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Abstract

Clinical Text Notes (CTNs) contain physicians’
reasoning process, written in an unstructured
free text format, as they examine and interview
patients. In recent years, several studies have
been published that provide evidence for the
utility of machine learning for predicting doc-
tors’ diagnoses from CTNs, a task known as
ICD coding. Data annotation is time consum-
ing, particularly when a degree of specializa-
tion is needed, as is the case for medical data.
This paper presents a method of augmenting a
sparsely annotated dataset of Icelandic CTNs
with a machine-learned data imputation in a
semi-supervised manner. We train a neural net-
work on a small set of annotated CTNs and
use it to extract clinical features from a set of
un-annotated CTNs. These clinical features
consist of answers to about a thousand poten-
tial questions that a physician might find the
answers to during a consultation with a patient.
The features are then used to train a classifier
for the diagnosis of certain types of diseases.
We report the results of an evaluation of this
data augmentation method over three tiers of
information that are available to a physician.
Our data augmentation method shows a signifi-
cant positive effect, which is diminished when
an increasing number of clinical features, from
the examination of the patient and diagnostics,
are made available. Our method may be used
for augmenting scarce datasets for systems that
take decisions based on clinical features that do
not include examinations or tests.

1 Introduction

When a patient consults a physician, communica-
tion is created in the patient’s medical records. The
physician notes down the patient’s signs, symp-
toms, results of physical examination, the clinical
thinking process, and if any diagnostic tests are
warranted — in a free text format known as a Clini-
cal Text Note (CTN). Then, the physician saves the
diagnoses, using the International Classification of
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Diseases (ICD)! code, that they made during the
consultation. Thus, each CTN contains free text,
from which clinical features can be extracted, in
addition to the ICD classification code.

Previous work has shown the benefits of train-
ing machine learning classifiers on clinical fea-
tures for automated ICD coding (Liang et al., 2019;
Ellertsson et al., 2021; Zhang et al., 2020; Pascual
et al., 2021; Kaur et al., 2021; Blanco et al., 2021).
Ellertsson et al. (2021) hand-annotated features in
800 CTNs and trained a classifier to predict ICD
codes for one of four types of primary headache
diagnoses. Liang et al. (2019) hand-annotated a sig-
nificantly larger set, i.e. about 6,000 CTNs, for the
purpose of training a classifier to predict various
types of diseases, i.e. 55 ICD codes in total. Addi-
tionally, they developed a clinical feature extraction
model (CFEM), for the purpose of automatically
extracting features from the CTNs.

On its own, the CFEM is beneficial because it
could solve the common clinical problem of get-
ting a quick and comprehensive overview of a pa-
tient, when meeting a clinician for the first time.
A clinician could search a patient’s medical his-
tory with a question such as “Has the patient ever
had a colonoscopy?”. The ICD classifiers have, on
the other hand, the potential of being integrated
into a Clinical Decision Support System (CDSS),
where they could, for example, predict if a physi-
cian should order an MRI for a patient when pre-
sented with a particular symptom, what kind of
blood tests are warranted, or any other diagnostic
test for that matter.

Generally, machine learning systems require
large quantities of training data (Hlynsson et al.,
2019) and ICD classifiers are no exception. In order
to develop a high accuracy ICD classifier, without
annotating large amount of CTNs, we experiment
with a method of: 1) annotating a small subset of

"https://www.who.int/classifications/
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the CTNs with question-answer pairs which are
used for training the CFEM, and then 2) use the
trained feature extractor to extract clinical features
from samples out of a larger dataset of CTNs for
training the classifier to predict one out of six ICD
codes?.

In prior work on ICD coding, classifiers have
been trained on discharge summaries, after the pa-
tient has left the clinic (Liang et al., 2019; Zhang
et al., 2020; Pascual et al., 2021; Kaur et al., 2021;
Blanco et al., 2021). We instead focus on evaluat-
ing our model on stages in the primary health care
pipeline where the recommendations of machine
learning models would be the most effective. We
thus introduce a novel three-tiered evaluation sys-
tem that is designed to mirror the circumstances
where ICD classification methods would actually
be used and we evaluate our semi-supervised data
augmentation method on these three tiers: 1) before
the patient meets a physician, 2) after the physician
performs the patient examination, and 3) after the
physician has ordered diagnostic tests.

Our evaluation results show that the data aug-
mentation method has a significant benefit for tier
1, i.e. before the patient meets a physician, but not
for the other two.

2 Related Work

Liang et al. (2019) frame the problem of clini-
cal feature extraction from CTNs as a question-
answering task. Every clinical feature mentioned
in a given CTN is marked, as well as the start and
the end of the text span referring to a given clinical
feature. A question is saved in the context of the
text span, which contains the answer to that specific
question. For example, given the text span “the pa-
tient has a fever”, the question “Does the patient
have a fever?” is saved with a binary value of 1.
Out of 1.3 million CTNs from a single institution
in China, Liang et al. (2019) annotated about 6,000
CTNs for training a CFEM, based on a Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) enriched with word embed-
dings. The feature extractor is trained on a batch
of (CTN, question, text span) tuples as input with
the goal of optimizing for the text span that con-
tains the corresponding answer to the question in
the given CTN. Thereby, the model learns to ex-
tract relevant clinical features from the questions

The ICD classes were chosen by doctors according to
their perceived usefulness.

put forward in the context of the CTN. Liang et al.
(2019) used the CFEM to extract features from the
whole set of un-annotated CTNs. The extracted
features were then used to train a classifier, based
on multi-class logistic regression, to predict an ICD
code from a set of 55 codes.

Ellertsson et al. (2021) hand-annotated clinical
features (in a similar manner as Liang et al.) in
800 CTNs from a common medical database of all
primary care clinics in Iceland. Each CTN had an
accompanying ICD code for one of four types of
headache diagnoses. The resulting features (text
spans) were then used to train a Random Forest
classifier, for predicting one of the four possible
ICD codes. Furthermore, they performed a retro-
spective study where the classifier was shown to
outperform general practitioners on the four types
of headache diagnostics.

In this paper, we expand upon the work of Ellerts-
son et al. The main difference between our work
and theirs can be summarized as follows:

* We do not compare our ICD classifier to gen-
eral practitioners.

* We hand-annotate questions-answers pairs in
2,422 CTNs, which includes a larger number
of ICD codes, 42 in total (see Table 4 in the
Appendix).

e Using the hand-annotated CTNs, we
train CFEMs, based on Transformer mod-
els (Vaswani et al.,, 2017), for extracting
clinical features, and compare them to a
couple of LSTM models. These feature
extractors are used to extract features from
un-annotated CTNS as well as annotated
CTNes.

* We perform a three-tiered evaluation of our
classifiers on six of the ICD codes for pedi-
atric (under 18) patients (see Table 5 in the
Appendix).

Transformer-based models have rapidly become
a popular choice for automated ICD coding. These
models have been trained on CTNs in a fully end-
to-end manner (Zhang et al., 2020; Pascual et al.,
2021; Kaur et al., 2021; Blanco et al., 2021). A
drawback of this approach is that physicians will of-
ten write down their hypothesized diagnoses which
injects a serious bias to the data. We circumvent
this problem by using one model for clinical fea-
ture extraction and another for clinical prediction.



Training Set ~ Validation Set Test Set  Total

Adults Total size 1700 199 220 2119
Mean Age + Std 4533 £1791 43544+17.86 44.24+17.92
Min Age - Max Age | 18.01-94.43  18.04-86.75 18.17-93.72

Children  Total size 237 33 33 303
Mean Age + Std 10.01 £ 5.87 10.32 £5.82 9.39 £ 6.24
Min Age — Max Age 0.17-17.99 0.97-17.85 0.21-17.85

Table 1: Training data split statistics for the clinical feature extraction model. The adult sets are 63% female
and the child sets are 64% female. The different sizes of the adult validation and test sets came by to enforce a
constraint of an equal proportion of notes corresponding to each ICD code within each set.

For example, a fully end-to-end machine learning
model might learn to associate the qualitative com-
ment by a physician “the patient probably has a
migraine without aura” in a patient with a migraine-
without-aura ICD code. Our method avoids this by
creating a bottleneck of information, where only
specific questions are being answered.

Our approach also opens the door for interpret-
ing the results of the ICD classifier, as the impor-
tance of each input feature to the classifier can be
visualized, for example by portraying input coef-
ficients in the case of linear models (e.g. logistic
regression) or plotting other interpretability metrics,
such as SHAP values (Lundberg and Lee, 2017).

3 Approach

3.1 Data and annotation

We use the dataset from the same source as Ellerts-
son et al. (2021), i.e. from the Primary Health Care
Service of the Capital Area (PHCCA) in Iceland.
The dataset consists of 1.2 million CTNs, written
in Icelandic, from 200 thousand unique patients
that were collected in clinical consultations taking
place from January 2006 to April 2020. Physi-
cians are instructed not to write anything that can
uniquely identify their patients in the notes, but
we also used a combination of a parser for Ice-
landic (Porsteinsson et al., 2019) as well as a regex
command to remove any personally identifiable in-
formation, such as names, personal identification
numbers and phone numbers. This dataset contains
CTNs that have an associated ICD 10 code, but
consist otherwise of unstructured text from which
clinical features can be extracted.

In the same manner as described by Ellertsson
et al., we reduced the full dataset by applying a
filter which only keeps notes that contain any word
from a medical keyword dictionary. From this re-
duced dataset, we randomly selected 2,422 notes

which were manually annotated by a physician?,

resulting in question-answer pairs as described in
Section 2.

As an example annotation, for a CTN containing
the text “the patient is not coughing”, one clinical
feature is the pair consisting of the question “does
the patient have a cough?” and the binary-valued
answer “0”, with the corresponding text span “not
coughing”. Some answers are continuous-valued,
such as for the question “what is the patient’s blood
pressure?”.

The number of clinical features that we use to
train the extraction model to output is 942. This
number represents the number of question-answer
pairs in the dataset. There is typically a heavy
class imbalance for each feature, where the binary
questions have on average a 0.75 positive answer
ratio, with a standard deviation of 0.2. The reason
for this sweeping class imbalance is that physicians
generally only ask questions that are relevant and
with an affirmative answer.

For our three-tiered classifier evaluation, we
define three strict subsets of these features, as
described in Section 3.6. Each question is also
paired with another binary variable which indicates
whether an answer to that question can be found in
the CTN or not.

The dataset is split into adults, that are 18 years
old or older, and children. Within each age group,
80% of the dataset is allocated for training, 10%
for development/validation, and hold out 10% for
final testing (see Table 1). The split is stratified
to ensure that each set has an equal proportion of
sexes and ICD codes.

3.2 Pre-trained Transformer-based models

We compared four existing Transformer-based
models in our experiments, based on the ELEC-
TRA (Clark et al., 2020) and RoBERTa (Liu et al.,

3The annotator is a white Icelandic male physician in his
thirties, specializing in general practice / family medicine.



2019) architectures. We evaluated an ELECTRA-
small*, ELECTRA-base® and two RoBERTa-base
models®” (consisting of 14M, 110M and 125M
parameters, respectively). All models have been
pre-trained on the Icelandic Gigaword Corpus
(IGC) (Steingrimsson et al., 2018), which consists
of approximately 1.69B tokens from genres such as
news articles, parliamentary speeches, novels and
blogs. For one of the RoOBERTa models, which we
refer to as ROBERTa+, the IGC was supplemented
with texts obtained from online sources, increasing
the size of the pre-training corpus to 2.7B tokens.
The RoBERTa models were pre-trained for 225k
steps with a batch size of 2k. Otherwise, all models
were pre-trained using default settings (Dadason
and Loftsson, 2022). The pre-training process and
additional training data for the ROBERTa models is
described in further detail by Sn@bjarnarson et al.
(2022).

3.3 LSTM architectures

For a baseline comparison, we created two LSTM
models. The first one (LSTM 1) tokenizes and
trains the embeddings from scratch, whereas the
second one (LSTM 2) pre-processes the inputs with
GloVe (Pennington et al., 2014) embeddings.

331 LSTM1

The model splits up the tokenized input into ques-
tion and content parts. The content, which con-
tains text that may contain the answer, gets a 256-
dimensional embedding and the question gets a
32-dimensional embedding. The reason for the dif-
ference in dimensionality is that there is a much
greater variety in the composition of the contexts
opposed to the standardized number of questions
that is being processed. Each embedding is then
passed to its own, uniquely parameterized two-
layer bi-directional LSTM model, where each layer
has 256 units.

The outputs from those two parts are then con-
catenated and used to 1) train a set of dense net-
works, where one is tasked with predicting whether
an answer to the question can be found in the text
and, if yes, the other dense network predicts the

*nttps://huggingface.co/jonfd/
electra-small-igc-is. CC-BY-4.0 license.
Shttps://huggingface.co/jonfd/
electra-base-igc—-is. CC-BY-4.0 license.

*https://huggingface.co/mideind/
IceBERT. AGPL 3.0 license.

"nttps://huggingface.co/mideind/
IceBERT-igc. AGPL 3.0 license.

probability of the answer being affirmative (in the
case of binary questions), and 2) predict the start
and end indices of the tokens that mark the span of
the answer in the context part.

332 LSTM2

LSTM 2 has the same architecture as LSTM 1,
except there is no embedding layer and the inputs
have been processed by a pre-trained GloVe model.
The GloVe embeddings® where pre-trained on the
IGC.

3.4 Clinical feature extraction models

We fine-tuned the four Transformer-based models,
mentioned in Section 3.2, on the hand-annotated
data in order to develop a CFEM. The fine-tuning
was carried out in the following manner: starting
with the pre-trained transformers weights, the top
layer was replaced with a randomly initialized net-
work, and the whole system was then trained end-
to-end for question-answering. We also trained the
two LSTM models described in Section 3.3 from
scratch for a CFEM comparison.

Each model learns to output the answer span for
each question’ as well as the probability of the an-
swer being affirmative for binary-valued questions.
The Transformer-based models were defined and
trained using the Transformers (Wolf et al., 2019)
and PyTorch libraries (Paszke et al., 2019) and the
LSTM models were defined and trained using Ten-
sorFlow (Abadi et al., 2016).

3.5 Semi-supervised learning

Once our CFEMs were trained, we saved their out-
puts over all the CTNs (i.e. 2,422 annotated CTNs
used for training and 750 randomly selected un-
annotated CTNs) to disk. The outputs define the
matrix of independent variables X which is, along
with the dependent variable array y of ICD codes,
used to train our logistic regression ICD classi-
fier (implemented in scikit-learn (Pedregosa et al.,
2011)).

CTNs require expertise to interpret, which re-
sults in a high cost when labelling medical datasets.
This is especially true for Al researchers that are

$https://github.com/
stofnun-arna-magnussonar/ordgreypingar_
embeddings/tree/main/GloVe

°If the question is not answered in the CTN, the model
outputs an impossible span in the text, which is technically
implemented as starting at the 0°" token (a special “start”
token) and ending on the 1°* token of the context.
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Figure 1: Leveraging a Sparsely Annotated Dataset. Our clinical feature extraction model learns to mark text
spans (clinical features), containing an answer to a set of given clinical questions, from CTNs in which answer
spans have been hand-annotated. The feature extractor is then used to extract answer spans — given the same set of
questions — from a large set of CTNs that have diagnoses (ICD codes), but no marked answer spans. Finally, the
extracted answer spans are used to train the ICD classifier. In this way, we make full use of a large set of CTNs that
is only partly annotated and combine it with a much smaller set of human-annotated CTNs to learn automated ICD

coding.

working with a language with much fewer re-
sources than English (Blanco et al., 2021), such
as Icelandic.

In our project, we have a large collection of
CTNs, each of which is marked with a doctor’s
diagnosis, but does not contain answer spans for
the set of questions for our clinical features. We
input the un-annotated CTNs to a CFEM, that is
trained on a much smaller subset of the data, to
take advantage of the supervisory signal offered
by the ICD code of each un-annotated CTN. This
step keeps the interpretable clinical features and
removes potential bias from the CTNs. This set of
CTNs with imputed clinical feature values is then
combined with our “gold standard” set of anno-
tated CTNs, and both are used for training the ICD
classifier (see Figure 1).

3.6 Three-tiered evaluation

To simulate the different stages of a physician’s
evaluation of a patient in real clinical circum-
stances, we limit the number of features that are
available to the classifier at each stage:

* Tier 1: Before a patient meets with a physi-
cian. This includes the patient’s main com-
plaint, history, symptoms, and vital signs (420

features).

* Tier 2: After the patient has been examined
by a physician (582 features).

* Tier 3: After results from diagnostics are
available (608 features).

The full list of features is provided in the Ap-
pendix: Table 6 and Table 7 for tier 1, which are
features that the patient could self-report. Tables 8
and 9 show the features for tiers 2 and 3, respec-
tively. After tiers 2 and 3, decisions need to be
taken regarding what further tests need to be or-
dered, for example imaging.

Note that our system could fit into a triage con-
text at tier 1. The patient could fill out an online
questionnaire and get recommendations depending
on the results, for example, to go to the emergency
room, to go the general physician, or maybe just
rest at home with a set of self-care instructions.

4 Results and Discussion

4.1 Clinical feature extraction model training

The CFEMs were trained over three epochs on the
subset of hand-annotated CTNs (see Table 1). For



the ELECTRA-base and RoBERTa-base transform-
ers, each epoch took approximately eight hours on
Cloud TPU v3 with eight cores, and half that for
ELECTRA-small. The training took approximately
three hours for each epoch for the LSTMs.

The RoBERTa+ model, which is pre-trained on
the largest corpus, achieves the best results for all
three metrics that we monitor (see Table 2): a span-
based F-score, to evaluate the question-answering
portion of the models, and the Matthews correlation
coefficient (MCC) (Matthews, 1975; Chicco and
Jurman, 2020) for the binary-valued clinical fea-
tures (Binary MCC) and for predicting whether the
question is answered in the text (Answered MCC).

We chose the MCC metric because it is appro-
priate for imbalanced data (Chicco, 2017) (see dis-
cussion of our data in Section 3.1) and it offers
a suitable combination of the four confusion ma-
trix metrics: true positives, true negatives, false
positives and false negatives.

Note in Table 2 that the high F;-scores are due
to the fact that most questions were correctly pre-
dicted to be not answered in any given context.
This could be due to the fact that the 15.8 GB cor-
pus, which was used to train ROBERTa+, contains
33 MBs of medical texts. Although this is not a
large proportion, it could be enough for the model
to have learned transferable representations of med-
ical vocabulary.

To our surprise, the ELECTRA-base model was
outperformed by RoBERTa (both are trained on
equal-sized corpora), even though ELECTRA has,
previously, been shown to outperform RoBERTa
on question-answering tasks (Clark et al., 2020).

The LSTM variation whose inputs were not pre-
processed by a pre-trained GloVe model (LSTM
1) performed better according to the MCC metrics
(but slightly worse according to the F-score) than
the other (LSTM 2). We hypothesize that it is due
to the fact that the pre-trained embeddings are not
trained with any tokenization, but rather on whole
words. The free-text style of doctor’s notes can
include words or abbreviations that are not defined
for the GloVe embeddings.

4.2 1ICD classifier training

4.2.1 Transformer vs. LSTM

After training and evaluating the CFEMs, we vali-
dated the data augmentation scheme described in
Section 3.5. We used the best-performing mod-
els from each category, RoOBERTa+ and LSTM 1,

Fi1  Bin. MCC  Answer MCC
RoBERTa+ 0.993 0.846 0.872
RoBERTa 0.991 0.780 0.823
ELECTRA-base | 0.987 0.656 0.729
ELECTRA-small | 0.982 0.553 0.650
LSTM 1 0.975 0.331 0.327
LSTM 2 0.979 0.313 0.257

Table 2: Feature extraction model evaluation results.
Question-answering metrics and evaluation results for
each clinical feature extraction model on the test set.
Binary MCC measures the classification accuracy of the
binary-valued features and Answer MCC measures the
accuracy of predicting whether a feature is answerable
in the text.

to extract the clinical features from the children’s
notes!?. These features, along with their associated
ICD codes, were then used to train the classifier.

Table 3 shows the diagnostic metrics of the clas-
sifier for tier 3 depending on the feature extractor.
Using RoBERTa+ yielded a higher weighted aver-
age for all diagnostic metrics compared to LSTM
1.

4.2.2 Qualitative analysis

To verify that the relationship between our features
and the outputs of our models matches our clinical
intuition, we use SHAP (Shapley additive expla-
nation) values (Shapley, 1953) to show the impact
of each feature in the prediction of our logistic re-
gression classifier, trained on the features in tier 3
extracted by RoOBERTa+.

The feature importance plot is shown in Fig-
ure 2. We see, for example, that the top four fea-
tures are headache-related features and contribute
to classifying a CTN as Tension-type headache,
migraine with- and without aura. The two top fea-
tures after that involve the doctor doing a physical
examination of the patient’s lung and contribute
to predicting whether the patient has pneumonia
or bronchitis. The sixth most impactful feature is
then the result of an examination of the patient’s
ear, the result of which contributes to the diagnosis
of Otitis media (a disease of the middle ear).

4.2.3 Data augmentation experiment

In the next set of experiments, we investigated the
effect of augmenting a data set consisting of 303
human-labeled childrens’s CTNs with a varying

"Dye to time constraints, our evaluation of the data aug-
mentation method is limited to only using the children CTNs.



RoBERTa+ LSTM 1
Condition Fy-score MCC TPR TNR | Fyj-score MCC TPR TNR
Migraine without aura 0.40 0.36 033 0.97 | 0.00 0.00 0.00 1.00
Migraine with aura 0.67 0.70 050 1.00 | 0.40 036 033 097
Tension-type headache 0.94 0.89 1.00 0.88 | 0.86 0.73 1.00 0.71
Otitis media, unspecified | 0.00 0.00 0.00 1.00 | 0.57 0.60 1.00 0.90
Bacterial pneumonia 0.86 0.83 1.00 0.93 | 0.75 0.75 0.60 1.00
Acute bronchitis 1.00 1.00 1.00 1.00 | 0.33 029 025 097
Weighted average 0.81 0.78 085 0.85 | 0.64 0.56 0.70 0.70

Table 3: Detailed ICD classification metrics. Per-class metrics for clinical diagnosis prediction when a logistic
regression classifier is trained on features extracted from CTNs by either our ROBERTa+ transformer or the baseline
LSTM 1 model. MCC is the Matthews correlation coefficient, TPR is the true positive rate and TNR is the true

negative rate.
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Figure 2: Feature importance plot. The features are scored by their SHAP values. The size of the colored bar in
each feature’s row indicates the contribution of that feature to predicting the disease with the corresponding color.

number of machine-labeled children’s CTNs for
the purpose of training an ICD classifier.

We trained logistic regression classifiers using
5-fold cross-validation over the whole children set.
Each classifier had L1 regularization with the in-
verse regularization parameter of C' = 0.2, which
was found to give good classification performance
in early tests. We chose not to do hyper-parameter
tuning as the scope of this project is not to get the
best possible classifier in this context, but rather in-
vestigate the data augmentation and the three-tiered
evaluation. The results are shown in Figure 3.

There is a clear benefit for using the data aug-
mentation method in tier 1, but it looks rather harm-
ful for tiers 2 and 3. We hypothesize that this is due
to the fact that the classifiers place a high impor-
tance on the outcome of examination (tier 2) and
test (tier 3) related features, making the classifiers

more sensitive to prediction errors for these feature.

5 Conclusions and Future Work

Our results show that training a CFEM on a small
annotated subset of CTNs and use it to extract fea-
tures from samples out of a larger, un-annotated
dataset can increase the performance of an ICD
classifier. However, the effect is only positive and
significant in the context before a patient has been
examined by the physician.

A future line of work is to further validate dif-
ferent classifiers by performing prospective studies
which allow us to get insight into how the classi-
fier performs in real clinical situations. This can
be done by integrating the classifier into a CDSS,
where a patient can log into a secure portal, at
home or at a medical institution, and answer tar-
geted questions regarding their symptoms. The
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Figure 3: Data Augmentation Results. Each classifier is trained on fixed set of hand-annotated clinical features, in
addition to a varying number of features automatically extracted by the RoOBERTa+ model, i.e. machine-labeled
features. There are 237 hand-annotated CTNs in each training set and each step along the x-axis adds 75 machine-
labeled CTNs. Each point in the augmented curves shows the cross-validated metrics (accuracy in the left column
and MCC in the right column) averaged over 20 random subsets of machine-labeled points that are added to the
training set and the error band (the colored area around the Augmented Roberta+) signifies the 95% confidence
intervals. The dashed lines indicate the performance of the classifiers trained only on hand-annotated data.

CDSS could build a list of differential diagnoses,
recommend further diagnostics based on the pa-
tients symptoms, and then write out the CTN for
the clinician. This does not disturb the clinical
workflow, saves time for medical staff and poten-
tially allows a much more detailed history taking,
compared to the often time constrained clinician.
This is important in all outpatient care, both pub-
lic and private, since this kind of system has the
potential to save money, increase the effectiveness
and revenue for private clinics without losing the

quality of care.
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A Appendix

ICD code Description

G43.0 Migraine without aura

G43.1 Migraine with aura

G44.0 Cluster headaches and other trigeminal autonomic cephalgias
G44.2 Tension-type headache

G44.4 Drug-induced headache, not elsewhere classified

G45.9 Transient cerebral ischemic attack, unspecified

H66.0 Acute suppurative otitis media

H66.9 Otitis media, unspecified

110 Essential (Primary) Hypertension

163.0+ Cerebral infarction

163.1 Cerebral infarction

163.2+ Cerebral infarction due to unsp. occl. or stenosis of precerebral arts.
163.3 Cerebral infarction due to thrombosis of cerebral arts.

163.4 Cerebral infarction due to embolism of cerebral arteries.

163.5 Cerebral infarction due to unsp. occl. or stenosis of cerebral arts.
163.6 Cerebral infarction due to cerebral venous thrombosis, nonpyogenic
163.8 Other cerebral infarction

163.9 Cerebral infarction, unspecified

184 Haemorrhoids

JOO Acute nasopharyngitis [common cold]

Jo1 Acute sinusitis

J01.0 Acute maxillary sinusitis

Jo1.9 Acute sinusitis

J02.0 Streptococcal pharyngitis

J03.0 Streptococcal tonsillitis

J03.9 Acute tonsillitis

J05.0 Acute obstructive laryngitis

J10.1 Influenza due to other identified influenza virus w/ other resp. manifs.
JI1.1 Influenza with other resp. manifs., virus not identified

J12.9 Viral pneumonia, unspecified

J15 Bacterial pneumonia, not elsewhere classified

J15.7 Pneumonia due to Mycoplasma pneumoniae

J15.8 Pneumonia due to other specified bacteria

J15.9 Bacterial pneumonia, unspecified

J20.9 Acute bronchitis

Ja4.1 Chronic obstructive pulmonary disease with (acute) exacerbation
J44.9 Chronic obstructive pulmonary disease, unspecified

J45.0 Predominantly allergic asthma

J45.9 Asthma, unspecified

M54.1+ Radiculopathy

M54.5+ Low back pain

S83.2 Tear of meniscus, current injury

Table 4: ICD codes associated with notes used during
training of the clinical feature extraction model.

ICD code
G43.0
G43.1
G44.2
H66.9
J15.9
J20.9

Description

Migraine without aura

Migraine with aura

Tension-type headache

Otitis media, unspecified
Bacterial pneumonia, unspecified
Acute bronchitis

Table 5: ICD codes associated with notes using during
classifier training.
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