonnet Amb. 3 2 3
bowl Amb. 12 4 6
boxer Amb. 4 1 4
brain Unamb. 7 5 5
bridge Amb. 12 1 8
broke Amb. 60 1 17
brutal Unamb. 4 1 2
bulb Amb. 6 5 5
bus Unamb. 7 7 8
cabinet Amb. 4 1 3
calf Amb. 4 4 4
can Amb. 8 1 2
cane Amb. 4 6 6
case Amb. 22 1 3
cattle Unamb. 1 3 3
chance Amb. 9 5 5
charm Amb. 8 4 4
chest Amb. 4 3 3
China Amb. 4 1 2
cider Unamb. 1 3 3
cigar Unamb. 1 3 3
citizen Unamb. 1 5 5
clay Unamb. 5 3 6
clog Amb. 9 4 4
coal Unamb. 5 3 3
company Amb. 10 3 4
craft Amb. 6 6 10
cricket Amb. 3 1 8
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Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

custard Unamb. 1 3 3
deed Amb. 2 3 5
degree Amb. 7 7 9
dense Amb. 4 1 4
destroy Unamb. 4 1 2
diamond Unamb. 6 6 10
digit Amb. 3 6 6
dollar Unamb. 4 1 3
dozen Unamb. 2 1 2
dry Amb. 19 1 7
express Amb. 13 6 6
fee Unamb. 3 2 3
feet Amb. 11 5 5
fence Amb. 7 1 2
firm Amb. 14 3 3
fling Amb. 7 1 2
forest Unamb. 3 5 5
fraud Unamb. 3 1 2
free Amb. 22 1 7
frog Unamb. 4 4 4
fun Unamb. 4 3 4
glare Amb. 6 3 3
glass Amb. 12 4 4
glove Unamb. 3 5 8
goat Unamb. 4 4 4
grain Amb. 15 2 3
grief Unamb. 2 1 2
grow Unamb. 10 1 2
hamper Amb. 4 1 3
hill Unamb. 6 2 7
horn Amb. 12 6 8
hotel Unamb. 1 4 5
interest Amb. 10 2 2
item Unamb. 6 1 2
jumper Amb. 8 6 15
kid Amb. 7 3 3
kind Amb. 4 7 13
kingdom Unamb. 6 1 2
lake Unamb. 3 5 8
last Amb. 21 1 12
late Amb. 11 1 2
lean Amb. 10 3 9
left Amb. 24 1 3
letter Amb. 8 1 13

Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

lie Amb. 10 6 14
like Amb. 11 1 3
limp Amb. 5 2 5
lobby Amb. 4 4 5
lung Unamb. 1 8 11
marble Amb. 4 3 3
march Amb. 14 6 10
maroon Amb. 6 4 4
metal Unamb. 4 4 4
might Amb. 1 1 3
misery Unamb. 2 4 5
nail Amb. 10 6 11
net Amb. 12 1 14
novel Amb. 4 1 9
ocean Unamb. 2 4 4
odd Amb. 6 8 8
organ Amb. 6 4 4
palm Amb. 5 6 6
panel Amb. 10 5 6
park Amb. 8 5 9
patient Amb. 3 3 4
peer Amb. 3 11 19
picket Amb. 8 5 5
pine Amb. 3 4 4
pitcher Amb. 5 6 13
poach Amb. 2 16 24
poet Unamb. 1 1 6
poker Amb. 2 3 4
pole Amb. 13 5 11
prayer Unamb. 5 1 2
pride Amb. 6 5 7
pupil Amb. 3 3 4
rabbit Unamb. 4 3 3
ram Amb. 9 4 8
rare Amb. 6 1 17
rate Amb. 7 6 13
reflect Amb. 7 2 3
refrain Amb. 3 3 3
river Unamb. 1 3 6
ruler Amb. 2 1 2
sack Amb. 13 6 7
safe Amb. 7 1 7
sage Amb. 5 6 16
sane Unamb. 2 7 11



Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

scrap Amb. 7 3 3
screen Amb. 16 2 15
seal Amb. 15 4 8
season Amb. 6 5 5
second Amb. 15 1 19
seek Unamb. 6 1 8
sense Amb. 9 4 5
sentence Amb. 4 1 2
shed Amb. 6 3 4
sign Amb. 20 6 6
spade Amb. 4 7 8
speaker Amb. 3 5 5
spell Amb. 10 5 5
stable Amb. 7 2 3
staff Amb. 8 2 2
stag Amb. 5 4 4
stalk Amb. 8 3 3
stamp Amb. 18 2 4
staple Amb. 7 3 3
static Amb. 5 1 3
stern Amb. 7 5 5
store Amb. 6 1 2
strand Amb. 9 5 5
straw Amb. 7 7 7
swallow Amb. 11 5 5
swear Amb. 5 1 2
task Unamb. 4 4 4
temple Amb. 4 2 4
tend Amb. 3 1 2
tense Amb. 8 2 3
tent Unamb. 3 1 3
term Amb. 8 2 3
terror Unamb. 4 5 6
thief Unamb. 1 3 3
throat Unamb. 4 1 2
throw Unamb. 20 6 7
tiger Unamb. 2 5 6
toast Amb. 6 2 4
travel Unamb. 9 3 3
trial Amb. 6 4 4
trust Amb. 12 6 8
uniform Amb. 6 1 2
unite Unamb. 6 6 8
urban Unamb. 2 4 5

Word Ambi-
guity
(Rodd)

Senses
(Word-
Net)

Mean-
ings
(BERT)

Senses
(BERT)

vent Amb. 7 8 12
vote Unamb. 10 1 16
warn Unamb. 4 1 2
watch Amb. 13 8 16
weapon Unamb. 2 1 2
winter Unamb. 2 1 4
yard Amb. 9 7 13
lorry Unamb. 2 3 3


