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Abstract

Over the last years, software development in
domains with high security demands transi-
tioned from traditional methodologies to unit-
ing modern approaches from software devel-
opment and operations (DevOps). Key princi-
ples of DevOps gained more importance and
are now applied to security aspects of software
development, resulting in the automation of
security-enhancing activities. In particular, it is
common practice to use automated security test-
ing tools that generate reports after inspecting
a software artifact from multiple perspectives.
However, this raises the challenge of generating
duplicate security findings. To identify these
duplicate findings manually, a security expert
has to invest resources like time, effort, and
knowledge. A partial automation of this pro-
cess could reduce the analysis effort, encourage
DevOps principles, and diminish the chance of
human error. In this study, we investigated the
potential of applying Natural Language Pro-
cessing for clustering semantically similar se-
curity findings to support the identification of
problem-specific duplicate findings. Towards
this goal, we developed a web application for
annotating and assessing security testing tool
reports and published a human-annotated cor-
pus of clustered security findings. In addition,
we performed a comparison of different se-
mantic similarity techniques for automatically
grouping security findings. Finally, we assess
the resulting clusters using both quantitative
and qualitative evaluation methods.

1 Introduction

The automation of security tests is a common prac-
tice for software engineering projects that apply
software development and operations (DevOps)
practices. Different security tools employ differ-
ent perspectives to scan a software artifact as part

* The first three authors have contributed equally.

of Continuous Integration or Continuous Deploy-
ment (CI/CD) pipelines, producing semi-structured
reports of security findings. While this approach
fosters DevOps principles, reduces manual effort,
and shifts security efforts to the earlier stages of
development, it also comes at a cost.

Since security testing tools often have an overlap-
ping scanning coverage, duplicates or nearly iden-
tical findings are unavoidable. Further, considering
that each iteration brings new security findings,
identifying duplicate security findings is essential
to achieve a reliable overview. In this context, it
is important to note that we define duplicates as
findings that point out the exact same security prob-
lem, potentially occurring at multiple locations in
the software. Exemplary for that would be an SQL
injection vulnerability at multiple locations of a
web interface. Amongst multiple other activities,
the identification of duplicates is traditionally ad-
dressed by a team member with security domain
knowledge, a so-called security professional, be-
fore looping back the security findings to develop-
ment to improve the software security-wise (Simp-
son, 2014). Taking the frequency of new reports
and the number of findings throughout all secu-
rity tests into account, an entirely manual analysis
is unfeasible, prone to human error, and violates
fundamental DevOps principles.

Natural Language Processing (NLP) has been
shown to be effective in analyzing and clustering
textual data from various application domains, such
as medicine, linguistics, and software engineering
(Demner-Fushman and Lin, 2006; Majewska et al.,
2018; Aggarwal et al., 2017). Although security
tool reports contain highly domain-specific text,
it seems promising to investigate NLP techniques
for automatically grouping findings into problem-
oriented clusters, which can assist security profes-
sionals in their analyses. To our best knowledge, no
studies specifically focus on the machine-generated
finding texts produced by security scanning tools.



Addressing this research gap, we evaluated the
performance of three common semantic similar-
ity techniques. The selected techniques originate
from knowledge-based, corpus-based, and neural
network-based methods. Our main contributions
are twofold:

1. We publish a human-annotated corpus of clus-
tered security findings along with the annota-
tion tool used by the security professionals.

2. We perform an in-depth analysis of three pop-
ular semantic similarity techniques for cluster-
ing security findings, followed by a quantita-
tive and qualitative evaluation of the results.

The remainder of this paper is structured as fol-
lows. Section 2 presents background information
on security scanning tools and gives an overview
of related work on applying NLP techniques in the
software engineering domain. Section 3 describes
the employed two-stage research approach for the
dataset construction and experimental evaluation.
We report the clustering results, discuss our obser-
vations, and outline the limitations in Section 4,
Section 5, and Section 6, respectively. Section 7
concludes the paper with a summary and an outlook
toward future work.

2 Background and Related Work

This section provides background information on
security testing tools and security finding reports in
DevOps. Furthermore, we mention related studies
concerning the application of NLP techniques in
the software engineering domain.

To tackle the challenge of duplicates in security
reports, we first establish the definition of what
duplicate security findings are. We consider two
findings to be duplicates if they describe the ex-
act same problem at any location of the software.
Consequently, the same issue, e.g., an SQL injec-
tion, could occur at multiple places but would be
considered a duplicate. Besides the problem-based
approach, other strategies for describing duplicates
can also incorporate the location of a finding or its
underlying solution. The selection of a strategy in
this area highly depends on the subsequent actions
on the dataset.

Furthermore, it is necessary to explain the ac-
tivities that generate security reports that contain
duplicate findings. Security testing can be cate-
gorized according to multiple properties depend-
ing on the testing strategy, involved testers, tested

components, and numerous others. We limit our
categorization to those security tests that can be
automated in pipelines and scan an actual part of
the product. Further, we categorize them into two
major categories: tests that examine the static el-
ements of the software (e.g., code, configuration,
or dependencies) are called static application secu-
rity testing (SAST) and tests performed against the
dynamic, actually running application are called
dynamic application security testing (DAST). This
separation represents a clear distinction, as static
testing can only guess whether a finding is actually
affecting the software, while dynamic techniques
directly identify the exploitable security finding.

From our analysis of the literature on security
findings management, we found that there are no
NLP-related publications that focus on the identi-
fication of duplicate security findings. However, a
number of NLP methods have been successfully
applied to related subdomains in the software engi-
neering field. For example, Kuhn et al. (2007) use
latent semantic indexing (LS/) and clustering to an-
alyze linguistic information found in source code,
such as identifier names or comments, to reveal top-
ics and support program comprehension. In a study
from Schneider (2020), a corpus of app reviews
with comments about a variety of software issues
is clustered into topics with problem-specific issue
categories. Another study from Eyal Salman et al.
(2018) focuses on automatically forming semantic
clusters of functional requirements based on cosine
similarity with a corpus of documents containing
software requirements specifications. The authors
conduct an empirical evaluation of agglomerative
hierarchical clustering using four open-access soft-
ware projects. In order to assess the software qual-
ity of programs, Tan et al. (2011) apply a hierar-
chical cluster algorithm to create problem-oriented
clusters, reducing the effort needed to review the
code. The study shows that semantic clusters are
an effective technique for defect prediction.

3 Method

In order to achieve our objective of investigating
semantic similarity techniques for clustering find-
ings from security testing reports, we constructed
a human-annotated dataset. This annotated cor-
pus consists of 1351 SAST and 36 DAST findings.
The two-stage process with dataset construction as
well as experimental evaluation is explained in the
following subsections.



3.1 Dataset Construction

To quantify the performance of different semantic
similarity techniques, a ground-truth benchmark
dataset is required, enabling the comparison be-
tween human-labeled clusters and the predictions
of the semantic similarity algorithms. Therefore,
we asked two security professionals from the indus-
try to annotate semantically duplicate findings in
a given list of security reports. Due to the signifi-
cant differences in perspective between SAST and
DAST reports, we decided to construct two sep-
arate datasets, each of which comprising reports
from only one testing type.

A major challenge in constructing such a dataset
is the content of the security tool reports. Secu-
rity tool reports are often exported as JSON files
containing security finding objects. Across differ-
ent tools, these reports utilize different schemas,
resulting in different property names referring to
the same finding feature (e.g., description, FullDe-
scription, text, Message, or details). For the con-
struction, the security professionals consolidate se-
mantically duplicate findings from all tool reports
of a testing iteration based on certain features, e.g.,
description, location, or unique identifier. There-
fore, they need to find the feature in the respective
tool schema and compare it to the other findings.
Manually annotating such a dataset would require
them to memorize N x M property names when
identifying N features across M distinct security
testing reports. To enhance efficiency and reduce
manual, repetitive work, we developed the Security
Findings Labeler (SeFiLa).! This tool allows secu-
rity professionals to upload reports from different
security tools and conveniently group all findings
into named clusters.

The initial, unconsolidated reports of the dataset
were generated by scanning the open-source, vul-
nerable web application JuiceShop? with seven
SAST tools and two DAST tools. For reproducibil-
ity reasons, we solely selected tools free of charge
that can be reasonably automated in real-world soft-
ware development pipelines. We selected Anchore,
Dependency Check, Trivy, HorusSec, Semgrep,
CodeQL, and Gitleaks as SAST tools. For DAST,
we selected Arachni and OWASP ZAP. Fundamen-
tal information about each tool can be found in
Table 5 in the appendix. From each tool, one test-
ing report was taken for the dataset. The security

"https://github.com/abdullahgulraiz/SeFiLa
Zhttps://owasp.org/www-project-juice-shop/

professionals assigned findings to named clusters
representing the same security problem. This pro-
cess was aided by features like the CVE-ID (com-
mon vulnerabilities and exposures) which provides
an identifier and a reference-method for publicly
known security vulnerabilities. Other helpful fea-
tures are descriptions and solutions generated by
the testing tools. After all findings were assigned
to clusters, the dataset comprising our baseline for
duplicate identification was completed. The dataset
and the code to run the test cases were published
in a public GitHub repository.?

3.2 Evaluation Procedure

For conducting the evaluation, we investigated se-
mantic similarity methods proposed in the literature
and chose three popular techniques that are often
used as baseline models: knowledge graph-based
similarity with WordNet (Miller, 1995), LSI (Lan-
dauer and Dumais, 1997), and SBERT (Reimers
and Gurevych, 2019). To evaluate the semantic
similarity techniques, we extracted all findings
from the security testing tool reports and concate-
nated selected features from them to form problem-
specific finding strings. We applied the three cho-
sen semantic similarity techniques to the finding
strings to determine those that are semantically sim-
ilar. Since semantic similarity between two finding
strings is calculated as a score between 0 and 1
where 1 indicates highest similarity, we established
a similarity threshold for each experiment. This
threshold defines the value above which two find-
ing strings are deemed to be semantically similar.
Findings corresponding to these similar finding
strings are then grouped to form predicted clusters.
Implementation-wise, predicted and ground-truth
clusters both consist of unique integer sequences,
each integer representing a finding from the dataset.

Before the clusters were compared with each
other in the quantitative evaluation, we encountered
the need for transitive clustering of findings. In cer-
tain cases, the problem description of two findings
was identical, but it was repeated in one finding for
multiple instances, leading to a discrepancy in text
length. Since the similarity depends on the simi-
larity of the finding strings, we encounter the fol-
lowing example predictions with Similar Findings
listed in descending order of semantic similarity
scores with the corresponding Finding identifier:

3https://github.com/abdullahgulraiz/SeFiDeF



{Finding : 1, Similar Findings : {1,2,4}}

{Finding : 2, Similar Findings : {2,1,3,5}}

Let us assume that findings {1, 2, 3} contain the
same problem description, although it appears once
in Finding 1, two times in Finding 2, and three
times in Finding 3. While Finding 1 is found
similar to findings {1,2,4}, its similarity score
with respect to Finding 3 is below the clustering
threshold due to the different text length. However,
Finding 2 does have Finding 3 in its set of simi-
lar findings. If Finding 3 is similar to Finding 2,
it should also be similar to Finding 1, regard-
less of repetitive text. Therefore, even though
Finding 3 exists only in the set of similar find-
ings for Finding 2, it should appear in the final set
of similar findings of F'inding 1 as well. In our
initial clustering experiments and discussions with
the security professional, we observed that while
lowering the similarity threshold led to many false
positive predictions, transitive clustering improved
the results without changing the similarity thresh-
old. Therefore, we apply the transitive property to
consider findings as semantically related through
intermediate findings. This causes the above pre-
dictions to become:

{Finding : 1, Similar Findings : {1,2,3,4,5}}

{Finding : 2, Similar Findings : {1,2,3,4,5}}

After transitive clustering, we removed the du-
plicate clusters from predictions and evaluated the
final predictions against the ground-truth clusters.

Table 1 shows a contingency matrix that illus-
trates possible outcomes when comparing clusters
from predictions (P) with clusters from the ground-
truth dataset (Q). The number of occurrences of
these outcomes is used to calculate the metrics of
precision, recall, and F-score.

Predictions (P)
Clusters in P Clusters not in P

Ground-truth

Q)

Clusters in Q True Positive False Negative

(TP) (FN)
Clusters notin Q  False Positive True Negative
(FP) (TN)

Table 1: Contingency matrix of predicted clusters P and
ground-truth clusters Q.

The precision (Hossin and Sulaiman, 2015) mea-
sures positive patterns correctly predicted from the

total predicted patterns in a positive class. In our
experiments, it measures the ratio of correct cluster
predictions to all predictions. Higher precision in-
dicates that less false positive predictions appeared
in the results. It is calculated as:

TP

Precision = m

The recall (Hossin and Sulaiman, 2015) is used
to measure the fraction of correctly classified posi-
tive patterns. In our experiments, it represents the
ratio of correctly predicted clusters to all ground-
truth clusters. A high recall value thus indicates
that the semantic clustering results retrieve many
ground-truth clusters of the security professional.

TP

Recall = m

The F-score, also known as Dice Measure (Dice,
1945), calculates the harmonic mean between preci-
sion and recall. It balances both metrics to provide
an overall performance overview.

2+« TP
2xTP+ FP+ FN

F — score =

In addition to the quantitative evaluation with
performance measures, we collected qualitative
feedback from the security professionals on incor-
rectly clustered findings. We limited the informa-
tion about each finding to the finding strings used as
input for the NLP techniques and asked for possible
reasons for the incorrect clustering. This created
a list of reasons that led to poor duplicate identi-
fication from the perspective of a domain-aware
security professional. Finally, each incorrect clus-
ter is associated with at least one reason for the
incorrect clustering, providing insights into the dif-
ferent challenges and their prevalence in the results.
The evaluation was aided by SeFilLa for annota-
tion of the findings, assignment of reasons, and
documentation.

4 Experiments

4.1 Dataset Description

After labeling the exported security findings with
our annotation tool SeFilLa, the security profes-
sionals provided us with two datasets, namely the
manually grouped SAST and DAST findings. The
descriptive statistics of both datasets are summa-
rized in Table 2. We observe that SAST findings



Statistic SAST DAST
Number of clusters 183 10
Number of findings 1351 36
Avg. findings per cluster 7 3
Avg. characters per finding 302 471
Min. findings per cluster 1 1
Max. findings per cluster 408 25

Table 2: Data records from static analysis security tools
(SAST) and dynamic analysis security tools (DAST).

are far more frequent, making up 97.4% of the to-
tal findings. The number of formed clusters for
the SAST findings is significantly higher than for
DAST findings. While both datasets had clusters
with only one finding, the maximum cluster size
was by far larger in the SAST dataset. Despite
these discrepancies, the average number of find-
ings per cluster is not too different between the
datasets, ranging from a mean value of 3 for DAST
to a mean value of 7 for SAST findings. In addi-
tion, DAST finding texts are more verbose since
they contain 169 more characters on average. To
investigate the potential of semantic similarity tech-
niques, constructing the finding string from the
finding features is crucial. Analyzing the initial
dataset, we identified that solely a single feature de-
scribing the finding is consistently found across all
SAST tools. For the DAST findings, multiple fea-
tures, including the description, a name, and even a
solution/mitigation, were consistently found across
all findings. Furthermore, we observed that DAST
features are sufficiently verbose to comprehend the
problem from their finding string and thereby con-
tain enough semantic content for NLP. Contrarily,
we find SAST features to be very brief, for that
matter, making it almost impossible to understand
a finding just from the finding string.

To counteract the limitation of very short SAST
finding strings, we make use of CVE-IDs to in-
crease the textual content of SAST finding strings.
By leveraging the CVE identifier present in some
findings, we concatenated finding strings of vari-
ous machine-generated descriptions with the same
CVE-ID. This allows for more semantic content
and longer descriptions about the underlying prob-
lem. We used the concatenated finding strings as
input to the NLP-based similarity techniques.

This step led us to construct a total of four cor-
pora with finding strings from both SAST and
DAST datasets for the identification of duplicate

findings, as listed below:

* SAST-D: consists only of SAST finding de-
scriptions

* SAST-ConcD: consists of concatenated SAST
finding descriptions with the same CVE-ID

* DAST-NDS: consists of concatenated DAST
finding names, descriptions, and solution texts

* DAST-D: consists only of DAST finding de-
scriptions

4.2 Evaluation Results

The summary of the quantitative results achieved
when applying semantic clustering using a tech-
nique from each category of semantic similarity
methods to each of the four corpora is presented
in Table 3. The experiments were performed for
similarity thresholds 0.1 < and < 0.95. The per-
formance metric values for the experiment with the
highest F-score are reported.

. Metrics
Technique  Corpus F-score  Precision  Recall
SAST-D 0.709 0.621 0.825
SBERT SAST- 0.797 0.701 0.923
ConcD
DAST- 0.857 0.818 0.900
NDS
DAST-D 0.857 0.818 0.900
SAST-D 0.739 0.658 0.842
LSI SAST- 0.816 0.734 0.918
ConcD
DAST- 0.857 0.818 0.900
NDS
DAST-D 0.857 0.818 0.900
SAST-D 0.659 0.556 0.809
KG SAST- 0.777 0.676 0.913
ConcD
DAST- 0.727 0.667 0.800
NDS
DAST-D 0.727 0.667 0.800

Table 3: Summary table of performance metrics (high-
lighted results show the best performing techniques for
SAST and DAST).

4.2.1 Comparison of Semantic Similarity
Techniques

Figure 1 and Figure 2 show the F-scores of differ-
ent technique-corpus combinations over different
similarity thresholds for SAST and DAST, respec-
tively. We see that the F-scores increase with in-
creasing similarity threshold, peaking at a threshold
value > 0.6 for DAST and at around 0.9 for SAST.
Figure 3 in the appendix shows the performance
metrics for clustering with knowledge graph-based
semantic similarity. It is noteworthy that the F-
scores for the knowledge graph-based clustering
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Figure 1: Semantic clustering results of SAST findings for different similarity thresholds.

are not only lower in comparison to LS/ and SBERT
but they also reach a plateau for threshold values
higher than 0.2.

4.2.2 Qualitative Evaluation

For the qualitative evaluation, we showed incor-
rect predictions from the best results of semantic
clustering of SAST and DAST findings to a secu-
rity professional. The cluster results came from
applying LSI to SAST-ConcD corpus for the SAST
dataset and applying SBERT to DAST-NDS corpus
for the DAST dataset. Using SeFilLa, the security
professional inspected incorrect predictions and
their associated ground-truth cluster. The security
professional assigned possible reasons for poor du-
plicate identification by reading finding strings as-
sociated with incorrect predictions. These reasons
are documented for 72 incorrect SAST predictions
and 2 incorrect DAST predictions. The reasons
and the number of times they were assigned to an
incorrect prediction from either SAST or DAST
clusters are listed in Table 4.

5 Discussion

From the quantitative evaluation, we see that SAST
findings are best clustered by applying LS/ to the
SAST-ConcD corpus, which gives a F-score of
0.816. Although applying SBERT to the same
corpora provides a similar F-score of 0.797 and
matches a higher ratio of ground-truth clusters due
to higher recall, LSI has a higher precision and less
false positive predictions, which is a crucial require-

ment to the security professionals. Hence, applying
LSI to SAST-ConcD corpus is our recommendation
for identifying duplicate SAST findings.

When clustering DAST findings, we see that the
highest F-score of 0.857 is achieved by applying
SBERT and LSI to both DAST-D and DAST-NDS
corpora. However, as illustrated in Figure 2, ap-
plying SBERT yields a high F-score for similar-
ity threshold > 0.6, whereas LSI yields a lower
F-score. Since higher similarity thresholds are pre-
ferred in production scenarios to prevent false posi-
tive predictions, SBERT is preferred over LSI. For
the corpus, DAST-NDS is preferred over DAST-D
due to more textual content from three features,
which leads to a better grasping of semantics and
provides better distinction amongst false positives.
We also see that for similarity threshold > 0.9,
the F-score of SBERT with DAST-NDS slightly de-
creases. This is because of the strict distinction by
semantic similarity algorithms, which also consider
the semantics of a problem’s solution when distin-
guishing between problems identified by different
findings.

From the qualitative evaluation, we see that a
significant challenge for SAST findings is the con-
tent of the finding description. Some tools provide
a title instead of an actual description of the under-
lying problem. This leads to insufficient semantic
content being derived from the finding corpus texts,
thereby leading to poor duplicate identification. An-
other frequent reason for incorrect predictions in
SAST are suboptimally constructed finding strings.
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Figure 2: Semantic clustering results of DAST findings for different similarity thresholds.

This primarily arises when the information con-
tent of the original finding is low, which even is
challenging for security professionals when deter-
mining duplicate findings just from reading the
findings string. The third most highlighted chal-
lenge for SAST is the imbalance in the verbosity
of description features of findings. The descrip-
tion either contains contextually rich problem de-
scriptions or under-specified ones, leading to dif-
ferent extents of semantic content being captured
and, thereby, incorrect comparisons being made.
For DAST, we only have two incorrect predictions,
which can be traced back to the challenge of being
very application- and domain-specific.

To improve SAST findings clustering results,
it is evident that the semantic content of finding
strings representing a problem must be improved.
This can be done by using multiple external sources,
e.g., the National Vulnerability Database*, the
GitHub Advisory Database> for enrichment, or by
scraping information from the multiple reference
sources listed in a finding. The goal is that the
textual data of each finding consists of multiple
paragraphs and contains enough semantic content
for the semantic similarity techniques to grasp as
much contextual information as possible. Further-
more, the final corpus texts should contain the same
verbosity level to avoid a bias related to the text
length. Lastly, the same clustering approach can be

*https://nvd.nist.gov/
Shttps://github.com/advisories

studied using NLP models that are fine-tuned for se-
curity findings, accounting for the domain-specific
vocabulary to improve the clustering results.

6 Limitations

While we present a variety of results regarding
semantic clustering of security findings, our con-
clusions are limited in certain aspects. Firstly, all
our findings result from scanning a single web ap-
plication: JuiceShop. While it contains vulnerabil-
ities encountered in real-world applications, it is
restricted in its representation of a real scenario be-
cause JuiceShop is intended to comprise multiple
vulnerabilities. Moreover, the subset of JuiceShop
vulnerabilities that are clustered poorly might ap-
pear most often in reality, threatening the external
validity of the results. Furthermore, our findings re-
sult from a finite number of modern security tools.
While these tools are open-source and currently
widely used, the scanning functionality of security
testing tools is constantly evolving. Thereby, the
scanning tools we use might change based on the
needs of the domain. Lastly, our datasets were la-
beled by two security professionals and the results
were evaluated by one security professional. While
this is beneficial to prevent inconsistencies due to
the subjective nature of the annotation tasks, the
relevance of our results is highly dependent on the
created ground-truth dataset. However, our cho-
sen research design aims at making the results of
our work as objective as possible. Researchers and



Reason Explanation for Incorrect Clustering SAST DAST

1 In the context of the product, this result can only be identified by somebody knowing the - 2
context of the application.

2 Different tools use a different phrasing to explain the same issue. 5 -

3 The tools sometimes provide no description of the finding. Hence, the features could only 39 -
rely on the title.

4 Some tools provide more and some tools provide less text in their description, which 19 -
reduces the impact of actual relevant features.

5 Additional review necessary due to an unknown reason for the decision. 5 -

6 The sub-optimally constructed feature string could be the reason for the incorrect cluster- 39 -
ing.

7 The tool describes the finding precisely according to the location of occurrence. Hence the 3 -
finding text is over-specified.

8 Human annotation error and the suggested clustering by the algorithm is correct. 1 -

9 One tool addresses the issue of using an eval function, while the other one has the problem 3 -

of user controlled values in it. However, it would not be considered as a major false

positive.

Table 4: Overview of provided explanations from the qualitative evaluation.

practitioners can also use our developed annotation
tool to reproduce our data collection or transfer our
study insights to a setting of their own choice.

7 Conclusions and Future Work

In this work, we explored the applicability of se-
mantic clustering of security findings through var-
ious similarity techniques. We tested three tech-
niques from neural network-based, corpus-based,
and knowledge-based methods on finding strings
that describe security vulnerabilities identified by
testing tools.

To this end, we created a ground-truth dataset
of security findings clustered according to the ex-
pertise of security professionals. We compared
this dataset to the results of semantic similarity
techniques, indicating that SAST findings are best
clustered by applying LSI to SAST-ConcD corpus,
whereas DAST findings are best clustered by ap-
plying SBERT to DAST-NDS corpus. Conducting a
qualitative evaluation with a security professional,
we additionally pointed out the challenges encoun-
tered by semantic similarity techniques when ap-
plied to security findings and discussed possible
solution strategies.

One potential future work would be the appli-
cation of the chosen techniques to cluster security
findings according to other testing strategies like
solution-based clustering. This could grant deeper
insights into the challenges of grouping security
findings with NLP and provide access to new use
cases. Furthermore, research on how plain neural
networks perform when trained directly on semi-
structured security findings appears to be promis-
ing given modern advancements in neural network
architectures. Especially when compared to the

NLP-based approach in this work, the properties
of neural networks are worth exploring. Since neu-
ral networks automatically prioritize important fea-
tures with layers like max-pooling, the manual ef-
fort undertaken to determine problem-describing
features and clustering based on them could be alle-
viated. However, training a neural network requires
significantly more data, so the construction of a
much larger findings dataset would be necessary.
Finally, an evaluation of the identified techniques in
real-world DevOps scenarios could provide valu-
able insights into the practical usefulness of our
approach in software development projects.
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A Supplementary Material

In this appendix, we provide additional material to the main article. Table 5 lists the security testing tools
that were used to scan the web application JuiceShop and generate security findings. Figure 3 shows the
performance metrics for clustering with knowledge graph-based semantic similarity.

Tool Category Analysis Type Link

Anchore SAST Third-party vulnerabilities anchore.com/opensource
Dependency Checker SAST Third-party vulnerabilities owasp.org/dependency-check
Trivy SAST Third-party vulnerabilities  github.com/aquasecurity/trivy
GitLeaks SAST Hardcoded secrets github.com/zricethezav/gitleaks
CodeQL SAST Coding flaws codeql.github.com

Horusec SAST Coding flaws horusec.io/site

Semgrep SAST Coding flaws semgrep.dev

Arachni DAST Web app scan github.com/Arachni/arachni
ZAP DAST Web app scan WWW.Zaproxy.org

Table 5: Overview of static (SAST) and dynamic (DAST) analysis security tools that were used to scan JuiceShop.
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Figure 3: Semantic clustering results with knowledge graph-based similarity.
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