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Abstract

Improvements in text generation technologies
such as machine translation have necessitated
more costly and time-consuming human evalu-
ation procedures to ensure an accurate signal.
We investigate a simple way to reduce cost
by reducing the number of text segments that
must be annotated in order to accurately pre-
dict a score for a complete test set. Using a
sampling approach, we demonstrate that infor-
mation from document membership and auto-
matic metrics can help improve estimates com-
pared to a pure random sampling baseline. We
achieve gains of up to 20% in average abso-
lute error by leveraging stratified sampling and
control variates. Our techniques can improve
estimates made from a fixed annotation budget,
are easy to implement, and can be applied to
any problem with structure similar to the one
we study.

1 Introduction

As automatic natural language generation systems
improve, evaluating them is becoming more chal-
lenging for both human and automatic methods
(Celikyilmaz et al., 2020; Gehrmann et al., 2022).
In machine translation, this has led to increased
adoption of techniques such as MQM (Freitag et al.,
2021a,b), an elaborate error-based methodology for
scoring output, typically carried out by skilled hu-
man annotators. While MQM is more accurate than
traditional crowd-based Likert-type scoring, it can
also be significantly slower and more expensive,
creating a strong incentive to reduce annotation
time and cost.

In this paper we investigate a simple solution to
this problem, namely reducing the number of text
segments that a human annotator must rate. We
assume a basic scenario in which a single annotator
is given a test set to rate, and the task is to predict
the average MQM score they would assign to the
whole set by having them rate only a selected sub-
set. This is a natural and versatile way to deploy
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human annotation effort within a framework like
MQVM,; it differs from the tasks considered by re-
cent work with similar motivation, which focus on
system ranking (Mendonga et al., 2021; Thorleiks-
déttir et al., 2021) or combining human and metric
scores without the express aim of predicting human
performance (Hashimoto et al., 2019; Singla et al.,
2021). Although our experiments are carried out
with MQM-based scores, our methodology is ap-
plicable to any setting in which numerical scores
are assigned to items for later averaging.

We approach the task of choosing segments as a
sampling problem, and investigate classical meth-
ods for reducing sample variance and bounding
estimation error. To improve accuracy, we employ
two sources of supplementary information. First, in
keeping with recent practice, we assume segments
are grouped into documents. This lets us exploit
the tendency of segments within a document to be
relatively homogeneous. Second, we make use of
modern automatic metrics such as COMET (Rei
et al., 2020) and BLEURT (Sellam et al., 2020)
which correlate better at the segment level with
human judgments than traditional surface-based
metrics like BLEU (Papineni et al., 2002). These
serve as a rough proxy for human scores.

We show that document and metric information
can be used to reduce average estimation error by
up to 20% over a pure random sampling baseline.
Due to high sample variance, it is difficult to reli-
ably achieve a similar reduction in annotator effort
for a given error tolerance. However, we suggest an
alternative perspective in which our technique can
be used to improve estimates made on the basis of a
fixed rating budget. Although there is no guarantee
of beating random sampling in any particular case,
there is a high probability of improving on aver-
age. This improved estimator is easy to implement,
and applicable to any human labeling task that pro-
duces numerical scores, and for which document
membership and automatic metrics are available.
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Our work is most similar to that of Chaganty et al.
(2018), which we extend in several ways. We adopt
their use of control variates, but consider multiple
metrics rather than just one, including learned met-
ric combinations; we also employ modern neural
metrics rather than metrics based on surface infor-
mation. We combine control variates with stratified
sampling using either proportional or optimal al-
location, and additionally evaluate an incremental
scenario in which sampling adapts to observed rat-
ings. Finally, we investigate two analytical meth-
ods for bounding the error in our estimate.

2 Methods

We assume a fixed test set consisting of translated
segment pairs, and a single human rater who as-
signs scores to segments. Each segment belongs to
a document, and has an associated vector of scores
from automatic metrics. Our goal is to select an
informative subset of segments to be labeled by the
rater, and use the subset to predict the average score
that would have resulted if we had asked the rater
to label the whole set. By exploiting document and
metric information, we hope to reduce the number
of segments that must be manually labeled.

Formally, let x1, ...z be the segment scores,
po= ZIJ\L 1 Zi/N be the test-set score to be pre-
dicted, and o be the variance of the scores. The
following side information is available for each seg-
ment ¢: an index d; that indicates its membership
in one of D documents, and a vector of automatic-
metric scores y; € R Unlike the segment scores,
which are only revealed if they are in the selected
subset, the side information is always available for
the whole test set.

We approach this task as the problem of sam-
pling n < N scores X1, ..., X, without replace-
ment from the test set and deriving an estimate /i
for p from the sample such that E (i) = p (that is,
fu is unbiased) and Var (/1) is as small as possible.
Low-variance estimators make it more likely that
the estimation error | — fi| will be small. A base-
line is to draw n segments at random and compute
their mean. This gives an estimate that is unbiased,

2
Var(ji) = —

with variance:

We investigated two classical unbiased strategies
for reducing variance relative to this baseline: strat-
ified sampling and control variates (Rice, 2007;
Bratley et al., 2012).
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2.1 Stratified sampling

Stratified sampling involves partitioning scores into
bins that group similar items, then sampling some
items from each bin. Intuitively, the idea is that if
the variance within each bin is low, drawing too
many samples from a particular bin is inefficient
because it only serves to improve an already good
estimate—therefore the sample should be spread
evenly (in some sense) across bins. See Figure 1a
for an illustration. As a side benefit, having hu-
man scores more evenly distributed across different
types of segments is a useful characteristic if the
labeled segments are to be the subject of further
analysis.

Formally, suppose the test set is divided into L
bins, where bin [ contains N; segments of which
n; have been sampled, with sample mean /i;. Then
the stratified estimate is:

L
fo=">fuN/N. (1)
=1
It is easy to verify that this is unbiased.

Stratified sampling requires a method for parti-
tioning the test set into bins and a way of allocating
the n segments in the sample to individual bins. We
investigated two methods for partitioning the test
set: by documents and by metric-score similarity.
The optimal (lowest variance) allocation assigns
segments proportional to a bin’s size and variance:

UlNl
n_—_————.
L
2z 0N

Since the bin variances o; are unknown, a conserva-
tive strategy is to assume they are all equal, result-
ing in pure proportional allocation: n; = n N;/N.
A potential enhancement is to approximate opti-
mal allocation using estimated variances 6; ~ o
derived from the metric scores in each bin.

Two technical issues arise in stratified sampling.
First, the per-bin sizes specified by equation (2)
are not necessarily whole numbers. This can be
solved using a rounding scheme that minimizes
Zle |n; — n;|, where nj are whole numbers that
sum to n. A second problem is that n; can be
greater than the number of available segments IV,
when using optimal allocation in high-variance
bins. When this occurs, we choose the bin for
which n; — N is largest, set n; = N, then recur-
sively reallocate the remaining bins. Note that both
these strategies can result in bins for whichn; = 0
when n is small.

2
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(a) Stratified sampling forces sampled segments (shown in red)
to be evenly distributed across bins, resulting in better estimates
when the score variance within bins is lower than the variance
across bins.

Control variates z;

Segments

Segments

(b) Control variates allow for reversing the shift of the sample
mean X, depending on the strength of the correlation between
X and Z. In this illustration, where X and Z are highly corre-
lated (~0.9), Z,, < 0 reflects the negative shift in X,.

Figure 1: Complementary strategies for reducing the
variance of the estimated average score.

Incremental sampling

Hitherto we have assumed that sampling works by
choosing a fixed batch of n segments, then sending
them to a rater for scoring. It is also possible to con-
sider an interactive scenario where the rater labels
segments sequentially, and the sampling procedure
is refined after each new rating is received. A con-
venient way to incorporate known ratings is to use
them for improving the per-bin variance estimates
07 in optimal allocation. We tested two ways of
accomplishing this: empirically estimate 6; from
the known ratings in each bin; and learn a general
mapping from metrics y to rating x over all known
ratings, then use this mapping to estimate the un-
known ratings in each bin, and derive 6; from those
estimates.

2.2 Control variates

The control-variates estimator makes use of an aux-
iliary random variable Z that is standardized (has
zero mean and unit variance) on the test set:

Cov(X,Z) -
- =7
Var(2)
=X, — Cov(X,2) Z,

- Xn
: 3)
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where X,, and Z,, are mean values over the sample,
and the covariance is over the whole test set. This is
the lowest-variance estimator that uses information
from Z. It is unbiased because X,, is unbiased,
Cov(X, Z) is independent of the current sample,
and E(Z,) = 0. The control-variates estimator
can be thought of as using Z,, to infer the direction
that X, has been shifted away from y and reversing
this shift by an amount that depends on the degree
of correlation between X and Z—see Figure 1b for
an illustration. In general, Cov (X, Z) is unknown,
but it can be estimated from the sample as follows:

1 n
Cov(X,Z)~ — E XiZ;.
n
i=1

The control-variates estimator can be extended
to handle multiple auxiliary variables by forming a
linear combination (Glynn and Szechtman, 2002):

p=X,— (B(ZZ")'E(XZ))" Z, 4
where Z is a vector of standardized variables, Z,,
is its mean over the sample, and the expectations of
the covariance matrix ZZ” and weighted vectors
XZ are taken over the test set. The latter is un-
known, but as in the scalar case it can be estimated
from the sample:

1 n
E(XZ)~ — > XZ.
=1

In our setting, control variates are easily derived
by standardizing the metric scores y;, which are
available for all segments in the test set. The re-
sulting estimator is convenient because it is applied
after sampling is complete, making it independent
of the sampling method, including whether the sam-
ple is drawn incrementally or in batch mode.

2.3 Error Bounds

For practical applications it is desirable to upper-
bound the error |p — /1] in the estimated score with
some degree of confidence. Given a confidence
level 7y (e.g., 0.95), we would like to find an error
bound ¢ such that:

P(lu—pl <t) >~y 5)

'This equation follows from expanding Cov(X, Z) over
the complete test set, dropping all terms that contain the true
mean of Z (0 by construction) and estimating the one term
that remains from the sample. Alternatively one can choose to
estimate Cov (X, Z) purely from the sample as > ., (X; —
X)(Zi — Z2)/n.



A classical bound can be derived from Hoeffding’s
inequality, which states that equation (5) holds if:

knlog(2/4)

t=R
2n ’

where R is the difference between the largest and
smallest scores in the test set, § = 1 — ~, and
kn, =1—(n—1)/N is an adjustment for sampling
without replacement (Serfling, 1974). A problem
with Hoeffding’s inequality is that it scales with the
range of the scores and does not take variance into
account, so its bound will be pessimistic if variance
is small relative to the extremes. In such cases, the
Bernstein bound (Mnih et al., 2008) will be tighter:

s /210g7(L3/5)

where & is a sample estimate of the variance. Note
that the contribution of R diminishes as 1/n in this
formula, compared with 1/4/n in the Hoeffding
bound. Both these bounds are general in the sense
that they make no assumptions about the score dis-
tribution.

| 3Rlog(3/0)

n

Y

3 Data

Our development data consists of MQM ratings
made available by Freitag et al. (2021a) for 10
English-German and 10 Chinese-English “systems”
(including human translations and MT) from the
WMT 2020 news test sets (Barrault et al., 2020).
Each segment was annotated by three expert raters
who assigned scores ranging from 0 (perfect) to 25
(worst). There were six annotators per language
pair, each of whom rated all system outputs for a
set of documents comprising approximately half
the complete test set (about 710 segments / rater for
German, and 1000 segments / rater for Chinese).
We created simulations for each rater and system
combination, excluding the Human-A “system”, as
it was the reference for the MT metrics we used as
features. This resulted in 54 simulations for each
language pair. For each simulation, the task is to
predict the average score over the complete sub-
set of segments annotated by a single rater for a
single system. No knowledge of other segments,
system outputs, or rater decisions is permitted to
leak across simulations. As features, we used the
10 metrics submitted to the WMT 2020 metrics
task (Mathur et al., 2020) that had highest average
segment-level Pearson correlation with the MQM
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scores in our dev data.> These correlations are gen-
erally poor: from 0.279-0.410 for English-German,
and 0.425-0.465 for Chinese-English.?

To eliminate the effects of hyper-parameter tun-
ing on the development data, we carried out addi-
tional evaluation on a test set consisting of news-
test data from the WMT 2021 metrics shared task
(Freitag et al., 2021b) for English-German (17 sys-
tems), Chinese-English (15 systems), and English-
Russian (16 systems). This is similar to the dev
data, except that only one MQM rating is available
per segment. The number of rated segments was
527 for German and Russian, and 650 for Chinese.
English-Russian ratings were annotated using a dif-
ferent MQM methodology (from Unbabel rather
than Google), resulting in scores on a 0—100 scale,
with 100 being best. As before, we created separate
simulations for each system, omitting the human
“system” used as a reference for the metrics. To
avoid bias, rather than selecting metrics according
to correlation, we chose the WMT 2021 primary
submissions of two top-performing metrics from
the dev data: BLEURT and COMET.*

Appendix A contains further details about scores
and rater assignments for the dev and test sets.

4 Results

We tested the sampling and estimation strategies
described in section 2 by comparing them to the
baseline of simple random sampling with a mean
estimator. For each simulation we considered sam-
ple sizes ranging from 5-50% of the available data,
at 5% intervals.’> For each sample size and tech-
nique for establishing /i, we drew 100 random sam-
ples, computed the average and std deviation of
the error | — fi| across the samples, then averaged
the results across simulations to summarize perfor-
mance at that sample size. We also measured the
number of “wins”—simulations in which a tech-
nique had a lower average error than the baseline.
Finally, we aggregated these results across sample
sizes to summarize performance in a single number.

2We also tried using all submitted metrics, with slightly
worse results.

3For comparison, target sequence length correlations are
0.223 and 0.439 respectively (better than the three lowest-
ranked metrics for Chinese).

*The primary submissions were BLEURT-20 and COMET-
MQOM_2021.

3 Beyond 50%, the variance of the baseline estimator be-
comes very low and there is limited opportunity for improve-
ment.



4.1 Stratified sampling

method | abserror sdev  win %
EnDe baseline 0.171 0.128 -
docs-prop 0.158 0.118 75.7
docs-opt 0.213  0.145 32.6
metrics-prop 0.157 0.118 71.2
ZhEn  baseline 0.290 0.217 -
docs-prop 0.250 0.187 924
docs-opt 0.356  0.233 27.2
metrics-prop 0.246  0.185 91.1

Table 1: Stratified sampling results aggregated over
sample sizes from 5%—-50%. Segment allocation is re-
ferred to as ‘prop’ for proportional- and as ‘opt’ for
optimal-allocation with either document-based (docs)
or metric-based (metrics) bin membership.

We begin by evaluating the stratified sampling
methods described in section 2.1, comparing strati-
fication over documents and over bins defined by
metric scores. The latter were formed by scoring
each segment with an average of the standardized
metric scores assigned to it, then sorting and par-
titioning so each bin contained approximately 80
segments (8x larger than the average document).
More elaborate clustering and metric-selection
techniques did not improve over this method. Per-
formance was also quite flat as a function of bin
size, though it worsened as bin size approached av-
erage document size. We tested both stratification
methods with proportional and optimal allocation
using averaged metric scores as proxies for human
scores when estimating the variance in each bin.

Figure 2 shows absolute error for these methods
as a function of sample size, and Table 1 summa-
rizes aggregate performance across sizes. The gen-
eral pattern is similar for both language pairs: pro-
portional allocation with documents (docs-prop)
outperforms the random-sampling baseline; pro-
portional allocation with metrics (metrics-prop) be-
haves similarly; and optimal allocation with docu-
ment bins (docs-opt) underperforms, as does opti-
mal allocation with metric bins (not shown, as it is
much worse). Optimal allocation focuses sharply
on bins with high estimated variance—which will
be harmful if the estimates are wrong—so we ex-
perimented with various smoothing methods, but
none improved over pure proportional allocation.

Although stratification clearly reduces the error
on average, the usefulness of this result is tempered
by the large variances shown in Table 1. For any
given random draw, these imply that the stratified
estimate is only slightly more likely to be better
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than the baseline. Even when comparing errors av-
eraged over 100 random draws per simulation, the
stratified estimates are only better than the baseline
for approximately 75% of simulations for English-
German, and 90% for Chinese-English.

Incremental sampling

method ‘ abs error  sdev win %
EnDe baseline 0.171  0.128 —
docs-incr-metrics 0.183 0.132 44.1
docs-incr-human 0.231 0.143 26.7
ZhEn  baseline 0.290 0.217 -
docs-incr-metrics 0.346 0.239 25.4
docs-incr-human 0.418 0.251 27.4

Table 2: Incremental stratified sampling results aggre-
gated over sample sizes from 5%—-50%.

Table 2 shows aggregate results for incremen-
tal stratified sampling using documents as bins,
with two methods for estimating per-bin variances
for optimal allocation.® The docs-incr-metrics
method involves learning a k-nearest-neighbor
(k=25) model with standardized metrics as features
on all labeled segments, then using its predictions
to estimate variances for the unlabeled segments
in each bin. In docs-incr-human, the variance of
the segments remaining in each bin is estimated
from the segments that have already been scored.
Both these methods underperform the baseline; in
particular, the use of a learned mapping in docs-
incr-metrics provides only modest gains over the
raw averages in docs-opt.

4.2 Control variates and combined results

method ‘ abs error  sdev win %
EnDe Dbaseline 0.171 0.128 -
cv-bleurt 0.158 0.118 74.3
cv-mean 0.159 0.118 74.8
cv-multi 0.160 0.118 73.3
cv-knn 0.158 0.119 74.1
ZhEn  baseline 0.290 0.217 -
cv-bleurt 0.260 0.193 84.1
cv-mean 0.251 0.188 88.3
cv-multi 0.254 0.188 88.5
cv-knn 0.246 0.185 92.2

Table 3: Control variates results aggregated over sam-
ple sizes from 5%-50%.

We now turn to experiments with the control-
variate estimators described in section 2.2. Figure 3

®We omit the corresponding curves for space reasons.
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English-German Chinese-English
0.40 0.7
T —F— baseline . —F— baseline
0.35 T +— cv-bleurt 0.6 { +— cv-bleurt
0.30 —F— cv-mean T - —— cv-mean
—+— cv-multi 0.5 | —F— cv-multi
S 0.25 —f— cv-knn o T :I: —}— cv-knn
o o 0.4
g 0.20 g
3 o
= = 0.3
2 0.15 2
s s
0.10 0.2
0.05{ = 01 :
0.00 0.0

10 20 30

sample size (% of total)

40 50 10 20 30

sample size (% of total)

40 50

Figure 3: Absolute error and std deviation for different control-variate estimators with random sampling.

method | abserror sdev  win % pecially for English-German. For Chinese-English,
EnDe baseline 0.171 0.128 _ combining all metrics with the knn model improves
docs-prop 0.158 0.118 757 glightly over BLEURT-extended, reducing the ab-
cv-knn 0.158 0.119 741 ¢olute error by 5%. This may reflect somewhat
docs-prop+cv-knn 0.147 0110 885 € oy o7 o /
metrics-prop+cv-knn 0.156 0.116 77.8 higher metric correlations for this language pair.
ZhEn  baseline 0.290  0.217 -~ Ascontrol variate estimation is applied after sam-
docs-prop 0.250 0.187 92.4 .. . . .
cev-knn 0246 0185 920 pling is complete, it is straightforward to combine
docs-prop+cv-knn 0.224 0.167 98.5 it with stratification. Figure 4 and Table 4 show the
metrics-prop+cv-knn 0244 0.182 920 results of combining proportional stratified sam-

pling using documents with the best control vari-
ates estimator (docs-prop+cv-knn), along with the
component techniques for comparison. As one
might hope, the techniques are complementary de-

Table 4: Combined stratified sampling and control vari-
ates aggregated over sample sizes from 5%-50%.

and Table 3 present the results. We derived stan-
dardized scalar variates to plug into equation (3)
from: a single high-performing metric (BLEURT-
extended, cv-bleurt); the mean of all metrics (cv-
mean); and predictions from a knn model learned
from all metric values on the labeled segments (cv-
knn). We also used all standardized metrics directly
(cv-multi) as input to the vector in equation ).
All tested variants give reasonable improvements
over the baseline, with quite similar error rates, es-

"Note that the latter combines scores linearly, in contrast
to the knn model.
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spite their similar individual performance. Interest-
ingly, this is not the case when metric-based clus-
ters are used for stratification instead of documents
(metrics-prop+cv-knn, last line in Table 4), because
the same information is used for both variance-
reduction techniques. The docs-prop+cv-knn com-
bination produces our best results, with error re-
ductions of 14% and 23% over the baseline for
English-German and English-Chinese, and better
average performance in almost 90% and 100% of
simulations, respectively. Unfortunately, however,
the standard deviation of these estimates remains
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Figure 4: Absolute error and std deviation for control-variate estimators and stratified sampling.

uncomfortably close to the size of the average ab-
solute error.

4.3 Error estimation

EnDe ZhEn

size Hoeffding (4) |  Hoeffding (7)

(%) cal slack t cal slack t

10 base | 92 036 0.61 | 89 0.56 0.90
best | 96  0.40 97 049

30 base | 93 0.19 031 | 90 0.29 046
best | 96 0.20 96 0.25

50 base | 92 0.12 020 | 90 0.19 0.30
best | 96  0.13 96 0.16

Table 5: Performance of error bounds for different sam-
ple sizes. Statistics are averaged over simulations: cal
is % of samples for which the true error was lower than
the bound, slack is the difference between the bound
and the error, and ¢ is the bound. base is the baseline
estimator, and best is docs-prop+cv-knn.

Despite large variance across individual samples,
sampling techniques can be useful in practice if it is
possible to reliably bound the error in the estimate
derived from a given sample. We computed the
bounds from section 2.3 for different sample sizes
with docs-prop+cv-knn, setting v = 0.95. Both
the Hoeffding and Bernstein bounds are very loose,
overestimating the true error in 100% of samples,
by margins that are about an order of magnitude
greater than the average error in Figure 4% We
hypothesize that this is due to scores having a large
range R, and being highly skewed, with © < R.

To test this, we recomputed the Hoeffding bound
with empirically-determined R values of 4 and
7 for English-German and Chinese-English. As

8Surprisingly, the Bernstein bound is somewhat worse,
likely due to our small sample sizes in conjunction with the
large multiplier on R in the Bernstein formula.
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shown in Table 5, this gives results which are well
calibrated (cal > 95%) for doc-prop+cv-knn, with
reasonable error bounds. Performance is some-
what worse for the baseline estimates, although the
difference in error between the two techniques is
negligible compared to the predicted bound. This
oracle experiment suggests that it will be difficult to
find non-oracle bounds that are substantially lower
for doc-prop+cv-knn than for the baseline.

4.4 Results on test data

method abserr sdev win %
EnDe baseline 0.203 0.153 -
docs-prop+cv-knn | 0.188  0.140 78.1
ZhEn  baseline 0.359 0.267 -
docs-prop+cv-knn | 0.283  0.212 97.9
EnRu baseline 1.601 1.197 -
docs-prop+cv-knn 1482 1.117 77.3

Table 6: Results on test data for baseline and best com-
bined estimator aggregated over sample sizes from 5%—
50%.

Figure 5 and Table 6 show results comparing
baseline random sampling with docs-prop+cv-knn
on our evaluation set. Both the curves and the ag-
gregate results display a similar pattern to the devel-
opment results, with relatively large gains over the
baseline for Chinese-English (21% relative error
reduction, wins in 98% of simulations), and smaller
ones for English-German and English-Russian” (re-
ductions of 7% and win rates of about 77%). As
before, standard deviations are very high.

Note that the absolute errors are higher for English-
Russian due to the 4x scale for ratings.
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Figure 5: Absolute error for control-variate estimators and stratified sampling on eval data.

5 Discussion

How should we interpret these results? If we had a
more reliable way of binning segments with similar
human ratings, or metrics that correlated better at
the segment level, it would be possible to reduce
variance to levels that would permit realistic error
bounds. That would enable a scenario in which
we could determine the number of segments n that
need to be rated in order to estimate the complete
test-set score to within a given tolerance. As it is,
however, our error bounds are very large—and we
do not manage to reduce them significantly with
improved sampling and estimation methods. This
is unlikely to change soon for complex annotation
tasks like MT because because humans are noisy
raters; as shown in Table 12, they are difficult to
predict even when using other humans as oracles.

In the absence of more reliable signals for re-
ducing variance, a way to make practical use of
the techniques we study is to flip the scenario
around and aim to improve the quality of an esti-
mate made from a fixed budget of n human ratings.
It is common practice to obtain human annotations
for only a portion of a larger test set due to time
or cost constraints (Barrault et al., 2020; Freitag
et al., 2021a). In this setting, our techniques can
lead to improved estimates compared to just taking
the mean of randomly-selected segments (although
there is no guarantee that they will do so for any
given sample).

The risks in applying this strategy are low. Strati-
fied sampling with proportional allocation provides
an unbiased estimate of the test-set mean, with vari-
ance that is < random sampling (Rice, 2007), and
equality only in the case that the bins have identi-
cal statistics. The situation is trickier for control
variates. In theory, the control-variate estimator is

also unbiased, with lower variance than the sam-
ple mean, but this assumes that the test-set covari-
ance Cov(X, Z) between scores X and the auxil-
iary variable Z is known. Since we only know the
scores in the sample, we must rely on an estimate
for Cov(X, Z), creating the possibility for errors
if this is significantly larger than the true covari-
ance. However, as Chaganty et al. (2018) point
out, the error in the sample estimate for Cov(X, 2)
diminishes as 1/n, much faster than the 1//n rate
for the error |px — fi| in the estimated score. In our
data, we found no appreciable degradation of per-
formance on small samples, even ones containing
as few as 30 items.

Based on these observations, we can make the
following recommendations for improving the esti-
mated mean score of a test set containing NV items
given a fixed number n < N of items to be manu-
ally annotated:

1. Use prior information such as document mem-
bership to partition items into bins, then
choose items using stratified sampling as de-
scribed in equation (1), with proportional allo-
cation. Beware of rounding errors when only
a few samples are taken from each bin.

2. Use an automatic metric or other feature that
correlates with human scores as a control vari-
ate in equation (3). This step is carried out
after sampling is complete, and is independent
of the sampling method used. If multiple met-
rics are available, combine them into a single
variate by averaging or applying a smooth re-
gressor learned on the sample (knn with k=25
worked well for us). Be alert to the possibility
of errors in the covariance estimate when n is
small (< 30).
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6 Related Work

Chaganty et al. (2018) pioneered control variates
for NLP evaluation, using them to improve esti-
mates for summarization and question answering.
Despite some technical differences—they measure
variance ratios rather than absolute error, simulate
human variance by sampling from a collection of
raters, and use bootstrapped confidence intervals—
their findings are roughly in line with ours. We
extend their work by showing that gains from strat-
ified sampling are complementary to those from
control variates, and explore a broader range of
scenarios, including using multiple variates and
incremental sampling.

Recent work has investigated incremental label-
ing tasks and/or combining human scores with auto-
matic metrics. Mendonga et al. (2021) apply online
learning algorithms to an MT system-ranking task
in which different segments are selected for hu-
man evaluation on each iteration, using COMET
to fill in missing human scores in WMT 2019 data.
Their algorithm converges to correct results after
several hundred iterations, but this condition is not
detected automatically. Thorleiksdéttir et al. (2021)
use Hoeffding’s inequality to measure confidence
in pairwise ranking decisions of varying difficulties
for controlled text generation output; they consider
human scores only. Singla et al. (2021) sample
foreign-language test responses for human grading,
with the aim of improving over purely automatic
scoring; a reverse problem to ours. Hashimoto
et al. (2019) propose a synergistic combination of
human and automatic scoring for evaluating text
generation.

Finally, there has been considerable work on
measuring and rectifying inaccuracies in human an-
notation (Sun et al., 2020; Wei and Jia, 2021; Glad-
koff et al., 2021; Paun et al., 2018). We sidestep
this issue by aiming to predict the performance
of a single human rater, assuming that if this can
be done accurately, conflicts among raters can be
resolved in a post-processing step.

7 Conclusion

We investigate two classical variance-reduction
techniques for improving the accuracy of sampled
human ratings of MT output, measured against the
mean of all ratings for a given test set. We find that
stratified sampling and control variates are comple-
mentary, contributing about equally to gains of up
to 20% in average absolute error reduction com-
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pared to random sampling. Exploiting this result
to dynamically reduce annotator effort given a tar-
get error tolerance is not feasible due to the high
variance in our data, but we propose that our tech-
niques could instead be used to improve estimates
made from a fixed annotation budget. Concrete
recommendations for this scenario are provided in
section 5. Our method is easy to implement, and
can be applied to any setting involving averaged
numerical item-wise scores where document (or
other prior grouping) and automatic metric side
information is available.

In future work we look forward to delving into
questions raised by our results: why doesn’t opti-
mal allocation work better, particularly in the incre-
mental setting; is there a better way to estimate vari-
ance from metrics; why aren’t metric combinations
more helpful; and can error bounds be improved,
perhaps with bootstrapping methods?
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EnDe ZhEn
rater segs docs | segs docs

raterl 713 64 | 993 76
rater2 683 66 | 992 76
rater3 705 66 | 1012 78
rater4 709 65 | 996 79
rater> 722 64 | 1021 77
rater6 722 65 | 986 79

corpus | 1418 130 | 2000 155

Table 7: Numbers of segments and documents anno-
tated by each rater for each system in WMT 2020 new-
stest.

EnDe ZhEn
system MQM ‘ system MQM
Human-B 0.75 | Human-A 3.43
Human-A 0.91 | Human-B 3.62
Human-P 1.41 | VolcTrans 5.03
Tohoku 2.02 | WeChat 5.13
OPPO 2.25 | Tencent 5.19
eTranslation 2.33 | OPPO 5.20
Tencent 2.35 | THUNLP 5.34
VolcTrans 2.45 | DeepMind 5.41
Online-B 2.48 | DiDi_NLP 5.48
Online-A 2.99 | Online-B 5.85

Table 8: MQM scores for WMT 2020 outputs from
(Freitag et al., 2021a). Scores range from O (perfect)
to 25 (worst). The reference used for metrics is shown
in bold.

A Data

This section gives details of the development and
test data used in our experiments. Table 7 shows
the numbers of segments and documents assigned
to each rater in our development data. Table 8
contains the scores assigned to all ten evaluated
systems; each score is an average of three rater
scores per segments, averaged over all segments
in the test set. Table 9 lists the selected metrics
used for the development-set experiments, along
with the segment-level Pearson correlation for each
metric. Tables 10 and 11 contain rater assignments
and system scores for the three language pairs used
in the test data.
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EnDe ZhEn

metric T metric r

BLEURT-extended 0.410 | COMET-QE 0.465
COMET-2R 0.379 | BLEURT-extended 0.460
COMET-MQM 0.364 | YiSi-2 0.453
COMET-QE 0.358 | COMET-2R 0.452
COMET 0.349 | BERT-base-L2 0.446

COMET-HTER 0.326 | OpenKiwi-XLMR  0.440
OpenKiwi-XLMR  0.314 | BERT-large-L.2 0.440

mBERT-1.2 0.306 | BLEURT 0.437
prism 0.293 | COMET 0.433
YiSi-1 0.279 | mBERT-L2 0.425
target-length 0.223 | target-length 0.439

Table 9: Segment-level Pearson correlations between selected automatic metrics and MQM ratings on system
outputs from WMT 2020 newstest. The correlations shown are computed separately for each rater and system
(excluding human outputs), then averaged.

EnDe ZhEn EnRu
rater ‘ segs docs ‘ segs docs ‘ segs docs
rater 527 32 1 650 51| 527 32
corpus | 1002 68 | 1948 156 | 1002 68

Table 10: Numbers of segments and documents annotated by each rater for each system in WMT 2021 newstest.

EnDe ZhEn EnRu

system MQM ‘ system MQM ‘ system MQM
ref-C 0.51 | ref-B 4.27 | ref-A 99.65
ref-D 0.52 | ref-A 4.35 | ref-B 98.40
ref-B 0.80 | metricsysteml 4.42 | Facebook-Al 92.75
VolcTrans-GLAT 1.04 | metricsystem4 4.62 | Online-W 91.80
Facebook-Al 1.05 | NiuTrans 4.63 | metricsystem4  91.25
ref-A 1.22 | SMU 4.84 | metricsystem5  90.88
Nemo 1.34 | MiSS 4.93 | metricsysteml  90.79
HuaweiTSC 1.38 | Borderline 4.94 | metricsystem2  89.86
Online-W 1.46 | metricsystem?2 5.04 | Online-A 87.87
UEdin 1.51 | DIDI-NLP 5.09 | Nemo 87.50
eTranslation 1.70 | HE-MT 5.14 | Online-G 87.22
VolcTrans-AT 1.74 | Facebook-Al 5.21 | Manifold 86.86
metricsystem4 2.05 | metricsystem3 5.39 | Online-B 85.66
metricsystem1 2.07 | Online-W 5.57 | metricsystem3  85.65
metricsystem3 2.27 | metricsystem5 6.39 | NiuTrans 83.47
metricsystem?2 2.58 Online-Y 79.27
metricsystemS 2.61

Table 11: MQM scores for WMT 2021 outputs from (Freitag et al., 2021b). Scores range from 0 (perfect) to 25
(worst), except for English-Russian, where they range from 0 (worst) to 100 (perfect). The reference used for
metrics is shown in bold.
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B Variabililty in human scores

A difficulty in predicting human ratings is that hu-
mans are noisy annotators (Wei and Jia, 2021). To
quantify the noise in our data, we computed the
error when predicting each rater’s average score
over their assigned segments using the average
of the other two raters who also rated those seg-
ments. Table 12 shows that this varies substantially
across raters and languages, with the hardest-to-
predict rater’s error being over 3x that of the easiest-
to-predict rater in both languages, and Chinese-
English errors being higher than English-German.
(Variance across raters may be due in part to dif-
ferences in their assigned subsets of segments, as
some segments are harder to rate than others. Vari-
ances across languages is likely due to Chinese-
English system scores being higher (worse) than
German-English scores.) Comparing the aver-
age errors of 0.3 and 0.8 for English-German and
Chinese-English to Figure 4, we observe that only
a small number of samples (less than 10%) of a
particular annotator’s own ratings are sufficient to
predict their test-set score with greater precision
than knowing the average of other raters’ scores
over the whole test set (a rough proxy for the “true”
test-set score).

A key element of our technique is using auto-
matic MT metrics to predict human scores at the
segment level. Figure 6 shows scatter plots for a
single high-performing metric (COMET) that il-
lustrate the challenges with this: the relation with
MQM scores is noisy and non-linear, and there
are extreme outliers due to segments that were as-
signed the worst possible MQM score. Further-
more, as indicated by the slope of the regression
lines, the relation can vary substantially across dif-
ferent settings, even for different systems scored
by a single rater, or for the same system scored
by different raters. This implies that a strategy of
pre-calibrating a particular metric on data that is
independent of the current rater and system is likely
to be ineffective for our problem.
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EnDe | ZhEn
raterl 0.13 0.37
rater2 0.22 | 0.60
rater3 0.47 0.38
rater4 0.32 1.55
raterS 0.14 1.40
rater6 0.33 | 0.69
avgs | 027 | 083

Table 12: Absolute errors when predicting each rater’s
score from the average of other raters’ scores. Numbers
shown are averages over all systems and all segments
annotated by the given rater.
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Figure 6: Example WMT20 EnDe human MQM versus COMET scores for the same rater but different MT systems
(top panels), and different raters but the same MT system (bottom panels). Each point represents a single segment,
and the lines show the best linear fit. Errors are average absolute segment-level differences between the line and

the points.
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