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Abstract
Although text style transfer has witnessed
rapid development in recent years, there is
as yet no established standard for evaluation,
which is performed using several automatic
metrics, lacking the possibility of always re-
sorting to human judgement. We focus on the
task of formality transfer, and on the three as-
pects that are usually evaluated: style strength,
content preservation, and fluency. To cast light
on how such aspects are assessed by common
and new metrics, we run a human-based eval-
uation and perform a rich correlation analysis.
We are then able to offer some recommenda-
tions on the use of such metrics in formality
transfer, also with an eye to their generalisabil-
ity (or not) to related tasks.1

1 Introduction

Text style transfer (TST) is the task of automatically
changing the style of a given text while preserv-
ing its style-independent content, or theme. Quite
different tasks, and thus quite different types of
transformations, traditionally fall under the TST
label. For example, given the sentence “i like this
screen, it’s just the right size...”, we may produce
its negative counterpart “i hate this screen, it is
not the right size” for the task defined as polarity
swap (Shen et al., 2017; Li et al., 2018a), or turn it
into the formal “I like this screen, it is just the right
size.” for the task called formality transfer (Rao
and Tetreault, 2018).

For the transfer to be considered successful, the
output must be written (i) in the appropriate tar-
get style; (ii) in a way such that the original con-
tent, or theme, is preserved; and (iii) in proper
language, hence fluent and grammatical (relative
to the desired style). These aspects to be evaluated
are usually defined as (i) style strength, (ii) con-
tent preservation, and (iii) fluency, and automatic

1Our analysis code, literature list for Figure 1, and all data
are available at https://github.com/laihuiyuan/
eval-formality-transfer.

Ratio of Papers

Figure 1: Automatic evaluation metrics in 45 ACL
Anthology papers focusing on style transfer and its
evaluation in terms of (i) style strength: regressor
and classifier; (ii) content preservation: COMET,
BLEURT, BERTScore, METEOR, WMD, ROUGE,
chrF, Self-BLEU (source-based BLEU) and Ref-BLEU
(reference-based BLEU); (iii) fluency: PPL (perplex-
ity); and (iv) overall score: HM (harmonic mean) and
GM (geometric mean).

evaluation metrics are used accordingly, lacking
the possibility of using human judgement for any
given experiment. Figure 1 shows a survey of such
metrics (organised by aspect) as used in 45 pa-
pers published over the last three years in the ACL
Anthology, which focus on TST in general. A clas-
sifier or a regressor is used to assess style strength,
a variety of content-based metrics target content
preservation, perplexity is used to measure fluency,
and some overall metrics combining content and
style are often reported.

In spite of the attempts to perform careful au-
tomatic evaluation, and of some works studying
specific aspects of it, such as traditional metrics for
polarity swap (Tikhonov et al., 2019; Mir et al.,
2019), content preservation for formality trans-
fer (Yamshchikov et al., 2021), and a recent attempt
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at correlating automatic metrics and human judg-
ment for some aspects of multilingual formality
transfer (Briakou et al., 2021a), the community has
not yet reached fully shared standards in evaluation
practices. We believe this is due to a concurrence
of factors.

First, different tasks are conflated under the TST
label while they are not exactly the same, and eval-
uation is a serious issue. Lai et al. (2021a) have
shown that polarity swap and formality transfer
cannot be considered alike especially in terms of
content preservation, as in the former the meaning
of the output is expected to be the opposite of the
input rather than approximately the same. Hence,
it is difficult to imagine that the same metric would
capture well the content aspect in both tasks.

Second, the evaluation setting is not necessar-
ily straightforward: if the content of the input has
to be preserved in the output, the quality of the
generated text can be assessed either against the
input itself or against a human-produced reference,
specifically crafted for evaluation. However, not all
metrics are equally suitable for both assessments.
For instance, BLEU (Papineni et al., 2002) is the
metric most commonly used for evaluating con-
tent preservation (Fig. 1). Intuitively, this n-gram
based metric should be appropriate for comparing
the output and the human reference, but is much
less suitable for comparing the model output and
the source sentence, since the whole task is indeed
concerned with changing the surface realisation
towards a more appropriate target style. On the
contrary, neural network-based metrics should also
work between the model output and the source sen-
tence. This leads to asking what the best way is
to use and possibly combine these metrics under
which settings. Closely related to this point, it
is not fully clear what the used metrics actually
measure and what desirable scores are. For exam-
ple, comparing source and reference for metrics
that measure content similarity should yield high
scores, but we will see in our experiments that this
is not the case. Recent research has only compared
using the reference and the source sentence for
one metric: BLEU (Briakou et al., 2021a), and in-
troduced some embeddings-based metrics only to
compare the output to the source. A comprehensive
picture of a large set of metrics in the two different
evaluation conditions (output to source and output
to reference) is still missing and provided in this
contribution.

Lastly, and related to the previous point, it is yet
unclear whether and how the used metrics correlate
to human judgements under different conditions
(e.g. not only the given source/reference used for
evaluation but also different transfer directions, as
previous work has assessed human judgement over
the informal to formal direction (Briakou et al.,
2021a) only), and how they differ from one another.
This does not only affect content preservation, as
discussed above, but also style strength and fluency.

Focusing on formality transfer, where the as-
pect of content preservation is clear, we specifically
pose the following research questions:

• RQ1 What is the difference in using a classifier
or a regressor to assess style strength and how do
they correlate with human judgement?

• RQ2 How do different content preservation met-
rics fare in comparison to human judgement, and
how do they behave when used to compare TST
outputs to source or reference sentences?

• RQ3 Is fluency well captured by perplexity, and
what if the target style is informal?

To address these questions we conduct a human
evaluation for a set of system outputs, collecting
judgments over the three evaluation aspects, and
unpack each of them by means a thorough correla-
tion analysis with automatic metrics.

Contributions Focusing on formality transfer,
we offer a comprehensive analysis of this task
and the nature of each aspect of its evaluation.
Thanks to the analysis of correlations with human
judgements, we uncover which automatic metrics
are more reliable for evaluating TST systems and
which metrics might not be suitable for this task
under specific conditions. Since it is not feasible
to always have access to human evaluation, having
a clearer picture of which metrics better correlate
with human evaluation is an important step towards
a better systematisation of the task’s evaluation.

2 Related Work

Text Style Transfer In the recent tradition of
TST, many related tasks have been proposed by
researchers. Xu et al. (2012) employ machine trans-
lation techniques to transform modern English into
Shakespearean English. Sennrich et al. (2016) pro-
pose a task that aims to control the level of po-
liteness via side constraints at test time. Polarity
swap (Shen et al., 2017; Li et al., 2018b) is a task
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of transforming sentences, swapping their polarity
while preserving their theme. Political slant is the
task that preserves the intent of the commenter but
modifies their observable political affiliation (Prab-
humoye et al., 2018). Formality transfer is the
task of reformulating an informal sentence into
formal (or viceversa) (Rao and Tetreault, 2018; Bri-
akou et al., 2021b). Cao et al. (2020) propose an
expertise style transfer that aims to simplify the
professional language in medicine to the level of
laypeople descriptions using simple words. Jin et al.
(2021) provide an overview for different TST tasks.

Automatic Evaluation In Figure 1 we see that
more than 80% of papers employ a style classifier
to assess the attributes of transferred text for the
aspect of style strength. For content preservation,
BLEU is by far the most popular automatic metric,
but recent work has also employed other metrics,
including string-based (e.g. METEOR (Mir et al.,
2019; Lyu et al., 2021; Briakou et al., 2021a)) and
neural-based (e.g. BERTScore (Reid and Zhong,
2021; Lee et al., 2021; Briakou et al., 2021a)). In
order to further increase the capturing of seman-
tic information beyond the lexical level, Lai et al.
(2021b,a) recently also employed BLEURT (Sel-
lam et al., 2020) and COMET (Rei et al., 2020)
to evaluate their systems. These learnable metrics
attempt to directly optimize the correlation with hu-
man judgments, and have shown promising results
in machine translation evaluation. For fluency, a
language model (LM) trained on the training data
is used to calculate the perplexity of the transferred
text (John et al., 2019; Sudhakar et al., 2019; Huang
et al., 2020). Geometric mean and harmonic mean
of style accuracy and BLEU are often used for over-
all performance (Xu et al., 2018; Luo et al., 2019;
Krishna et al., 2020; Lai et al., 2021a,b).

Evaluation Practices Although some previous
work has run correlations of human judgements
and automatic metrics (Rao and Tetreault, 2018;
Luo et al., 2019), this was not the focus of the
contribution and no deeper analysis or comparison
was run. On the other hand, Yamshchikov et al.
(2021) examined 13 content-related metrics in the
context of formality transfer and paraphrasing, and
show that none of the metrics is close enough to
the human judgment. Briakou et al. (2021a) have
recently evaluated automatic metrics on the task
of multilingual formality transfer against human
judgement. We also examine automatic metrics in

terms of correlation with human judgement, but
there are some core differences between our con-
tribution and their work. First, for style strength,
they focus on comparing two different architectures
in a cross-lingual setting using the correlation on
human judgement for regression, and they do not
provide this analysis for style classification, rather
an evaluation against the gold label. In contrast,
we adopt an architecture that provides regression
and classification comparisons in fitting human
judgments. Second, regarding content, Briakou
et al. (2021a) focus on similarity (and therefore
metrics) to the source sentence, while we stress
the importance of triangulation also with the refer-
ence2. Also, we introduce two learnable metrics in
the evaluation setup, which correlation with human
judgement shows to be the most informative. Third,
they compare perplexity, likelihood, and pseudo-
likelihood scores for fluency evaluation, while we
provide a deeper evaluation of just perplexity con-
sidering though the two directions (Briakou et al.
(2021a) evaluate only the informal-to-formal di-
rection) and highlight differences that point to a
potential benefit in using different approaches or
evaluation strategies for the two directions.

In addition, we (i) use a continuous scale setting
for human judgement which, unlike a discrete Lik-
ert scale, allows to normalize judgments (Graham
et al., 2013), hence increasing homogeneity of the
assessments; (ii) evaluate eight existing, published
systems of different sorts (including state-of-the-
art models) for both transfer directions, thereby
potentially enabling a reconsideration of results as
reported in previous work; (iii) study the nature of
each evaluation aspect and the corresponding auto-
matic metrics, analyzing the differences in the cor-
relation between metric and human judgements that
might arise under different conditions (e.g. looking
at high-quality systems).

3 Data

We use GYAFC (Rao and Tetreault, 2018), a for-
mality transfer dataset for English that contains
aligned formal and informal sentences from two
domains: Entertainment & Music and Family &
Relationships. Figure 2 shows an example for align-
ment, transformation, and evaluation relations be-

2Although the reference is not always available, using it
in studying evaluation metrics in comparison with how they
behave when the source is used provides insights into the
overall behaviour of such metrics and how they should best
be employed even in the absence of a reference.
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Reference: Now we do so 
many things together and 
I do not know what to do.

Source: but now we do all 
these things together and 
i dont know what to do..

Output: Now we do all 
these things together and 
I do not know what to do.

Sentence-pair

Figure 2: Alignment, transformation, evaluation pairs.

tween input, output, and reference. We run a human
evaluation and a battery of automatic metrics on a
selection of human- and machine-produced texts.

Source and Reference Texts The source and ref-
erence texts we use are from the Family & Rela-
tionships domain. The test set contains 1,332 and
1,019 sentences in “informal to formal” and “for-
mal to informal” directions, respectively. There are
four human references for each test sentence. We
randomly select 80 source sentences (40 for each
transfer direction) from the test set, as well as their
corresponding human references. For each source
sentence, we obtain the corresponding transforma-
tions as produced by eight different systems.

System Outputs The evaluation results are of-
ten affected by the system’s outputs, since if the
evaluated systems are of different types, they may
exhibit different error patterns so that various auto-
matic evaluation metrics can be differently sensi-
tive to these patterns (Ma et al., 2019; Mathur et al.,
2020). To fully examine the evaluation methods,
the systems we use are all from previous work, both
supervised and unsupervised approaches.3 Over-
all, the eight systems yield a total of 640 output
sentences (80 per system, 40 in each direction).

4 Methodologies

4.1 Human Evaluation

To facilitate the annotation and obtain a manage-
able size for each annotator, we split the 80 source
sentences (Section 3) into four different surveys
with 20 sentences each (10 for each transfer direc-
tion), and their corresponding system outputs plus
one reference.

We recruited eight highly proficient English
speakers for this task, i.e. two per survey, so that
two annotations for each target sentence can be
collected; from these we can use the average score

3Details of the systems are in Appendix A.1.

assigned, and also calculate inter-annotator agree-
ment. The task is to rate the transferred sentence on
a continuous scale (0-100), inspired by Direct As-
sessment (Graham et al., 2013, 2015), in terms of
three evaluation aspects: (i) style strength (does the
transformed sentence fit the target style?); (ii) con-
tent preservation (is the content of the transformed
sentence the same as the original sentence?), and
(iii) fluency (considering the target style, could the
transformed sentence have been written by a native
speaker?).

Before starting the rating task, we provided an-
notators with detailed guidelines and examples of
transformed sentences along with plausible assess-
ments for each aspect.4 We also reminded the an-
notators that such examples are only indicative of
what we believe to be plausible judgements but
there are many possible correct answers, of course.

4.2 Automatic Evaluation
We test a wide range of commonly used as well as
new automatic metrics on the three aspects.

Style Strength The most commonly used
method for assessing style strength is a style clas-
sifier, with the problem cast as a binary classifica-
tion task (formal vs informal in formality transfer).
Briakou et al. (2021a) have recently shown that a
style regressor fine-tuned with English rating data
correlates better with human judgments in other
languages (Italian, French, and Portuguese). To
run a proper comparison, we use BERT (Devlin
et al., 2019) as our base model, and fine-tune it
with style labelled data (GYAFC) and the rating
data of PT16 (Pavlick and Tetreault, 2016) to ob-
tain a style classifier (C-GYAFC) and a regressor
(R-P16), respectively. Following Rao and Tetreault
(2018), we collect sentences from PT16 with hu-
man rating from -3 to +1 as informal and the rest
as formal, and train a style classifier on them (C-
PT16). C-GYAFC and C-PT16 achieve an accuracy
of 94.4% and 58.6% on the test sets, respectively.

Content Preservation We consider the follow-
ing metrics, including both surface-based and
embedding-based approaches: 5

• BLEU (Papineni et al., 2002) It compares a given
text to others (reference) by using a precision-
oriented approach based on n-gram overlap;

4Screenshots of our annotation guidelines and interface
are in Appendix A.3.

5The implementation details for automatic metrics are in
Appendix A.2.
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• chrF (Popović, 2015) It measures the similarity
of sentences using the character n-gram F-score;

• ROUGE (Lin, 2004) It compares a given text to
others (human reference) by using n-gram/the
longest co-occurring in sequence overlap and a
recall-oriented approach;

• WMD (Kusner et al., 2015) It measures the dis-
similarity between two texts as an optimal trans-
port problem which is based on word embedding.

• METEOR (Banerjee and Lavie, 2005) It com-
putes the similarity score of two texts by using
a combination of unigram-precision, unigram-
recall, and some additional measures like stem-
ming and synonymy matching.

• BERTScore (Zhang* et al., 2020) It computes
a similarity score for each token in the candi-
date sentence with each token in the reference
sentence. Instead of exact matches, it computes
token similarity using contextual embeddings.

• BLEURT (Sellam et al., 2020) It is a learned
evaluation metric based on BERT (Devlin et al.,
2019), trained on human judgements. It is trained
with a pre-training scheme that uses millions of
synthetic examples to help the model generalize.

• COMET (Rei et al., 2020) It is a learnable met-
ric which leverages cross-lingual pretrained lan-
guage modeling resulting in multilingual ma-
chine translation evaluation models that exploit
both source and reference sentences.

For assessing content preservation in the output,
we can exploit both the source and the reference
(see Fig. 2). When comparing our output to the
source, we want to answer the following question:
(a) how close in content is the generated text to
the original text?, which addresses naturally the
content preservation aspect of the task. When com-
paring our output to the human-produced reference,
we want to answer a different question: (b) how
similar is the automatically generated text to the
human written one? Both are valid strategies, but
by answering different questions they are likely to
react differently to, and require, different metrics.

The advantages of the (a) approach are that eval-
uation is possible even without a human reference,
it is the most natural way of assessing the task, and
it does not incur reference bias (Fomicheva and
Specia, 2016). The core problem lies in the use
and interpretation of metrics: surface-based met-
rics (like BLEU) would score highest if nothing has

changed from input to output (if the model doesn’t
perform the task, basically), so aiming for a high
score is pointless. A very low score is undesirable,
too, however. For more sophisticated metrics, the
problem is similar in the sense the highest score
would be achieved if the two texts are identical,
but since it is not fully clear what they measure
exactly in terms of similarity, what to aim for isn’t
straightforward (an indication is provided by using
metrics to compare source and reference).

The main advantage of the (b) approach is that
metrics can be used in a more standard way: tend-
ing to the highest possible score is good for any
of them, since getting close to the human solution
is desirable. However, the gold reference is only
one of many possible realisations, and while high
scores are good, low scores can be somewhat mean-
ingless, as proper meaning-preserving outputs may
be very different from the human-produced ones,
especially at surface level.

While we have as yet no specific solution to this,
this study contributes substantially to a better un-
derstanding of automatic metrics, especially for
content preservation, possibly leading to a com-
bined metric which considers mainly the source,
and possibly the reference(s) in a learning phase.

Fluency In formality transfer, both informal and
formal outputs must be evaluated. Intuitively, the
latter should be more fluent and grammatical than
the former so that evaluating the fluency of infor-
mal sentences might be more challenging, both for
humans and automatic metrics. We use the perplex-
ity of the language model GPT-2 (Radford et al.,
2019) fine-tuned with style labelled texts. Specifi-
cally, we fine-tune two GPT-2 models on informal
sentences and formal sentences respectively, and
then we use the target-style model to calculate the
perplexity of the generated sentence. Finally, we
provide a separate correlation analysis between au-
tomatic metrics and human judgements for the two
transfer directions.

4.3 Correlation Methods
Pearson Correlation We employ Pearson cor-
relation (r) as our main evaluation measure for
system-/segment-level metrics:

r =

∑n
i=1(Hi − H̄)(M − M̄)√∑n

i=1(Hi − H̄)2
∑n

i=1(Mi − M̄)2
(1)

where Hi is the human assessment score, Mi is the
corresponding score as predicted by a given metric.
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Survey N Content Style Fluency Overall
Survey 1 160 0.90 0.45 0.71 0.70
Survey 2 160 0.84 0.48 0.63 0.66
Survey 3 160 0.83 0.68 0.70 0.72
Survey 4 160 0.81 0.62 0.63 0.68
Overall 640 0.86 0.52 0.66 0.70

Table 1: Inter-Annotator Agreement.

H̄ and M̄ are the their means, respectively.

Kendall’s Tau-like formulation We follow the
WMT17 Metrics Shared Task (Bojar et al., 2017)
and take the official Kendall’s Tau-like formulation,
τ , as the our main evaluation measure for segment-
level metrics. A true pairwise comparison is likely
to lead to more stable results for segment-level
evaluation (Vazquez-Alvarez and Huckvale, 2002).
The Kendall’s Tau-like formulation τ is as follows:

τ =
Concordant−Discordant
Concordant+Discordant

(2)

Where Concordant is the number of times for
which a given metric suggests a higher score
to the “better” hypothesis judged by human and
Discordant is the number of times for which a
given metric suggests a higher score to the “worse”
hypothesis judged by human.

Most automatic metrics, like BLEU, aim to
achieve a strong positive correlation with human
assessment, with the exception of WMD and per-
plexity, where the smaller is better. We thereby
employ absolute correlation value for WMD and
perplexity in the following analysis.

5 Results and Analysis

In this section, we first measure the inter-annotator
agreement of the human evaluation, then discuss
both system-level and sentence-level evaluation re-
sults on the three aforementioned evaluation as-
pects, so as to provide a different perspective on
the correlation between automatic metrics and hu-
man judgements under different conditions.

5.1 Inter-Annotator Agreement
There are two human judgements for each sentence
and we measure their inter-annotator agreement
(IAA) by computing the Pearson Correlation coef-
ficient, instead of the commonly used Cohen’s K,
since judgements are given on a continuous scale.

Table 1 presents the results of IAA for each as-
pect in each single survey and overall. Across the
four surveys annotators have the highest agreement

N R-PT16 C-PT16 C-GYAFC
System-level (r) 8 0.93 0.93 0.97
Segment-level (τ ) 640 0.33 0.39 0.42

Table 2: Correlation of automatic metrics in style
strength with human judgements. The underlined
scores indicate p < 0.01.

Last-N Top-N

Figure 3: Kendall’s Tau-like correlation in style
strength computed over the top-/last-N systems which
are sorted by human judgements.

on the content aspect, followed by fluency, with
style yielding the lowest scores, suggesting that an-
notators have more varied perceptions of sentence
style than content. Overall, we achieve reasonable
agreement for all surveys and evaluation aspects.

5.2 Style Strength

Table 2 shows the correlation of automatic met-
rics in style strength with human judgements. We
see that C-GYAFC achieves the highest correla-
tion at both system- and segment-level, R-PT16
and C-PT16 have the same system-level correla-
tion score while the former has a slightly lower
score at segment-level. Given that C-PT16 and C-
GYAFC have close correlation scores while their
performances on the test set are quite different, we
also employ Pearson correlation to compute the
segment-level result, and see rather different cor-
relation scores (C-PT16 with 0.33 and C-GYAFC
with 0.67). We think that evaluating the system
outputs for a given source using C-PT16 and C-
GYAFC results in similar scores ranking, so their
Kendall’s Tau-like correlations are very close.

In general, it is easier to evaluate systems which
have large differences in quality, while it is more
difficult when systems have similar quality. To
assess the reliability of automatic metrics for close-
quality systems, we first sort the systems based
on human judgements, and plot the correlation of
the top-/last-N systems, with N ranging from all
systems to the best/worst three systems (Fig. 3). We
see that the correlation between automatic metrics
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Reference 0.009 0.291 0.492 0.501 1.334 0.487 0.605 0.235 0.314 - - - - - -
HIGH 0.542 0.608 0.775 0.758 0.672 0.808 0.880 0.851 0.895 0.366 0.547 0.582 1.086 0.554 0.643 0.347 0.400
NIU 0.491 0.637 0.772 0.769 0.652 0.808 0.873 0.818 0.899 0.376 0.560 0.605 1.036 0.567 0.649 0.373 0.418
BART 0.370 0.514 0.688 0.692 0.840 0.724 0.798 0.687 0.752 0.382 0.555 0.596 1.053 0.573 0.646 0.388 0.425
IBT 0.337 0.543 0.711 0.717 0.782 0.749 0.838 0.744 0.813 0.373 0.550 0.582 1.094 0.574 0.635 0.350 0.391
RAO 0.328 0.649 0.778 0.791 0.608 0.815 0.833 0.751 0.822 0.336 0.525 0.561 1.145 0.533 0.601 0.234 0.305
ZHOU -0.659 0.610 0.717 0.765 0.758 0.770 0.739 0.189 0.318 0.253 0.461 0.494 1.351 0.469 0.508 -0.200 -0.125
YI -0.669 0.547 0.684 0.731 0.823 0.728 0.716 0.148 0.320 0.288 0.483 0.517 1.307 0.491 0.524 -0.154 -0.059
LUO -0.749 0.472 0.638 0.660 1.034 0.681 0.646 0.020 0.034 0.222 0.416 0.445 1.514 0.434 0.453 -0.289 -0.278

Table 3: Human evaluation (z-score) and automatic metrics in content preservation. Notes: (i) ↓ indicates the
lower the score the better; (ii) COMET-w indicates that the input setting is not used.
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Figure 4: Correlations of automatic metrics computed
against source/reference in content preservation with
human judgments. Underlining indicates p < 0.01.
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Reference 2 0.28 0.37 0.33 0.10 0.36 0.46 0.21 0.59 0.61 0.61
Reference 3 0.25 0.41 0.37 0.12 0.35 0.47 0.34 0.60 0.60 0.55
Reference 4 0.37 0.41 0.46 0.24 0.46 0.49 0.31 0.60 0.56 0.62

Table 4: Kendall’s Tau-like correlation between using
the first human reference and other references for eval-
uation content preservation at segment-level.

and human judgements decreases as we decrease
N for both top-N and last-N systems, especially
R-PT16 in the top-N systems. Again we observe
that C-GYAFC and C-PT16 have similar scores
over the top-/last-N systems. Overall, C-GYAFC
appears to be the most stable model.

5.3 Content Preservation

As mentioned in the Introduction, since a style-
transformed output should not alter the meaning
of the input, content preservation can be measured
against the input itself, or against a human refer-
ence in the expected target style. However, metrics
cannot be used interchangeably (Section 4.2), as,
for instance, the output is expected to have a higher

n-gram overlap with the reference, while this is not
desirable with respect to the input.

Table 3 presents the results of human and auto-
matic evaluation: all systems have a higher n-gram
overlap (BLEU, chrF) with the source sentence
than the human reference, indicating that existing
models tend to copy from the input and lack diverse
rewriting abilities. We also report the results for
the reference against the source. Bearing in mind
that the reference can be conceived as an optimal
output, it is interesting to see that it does not score
high in any metric, not even the learnable ones.
This leaves some crucial open questions: how can
these metrics be best used to assess content preser-
vation in generated outputs? What are desirable
scores? We also observe that RAO’s system has
the highest scores of surface-based metrics (e.g.
BLEU) with the source sentence while its scores
with learnable metrics (e.g. BLEURT) are lower
than some other systems (e.g. HIGH). In the evalua-
tion against the human reference, the system BART
and NIU achieve better results on most metrics.

Figure 4 shows the correlations of content preser-
vation metrics with human judgments. For the
system-level results, there is a big gap in correla-
tion between source sentence and human reference
for surface-based metrics (e.g. BLEU), but not for
neural network based ones (e.g. COMET). Using
the latter therefore seems to open up the possibil-
ity of automatically evaluating content without a
human reference. It is interesting to see that the
correlations of using source sentences at segment-
level are all higher than using the human reference,
and surface-based metrics of the latter correlate
particularly poorly with human scores. We suggest
two main reasons: (i) existing systems lack diverse
rewriting ability given the source sentences, and
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Top-NLast-N

(a) Automatic metrics results against source sentence.

Top-NLast-N

(b) Automatic metrics results against human reference.

Figure 5: Kendall’s Tau-like correlation in content preservation computed over the top-/last-N systems which are
sorted by human judgements.

the annotators rate the generated sentences compar-
ing them to the source sentence, not to a reference;
(ii) human references are linguistically more di-
verse (e.g. word choice and order). The first one is
not within the scope of this work. For the second
aspect, we exploit the fact that we have multiple ref-
erences available, and run the evaluation in a multi-
reference setting; we observe that correlations for
surface-based metrics improve as more variety is
included, but not for neural ones. In Table 4, we
see that learnable metrics using the first reference
have higher correlation with other references than
surface-based metrics. Overall, learnable metrics
always have the highest correlation scores in evalu-
ating content preservation using source sentences
or human references, while surface-based metrics
generally require a multi-reference setting.

Similar to style strength, we plot the correlation
of the top-/last-N systems sorted by human judge-
ments for the content aspect (Fig. 5). The correla-
tion score between automatic metrics and human
scores decreases as we decrease N for the top-N
systems while this shows stability for the last-N
systems. This suggests that evaluating high-quality
TST systems is more challenging than evaluating
low-quality systems. Again, we see that the corre-
lation when using the source sentence has better
stability than when using human references. Al-
though BLEU and charF show stable performances,
their correlations are lower than those by other met-
rics in most cases. Regardless of whether we use
human references or source sentences, COMET(-
w) generally has the highest correlation scores with
human judgements under different conditions.

5.4 Fluency

Table 5 shows the absolute correlation of fluency
metrics with human judgements. Unsurprisingly,

N Informal-to-Formal Formal-to-Informal
System-level (r) 8 0.96 0.65
Segment-level (τ ) 320 0.52 0.35

Table 5: Absolute correlation of automatic metrics in
fluency with human judgements. The underlined scores
indicate p < 0.01.

Informal-to-Formal Formal-to-Informal
GPT2-Inf GPT2-For r GPT2-Inf GPT2-For r

Source 76 143 - 87 68 -
Reference 60 37 0.21 115 270 0.13
BART 34 26 0.33 24 28 0.02
IBT 32 26 0.32 33 40 0.17
NIU 43 37 0.30 71 75 0.03
HIGH 41 35 0.62 80 75 0.00
RAO 54 57 0.33 54 55 0.02
ZHOU 189 218 0.36 103 111 0.42
YI 160 182 0.31 205 436 0.27
LUO 128 152 0.43 6962 8191 0.17

Table 6: Results of GPT-2 based perplexity scores and
their absolute Pearson correlation with human judge-
ments at segment-level. Notes: (i) GPT2-Inf and GPT2-
For are fine-tuned with informal sentences and formal
sentences, respectively; (ii) the correlation is calculated
using the perplexity of GPT-2 in the target style with
human judgment.

we see that GPT-2 based perplexity correlates bet-
ter with human scores in the direction informal-
to-formal than in the opposite one, at both system-
and segment-level. In general, a “good” formal sen-
tence should be fluent, while an informal sentence
might as well not be, and there can be varied percep-
tions by people. Indeed, we see higher IAA scores
in the informal-to-formal direction (informal-to-
formal: 0.70 vs informal-to-formal: 0.63). Table 6
presents the results of correlations and perplexity
scores of GPT-2 in the two transfer directions for
each system. The perplexity scores for most sen-
tences are in the correct place, i.e. the scores from
GPT2-Inf are higher than those from GPT2-For for
the informal sentences, and viceversa. However,
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Figure 6: The distance between the source and target
sentences as measured by content-related metrics.

we also observe that the correlations of informal-to-
formal for each system (except ZHOU) are higher
than those for the formal-to-informal direction.
This confirms our hypothesis that assessing the
fluency of informal sentences is not that obvious
even for humans.

5.5 Broader Implications for Style Transfer

We have focused here on formality transfer, but
polarity swap is also commonly defined as a style
transfer task. In previous work, we have suggested
that these tasks are intrinsically different, especially
in terms of content preservation, since while for-
mality transfer is somewhat akin to paraphrasing,
in polarity swap the meaning is substantially al-
tered (Lai et al., 2021a). This would imply that
content-measuring metrics could not be used in the
same way in the two tasks.

We further peek here into this issue, in view of
future work that should evaluate metrics for the
assessment of polarity swap, too, and show in Fig-
ure 6 the use of different metrics to measure the
distance between the source and target sentences
for paraphrasing, formality transfer, and polarity
swap. Using n-gram based metrics, we see that
the distance between source and target sentences in
polarity swap is closer than in the other two tasks.
With learnable metrics, instead, we see that source
and target sentences for polarity swap are quite
distant. Formality transfer shows overall the same
trend as paraphrasing in all metrics, suggesting that
it’s much more of a content-preserving paraphrase-
like task than polarity swap, and metrics should be
selected accordingly. Future work will explore how
to best use them in polarity swap under different
settings (using source vs reference, for example).

6 Conclusion

We have considered a wide range of automatic met-
rics on the three evaluation aspects of formality
transfer, and assessed them against human judge-
ments that we have elicited.

For style strength, we have compared the style
classifiers and regressor in the setting of using the
same raw data for training (with a binary label for
classification and continuous scores for regression),
as well as classifiers with different performances.
We have observed that there is little difference
among them when evaluating multiple TST sys-
tems. However, the style regressor performs worse
when evaluating high-quality TST systems. For
classifiers with different performances, we recom-
mend the one with the highest performance since
it results in the highest overall Pearson correlation
with human judgements.

To assess content preservation, we have ex-
plored different kinds of automatic metrics using
the source or reference(s), and have observed the
follwoing: (i) if using the source sentence, we
strongly recommend employing learnable metrics
since their correlation in that condition is much
higher than those of traditional surface-based met-
rics (which are not indicative, since high scores
correspond to not changing the input, hence not
performing the task); still, the question of how
scores should be interpreted and what score ranges
are desirable remains open; (ii) most metrics are
reliable to be used to measure and compare the per-
formances at system-level when a human reference
is available; (iii) however, we do not recommend to
use surface-base metrics to measure sentence-level
comparisons, especially with only one reference.
Overall, learnable metrics seem to provide a more
reliable measurement.

For fluency, perplexity can be used for evalu-
ating the informal-to-formal direction, either at
system- or segment-level, while it is clearly less
reliable for the opposite direction, and it remains
to be investigated how to best perform evaluation
in this transfer direction, considering the wide vari-
ability of acceptable outputs.

This study focuses on formality transfer, and of-
fers a better understanding of automatic evaluation
thanks to the comprehensive correlations with hu-
man judgments herein conducted. However, the
findings may not generalise to other tasks usually
considered similar, such as polarity swap. To this
end, future dedicated work will be required.
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A Appendices:

These Appendices include: (i) evaluated systems
(A.1); (ii) implementation details for automatic
metrics (A.2); and (iii) annotation guidelines and
interface (A.3).

A.1 Evaluated Systems

Table A.1 presents the systems’ ranking based on
the human judgements. We use eight published
systems of different sorts (including state-of-the-art
models). For supervised approaches, we include
the following systems:

• RAO (Rao and Tetreault, 2018): A copy-enriched
NMT model trained on the rule-processed data
and the additional forward and backward transla-
tions produced by the PBMT model;

• NIU (Niu et al., 2018): A bi-directional model
trained on formality-tagged bilingual data using
multi-task learning;

• BART (Lai et al., 2021b): Fine-tuning a pre-
trained model BART with gold parallel data and
reward strategies;

• HIGH (Lai et al., 2021a): Fine-tuning BART
with high-quality synthetic parallel data and re-
ward strategies.

For unsupervised approaches, we include the fol-
lowing systems:

• LUO (Luo et al., 2019): A dual reinforcement
learning framework that directly transforms the
style of the text via a one-step mapping model
without parallel data;

• YI (Yi et al., 2020): A style instance supported
method that learns a more discriminative and ex-
pressive latent space to enhance style signals and
make a better balance between style and content;

• Zhou (Zhou et al., 2020): An attentional seq2seq
model that pre-trains the model to reconstruct
the source sentence and re-predict its word-level
style relevance;

• IBT (Lai et al., 2021a): An iterative back-
translation framework based on the pre-trained
seq2seq model BART.

Table A.2 presents automatic evaluation results in
content preservation.

A.2 Implementation Details for Automatic
Metrics

• BLEU: We adopt sentence_bleu of the
NLTK library with a smoothing function
to compute the segment-level score, and
multi-bleu.perl with default settings for
system-level.6

• chrF: Following Briakou et al. (2021a), we use
use sentence_chrf of the open-sourced im-
plementation sacreBLEU.7

• ROUGE: We use the open-sourced implementa-
tions Rouge.8

• WMD: We employ the gensim library and
word embedding googlenews-vectors-
negative300.bin.9

• METEOR: We adopt the NLTK library.

• BERTScore: We use the official implementation
with a rescaling function.10

• BLEURT: We use the official checkpoint of
bleurt-large-512.11

• COMET: We adopt the official checkpoint
of wmt-large-da-estimator-1719.12

COMET-QE is a referenceless metric that
uses source and output only. But we found
that it yielded lower correlations with human
judgements than COMET in our evaluations.
This may be because the input and output are
different languages in COMET-QE training.

• Style and Fluency: All experiments are imple-
mented atop Transformers (Wolf et al., 2020)
using BERT base model (cased) for style and
GPT-2 base model for fluency. We fine-tune mod-
els using the Adam optimiser (Kingma and Ba,
2015) with learning rate of 1e-5 for BERT and
3e-5 for GPT-2, with a batch size of 32 for all
experiments.

A.3 Annotation Guidelines and Interface
Figure A.1 show the screenshots of task guidelines
and annotation interface.

6https://www.nltk.org/
7https://github.com/mjpost/sacrebleu
8https://github.com/pltrdy/rouge
9https://radimrehurek.com/gensim/index.

html
10https://github.com/Tiiiger/bert_score
11https://github.com/google-research/

bleurt
12https://github.com/Unbabel/COMET
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Style Content Fluency
System Rank AVE. s AVE. z System Rank AVE. s AVE. z System Rank AVE. s AVE. z

BART 1 82.7 0.494 HIGH 1 92.4 0.542 BART 1 87.8 0.540
REF 2 82.3 0.469 NIU 2 90.7 0.491 IBT 2 86.0 0.491
IBT 3 80.1 0.407 BART 3 86.5 0.370 NIU 3 84.9 0.463
NIU 4 76.9 0.297 IBT 4 85.1 0.337 HIGH 4 83.3 0.420
HIGH 5 76.3 0.293 RAO 5 84.7 0.328 REF 5 82.4 0.385
RAO 6 70.2 0.085 REF 6 73.6 0.009 RAO 6 77.3 0.247
YI 7 51.1 -0.588 ZHOU 7 50.9 -0.659 ZHOU 7 45.1 -0.717
ZHOU 8 47.2 -0.726 YI 8 50.5 -0.669 YI 8 38.6 -0.903
LUO 9 46.7 -0.731 LUO 9 47.6 -0.749 LUO 9 37.9 -0.926

Table A.1: Results based on original human evaluation and z-score.
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Systems Reference 1 Reference 2
Reference 0.291 0.492 0.533 0.307 0.501 1.334 0.487 0.605 0.235 0.314 0.231 0.459 0.494 0.259 0.449 1.469 0.444 0.565 0.155 0.202
HIGH 0.366 0.547 0.624 0.401 0.582 1.086 0.554 0.643 0.347 0.400 0.300 0.515 0.564 0.342 0.512 1.260 0.521 0.605 0.317 0.289
NIU 0.376 0.560 0.646 0.434 0.605 1.036 0.567 0.649 0.373 0.418 0.333 0.525 0.578 0.369 0.526 1.202 0.538 0.617 0.329 0.286
BART 0.382 0.555 0.632 0.412 0.596 1.053 0.573 0.646 0.388 0.425 0.305 0.511 0.561 0.349 0.513 1.278 0.526 0.605 0.353 0.279
IBT 0.373 0.550 0.620 0.404 0.582 1.094 0.574 0.635 0.350 0.391 0.291 0.503 0.553 0.335 0.503 1.289 0.512 0.595 0.305 0.271
RAO 0.336 0.525 0.602 0.367 0.561 1.145 0.533 0.601 0.234 0.305 0.297 0.505 0.556 0.344 0.512 1.281 0.512 0.568 0.200 0.196
ZHOU 0.253 0.461 0.536 0.300 0.494 1.351 0.469 0.508 -0.200 -0.125 0.245 0.451 0.495 0.271 0.444 1.488 0.476 0.478 -0.206 -0.212
YI 0.288 0.483 0.551 0.324 0.517 1.307 0.491 0.524 -0.154 -0.059 0.225 0.443 0.497 0.263 0.454 1.475 0.457 0.488 -0.203 -0.167
LUO 0.222 0.416 0.483 0.272 0.445 1.514 0.434 0.453 -0.289 -0.278 0.189 0.381 0.419 0.209 0.378 1.694 0.389 0.425 -0.266 -0.368

Systems Reference 3 Reference 4
Reference 0.213 0.442 0.472 0.231 0.434 1.537 0.433 0.567 0.102 0.190 0.231 0.459 0.505 0.261 0.461 1.438 0.466 0.595 0.224 0.293
HIGH 0.316 0.513 0.566 0.340 0.528 1.229 0.506 0.617 0.236 0.326 0.295 0.511 0.585 0.343 0.535 1.227 0.526 0.634 0.327 0.412
NIU 0.325 0.509 0.574 0.351 0.534 1.232 0.505 0.612 0.257 0.309 0.310 0.518 0.607 0.365 0.552 1.173 0.548 0.637 0.349 0.413
BART 0.341 0.517 0.577 0.361 0.539 1.208 0.526 0.617 0.274 0.354 0.327 0.532 0.621 0.384 0.574 1.128 0.565 0.655 0.405 0.447
IBT 0.307 0.514 0.570 0.344 0.531 1.220 0.522 0.614 0.267 0.328 0.316 0.520 0.592 0.363 0.543 1.217 0.534 0.632 0.332 0.388
RAO 0.293 0.499 0.556 0.329 0.511 1.288 0.493 0.574 0.140 0.252 0.293 0.505 0.577 0.336 0.526 1.234 0.541 0.600 0.250 0.315
ZHOU 0.227 0.419 0.478 0.245 0.438 1.496 0.421 0.489 -0.257 -0.186 0.210 0.425 0.507 0.248 0.453 1.451 0.448 0.507 -0.212 -0.162
YI 0.220 0.436 0.487 0.255 0.449 1.477 0.416 0.488 -0.263 -0.149 0.204 0.432 0.501 0.250 0.458 1.466 0.430 0.509 -0.182 -0.086
LUO 0.189 0.380 0.422 0.244 0.390 1.671 0.371 0.431 -0.346 -0.356 0.197 0.393 0.458 0.243 0.410 1.591 0.420 0.451 -0.282 -0.317

Table A.2: Automatic evaluation results in content preservation. Notes: (i) the results of Reference is the distance
between source and reference sentence measuring by metrics; (ii) ↓ indicates the lower score is better.

(a) A screenshot of task guidelines. (b) A screenshot of annotation interface.

Figure A.1: Screenshots of our interface.
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