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Abstract
Sense repositories are a key component of many NLP applications that require the identification of word senses, a task
known as word sense disambiguation. WordNet synsets form the most prominent repository, but many others exist and
over the years these repositories have been mapped to each other. However, there have been no attempts (until now)
to provide any theoretical grounding for such mappings, causing inconsistencies and unintuitive results. The present
paper draws on category theory to formalise assumptions about mapped repositories that are often left implicit, providing
formal grounding for this type of language resource. We introduce notation to represent the mappings and repositories as a
category, which we call a sense system; and we propose and motivate four basic and two guiding criteria for such sense systems.
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1. Introduction
Sense repositories are a key language resource for
word sense disambiguation (WSD), semantic infer-
ence, specifying lexical relations, and other down-
stream tasks like question answering. For these pur-
poses, researchers have created many sense reposito-
ries with varying levels of granularity, along with map-
pings between them. In particular, the popular Word-
Net synsets (Miller et al., 1990; Fellbaum, 1998) have
been mapped to many coarser-grained repositories.
The value of systematically mapped repositories has
been repeatedly shown (Navigli, 2006; Palmer et al.,
2007). However, the particular characteristics of the
mappings produced are often the byproduct of practi-
cal or engineering decisions, instead of being motivated
by theoretical considerations. For example, clustered
senses are restricted to one cluster per sense, whereas
senses that are mapped to domain labels do not have
this restriction and are often associated with multiple
labels. Additionally, the lack of constraints on map-
pings often results in problems during implementation.
For example, converting sense labels in a corpus from
one type to another (e.g. synsets to domain labels)
is not always consistent, because sometimes there are
several correct labels.
The present paper provides the theoretical grounding to
allow for more systematic understanding of mappings
and how they might assist researchers in solving tasks
such as WSD. As far as we know, no such theory has
been proposed before. Our contributions are twofold:

1. Drawing from category theory, we formalise
mapped sense repositories as a category which we
call a sense system; and

2. Using category theoretic notation, we propose and
formally describe criteria for such a sense system.

* Both authors contributed equally.

We hope that future researchers building or adapting
sense repositories and mappings will find it useful to
consider how their new language resource fits into our
framework, and adjust their methodology accordingly.
In the following sections, we first discuss the existing
literature on sense repositories and mappings between
them. We then introduce sense systems and present
the surrounding category-theoretic notation. With these
foundations in place, we propose and provide motiva-
tion for basic and guiding criteria for such sense sys-
tems.

2. Previous work
2.1. Word Sense Disambiguation
As suggested, word sense disambiguation (WSD), i.e.
picking the correct sense of a word in a context, is one
of the most prominent uses of sense repositories. Typ-
ically, a WSD classifier1 selects from a pre-determined
and enumerative repository of candidate senses (Nav-
igli, 2009).
Different NLP techniques for WSD have been devel-
oped over the years, including approaches based on lex-
ical similarity, graphs, and supervised learning. Lesk
(1986) offers an influential lexical similarity approach,
which uses a) the overlap between context of the word
to be disambiguated, and b) the dictionary entry of can-
didate senses, in order to select a sense. Graph-based
approaches make use of the graph structure of some
sense repositories such as WordNet and BabelNet to
select senses (Moro et al., 2014).
In recent years, machine learning has become the dom-
inant approach. WSD is treated as a supervised clas-
sification task, where a trained model selects from a
pre-determined list of senses. Earlier methods depend
on extracting feature vectors (Zhong and Ng, 2010; Mi-
halcea and Faruque, 2004), while later methods make

1We refrain from using the term word sense disambigua-
tion system in this paper to avoid any confusion with sense
systems.
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Figure 1: Graph showing mappings between select repositories. ... denotes further possible mappings.

use of word embeddings (Mikolov et al., 2013) and
shifted towards neural approaches (Kågebäck and Sa-
lomonsson, 2016; Vial et al., 2019; Wiedemann et al.,
2019), giving rise to some of the best performing mod-
els in WSD. Word embeddings have also been used as
features for non-neural machine learning methods (Ia-
cobacci et al., 2016), as well as more traditional lexical
similarity approaches (Oele and Noord, 2017).

2.2. Sense representations
Sense repositories are sets of word senses, i.e. repre-
sentations of lexical meaning. Existing sense repos-
itories range widely in terms of how senses are rep-
resented and how fine-grained they are. Sense repre-
sentations can be roughly divided into 4 types: dictio-
nary definitions, clusters, domain labels, and embed-
ding vectors.

1. Dictionary definitions typically consist of a piece
of text describing the sense in question. A dic-
tionary is an enumerative listing of such senses,
though in practice such a list is unlikely to be ex-
haustive. WordNet (Miller et al., 1990; Fellbaum,
1998), one of the most widely used sense reposi-
tory in WSD, is a prime example of a dictionary-
like repository: it consists of gloss definitions,
each of which is linked to a set of corresponding
synonymous words, called a synset.

Outside of WordNet, there are many reposito-
ries where senses are represented as definitions.
For example, BabelNet (Navigli and Ponzetto,
2012), MultiWordNet (Pianta et al., 2002), and
EuroWordNet (Vossen, 1998) are three multilin-
gual repositories similar to WordNet; and many
conventional dictionaries like the Longman Dic-
tionary of Contemporary English (LDOCE) and
the Oxford Dictionary of English (ODE) have also
been used for WSD. Due to the popularity of
WordNet, much of the WSD work cited in this pa-
per pertains to mappings from WordNet, but many

of the techniques can be applied to other reposito-
ries as well.

2. Clusters of senses are obtained by grouping fine-
grained senses by various metrics, which typi-
cally approximate semantic similarity. For exam-
ple, the semantic relations encoded in WordNet
have been used to cluster WordNet synsets (Pe-
ters et al., 1998; Vial et al., 2019; Izquierdo et
al., 2007); similarly, Dolan (1994) clustered def-
initions from the LDOCE according to semantic
information extracted from the dictionary; Agirre
and Lacalle (2003), working on clustering Word-
Net synsets, investigated 4 different sources of in-
formation to measure similarity: topic signatures,
confusion matrices, translation equivalences, and
the context of occurrence.

Senses within a cluster can be represented as dic-
tionary definitions, embedding vectors, or other-
wise — crucially, there is no unified way of de-
termining its semantic content, as it often depends
on the clustering technique. For example, clus-
ters that are formed from hypernym/hyponym re-
lations have explicit, shared semantic content, be-
cause each cluster member is a hyponym of the
highest level hypernym. In other cases, such as
WordNet synsets clustered according to confusion
matrices, there may not be any semantic content
explicitly associated with each cluster.

3. Domain labels are very coarse-grained senses
represented by a word or short phrase that denotes
a topic domain, such as biology, economics, etc.
Domain label repositories aim to cover the largest
semantic space with the fewest possible domain
labels (Lacerra et al., 2020; Izquierdo et al., 2007).

Mappings to domain labels can be determined
manually, automatically, or both. For exam-
ple, Magnini and Cavaglia (2000) began with a
small set of manual annotations, then extended
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them automatically based on a semantic hierar-
chy; Camacho-Collados and Navigli (2017) pro-
duced their mappings according to similarity met-
rics and other heuristics, then evaluated a subset
according to manual annotations. Many dictio-
nary repositories like WordNet and the LDOCE
also comes with manually annotated domain la-
bels.

Unlike clusters, there is no way to ensure that all
fine-grained senses can be mapped to a substantive
domain, so a miscellaneous or “catch-all” label
is sometimes used for uncategorised senses. For
example, the WordNet Domains Hierarchy (Ben-
tivogli et al., 2004) contains the label “factotum”
for when no better label is available. Additionally,
it is possible for fine-grained senses to be mapped
to multiple domain labels.

4. Embedding vectors represent senses as a dense
vector. Early word embedding techniques like
Word2Vec (Mikolov et al., 2013) produce one em-
bedding per word type, but later techniques such
as ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2019) can be used to produce contex-
tualised embeddings, which are effectively very
fine-grained senses. Scarlini et al. (2020a; Scar-
lini et al. (2020b) have also created embeddings
for WordNet synsets.

2.3. Mapping sense repositories
Most work on mapping sense repositories is motivated
by a common concern: that WordNet synsets are too
fine-grained to achieve reasonable results on the WSD
task (Ide and Wilks, 2007; Lacerra et al., 2020). Some
researchers advocate for multiple levels of grain, so that
downstream applications are free to select the level as
appropriate. For example, Palmer et al. (2004) em-
ploy WordNet synsets, synset groupings, and framesets
as three repositories at different levels of grain. It has
been argued that there is no single correct repository of
senses that is independent of the use case (Kilgarriff,
2003).
It has been established that using multiple mapped
repositories can improve the performance on the WSD
task, demonstrating the practical value of mappings.
Navigli (2006) clustered WordNet synsets based on
partial mappings to the Oxford Dictionary of English,
and showed that this mapping-based clustering im-
proved the performance on the WSD task. Similarly,
Palmer et al. (2007) showed that the possibility of
backing off to coarse-grained sense groups improves
WSD, further supporting the usefulness of mapping
sense repositories of different grain.
None of this work, however, provides general theoret-
ical grounding and restrictions for the mappings be-
tween multiple sense repositories. Formal features
such as the transitivity of mappings are more often
the result of practical exigencies and methodological

choices rather than theoretical motivations. For ex-
ample, some WordNet synsets were mapped to the
Coarse Sense Inventory (CSI) indirectly via BabelDo-
mains (Lacerra et al., 2020), suggesting that sense map-
pings are transitive. The present paper will make such
implicit assumptions explicit using category theory.

3. Formal notation for a sense system
We introduce the term sense system to denote an inter-
connected system of sense repositories and mappings.
We represent a sense system as a small category S,
where the object set of S, denoted by Ob(S), is a set
of sense repositories; and the homomorphism set or
hom-set of S, denoted by Hom(S), is a set of map-
pings between these repositories. The set of mappings
from repository R to repository R′ in S is denoted
by the hom-set HomS(R,R′). The general hom-set
Hom(S) is the union of all these repository-specific
hom-sets.
Note that each R in Ob(S) only contains senses – other
information such as word type exists separately (see
Section 4.1.2) and we make no assumptions about the
form or content of the senses themselves. Our sense
system representation will be applicable regardless of
whether the senses are dictionary definitions, embed-
dings, domain labels, or otherwise.
As a category, S has the following two properties:

1. Hom(S) is closed under function composition.
If, in Hom(S), R is mapped to R′ and R′ is
mapped to R′′, then there must be some composite
mapping that maps R to R′′ in Hom(S).

2. Each repository in Ob(S) has an identity func-
tion id in Hom(R,R) mapping R to itself.

Both of these properties are trivially fulfilled by the
common understanding of sense mappings.
We conceptualise each mapping as a way of converting
a label from one repository to another label from an-
other repository. For example, if WordNet synsets are
mapped to WordNet Domains, one could take a corpus
like SemCor (Landes et al., 1998), which is labelled
with WordNet synsets, and convert the synset labels to
Domain labels.
Since there can be multiple ways of converting, in prin-
ciple multiple mappings from one repository to another
can coexist. For example, the WordNet 2.0 synset
for amethyst is linked to three WordNet Domain la-
bels, as seen in Figure 2. When encountering the word
amethyst in SemCor, one could select a label randomly,
or according to some arbitrary order, or by frequency,
etc. Each of these methods would correspond to a dif-
ferent mapping between the two repositories.
Mappings in Hom(S) have the following properties:

1. Mappings are unidirectional. A mapping from
R to R′ does not entail a mapping from R′ to R.

While this property is often assumed, it is not
always made explicit. For example, WordNet
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Figure 2: Example mapping from the WordNet 2.0 synset for amethyst to WordNet Domains.

synsets are often mapped to domain labels or clus-
ters that are coarser-grained, making it impossible
to reverse the mapping.2 Therefore, repositories
are typically mapped from finer-grained ones to
coarser-grained ones, not vice versa. Bidirectional
mappings would only be possible between repos-
itories that are of equal grain and mapped one-to-
one to each other, e.g. when embeddings are cre-
ated specifically for WordNet synsets (Scarlini et
al., 2020a).

2. Mappings are not multivalued. That is, each
mapping in HomS(R,R′) maps each sense in R
to at most one sense in R′, though multiple senses
in R can be mapped to the same sense in R′.
This is consistent with the idea that mappings rep-
resent a way of converting labels (as suggested
above), because each conversion method takes
one input and gives only one output.

3. Mappings are total functions. A mapping from
R to R′ ensures that all senses in R are mapped to
at least one sense in R′.
In practice, there are some cases where mappings
are not total. For example, Navigli (2006) par-
tially mapped WordNet synsets to definitions in
the Oxford Dictionary of English, leaving synsets
that are not mapped to any ODE senses. There
may also be repositories that were built for a re-
duced vocabulary, such as dictionaries for learn-
ers, or repositories that only contain certain types
of words, such as English verbs (Green et al.,
2001).
For the purposes of this theory, we follow Navigli
(2006), Navigli and Ponzetto (2012), etc. and use
ϵ as a null value, so senses that are not mapped to
anything are instead mapped to ϵ.

The category theoretic properties described in this sec-
tion will be assumed throughout this paper. Formalis-
ing a sense system as a category posits very minimal

2One notable exception to this is the sense compression
technique developed by Vial et al. (2019), which allows for
mappings from coarse to fine senses in virtue of the way they
were produced.

assumptions about sense repositories and their map-
pings, and should therefore be applicable to most ex-
isting sense systems.
However, such a flexible representation of sense sys-
tems is not very informative. Previous work on map-
ping repositories often impose further assumptions, re-
sulting in sense systems that are more useful and in-
formative. In the following sections, we formally de-
scribe these assumptions and formulate them as basic
and guiding criteria for sense systems.

4. Basic criteria for sense systems
In this section, we formalise and motivate 4 basic cri-
teria for sense systems. These criteria capture linguis-
tic intuitions that are often implicitly assumed, while
simultaneously accounting for downstream application
concerns.

1. Correctness preservation: Mappings should
preserve the correctness of sense labels in all
contexts.

Intuitively, if the correct sense for a word token is
mapped to another sense, this sense should also be
correct. To formalise this criterion, we postulate
the existence of a WSD oracle Ω, which evaluates
to 0 or 1 depending on whether a given word token
in a usage context has a given sense. Note that Ω
makes no assumption about the number of correct
senses.

We formalise the preservation of correctness as
follows:

∀R,R′ ∈ Ob(S)

∀m ∈ HomS(R,R′)

∀s ∈ R

∀t ∈ T

Ω(t, s) = 1 ⇒ Ω(t,m(s)) = 1

(1)

where t denotes any given word token from the set
of tokens T covered by both R and R′.

2. Candidacy preservation: Mappings should
preserve the lexical candidacy of sense labels.
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To introduce the concept of candidacy, we distin-
guish word types from word tokens: word tokens
are words in a usage context; word types, also
known as a lemma, refer to the abstract notion of
a word, and is independent of morphological vari-
ants.

We postulate that word types exist separately for
each repository R as the set WR, which are
mapped to senses in R like in a dictionary, i.e.
each word type is associated with a set of candi-
date senses. We formalise this dictionary function
as dR : WR → P(R), where P(R) denotes the
power set of R.

For a sense s in R to be a candidate for a word
type w, the dictionary function dR must map w
to a set that contains s. For example, in Word-
Net 3.1, the word manuscript is mapped to the set
of two synsets: “the form of a literary work sub-
mitted for publication”, and “handwritten book or
document”. Both of these senses are candidates of
manuscript.

Having introduced the dictionary function, candi-
dacy preservation can then be formulated as fol-
lows: if a sense s that is a candidate for a word
type w is mapped to another sense, that sense must
also be a candidate for w. Formally,

∀R,R′ ∈ Ob(S)

∀w ∈ (WR ∩WR′)

∀m ∈ HomS(R,R′)

s ∈ dR(w) ⇒ m(s) ∈ dR′(w)

(2)

3. Uniqueness criterion: There should be at most
one mapping from one repository to another.
The uniqueness criterion states that for each pair
of repositories R and R′, there is at most one
mapping from R to R′, and at most one mapping
from R′ to R, making S a posetal or thin cate-
gory. Note that this criterion is direction-sensitive,
so for each pair of repositories, there can be at
most two mappings, one in each direction. For ex-
ample, SensEmBert embeddings are mapped one-
to-one to WordNet synsets, and vice versa. This
criterion prevents WordNet embeddings from be-
ing mapped to a different WordNet synset, or vice
versa.

Formally:

∀R,R′ ∈ Ob(S) |HomS(R,R′)| = 1 (3)

4. Connectivity: A sense system should be a con-
nected category.
The connectivity criterion states that S is a con-
nected category, i.e. all repositories in Ob(S) and
their mappings in Hom(S) must form a single
connected graph. For example, WordNet synsets

are mapped to CSI labels, but neither are mapped
to or from, say, the Macmillan English Dictionary.
This means that the sense system formed by these
three repositories does not fulfil the connectivity
criterion.

Formally, for any two repositories R and
R′ in Ob(S), there is a sequence R =
R0, R1, R2, ... Rn = R′ where (R0, ..., Rn) ∈
Ob(S), and for each i up to (but not includ-
ing) n, there is at least one mapping in either
HomS(Ri, Ri + 1) or HomS(Ri + 1, Ri).

4.1. Motivation
4.1.1. Correctness preservation
This criterion is endorsed by virtually all existing map-
pings. Without this assumption, existing mappings
would be unusable. Nonetheless, repositories occa-
sionally contain errors, particularly ones which are au-
tomatically mapped. Because of this, manual annota-
tions are more highly valued (Pradhan and Xue, 2009),
while automatically mapped repositories are often eval-
uated afterwards to reveal errors. For example, Seppälä
et al. (2016) checked their automatically generated
mappings against their manually identified mappings
for medicine-related words, and discovered that only
85% were correctly identified automatically. They also
found two “obvious mistakes” made during manual an-
notation, which were promptly corrected.
Since mappings are not multivalued (section 3), pre-
serving correctness allows us to cross-check labelled
data for any inconsistencies. Using the word mouse
as an example, one annotator or classifier might se-
lect the WordNet synset referring to the rodent, and an-
other might select the WordNet Domain label of “com-
puter science”. Since the rodent synset is not mapped
to “computer science”, we know (by modus tollens)
that there was a disagreement between the two annota-
tors/classifiers, even though they make use of different
sense repositories.
Note that the correctness preservation is only defined
with respect to the selection of the correct sense, but
does not place any restrictions on candidacy and word
type.

4.1.2. Candidacy preservation
Candidacy preservation is intuitive from a semantic
perspective. If a word sense s is mapped to a semanti-
cally more encompassing word sense s′, it must be the
case that this broader sense is also a candidate. This
criterion is trivially fulfilled by clustering-based ap-
proaches, but is not typically explicitly stated for repos-
itories.
A violation would only occur if an instance of a word
type could carry the sense s without also being able to
carry s′ in any context. Such a violation would sug-
gest that s′ has some semantic specificity that s lacks.
For example, the WordNet synset mind.n.01 (with
the gloss definition “that which is responsible for one’s
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Figure 3: Mappings for WordNet synsets, WordNet
Domains, and WordNet Topics have been created. By
the compositionality of morphisms and the uniqueness
criterion, n ◦m = p.

thoughts and feelings; the seat of the faculty of rea-
son”) is a candidate sense for the word types brain,
head, psyche, and nous. If this synset is mapped to a
domain label called “anatomy”, it would be a violation
of candidacy preservation, because “anatomy” is not a
candidate sense for “psyche” or “nous”.
Relatedly, candidacy preservation is required for a
straightforward way of comparing granularity levels for
each word type: by counting the number of senses.
For example, WordNet 3.1 contains 42 senses for head,
while the online Oxford Learner’s Dictionary contains
20. If we map all of WordNet’s synsets to OLD en-
tries and preserve candidacy, we can postulate that the
20 senses are coarser-grained than the 42 in WordNet.
On the other hand, if we do not preserve candidacy, it
may be the case that semantic content was lost in ap-
plying the mapping, and hence the fewer senses of the
Oxford Learner’s Dictionary might not be more coarse-
grained, but just leave semantic gaps.

4.1.3. Uniqueness
For many existing mappings that were produced
through clustering (Dolan, 1994; Vial et al., 2019),
the uniqueness criterion is assumed implicitly, because
each sense can belong to at most one cluster. The same
is true for embedding-based senses that are mapped
one-to-one to a dictionary-based repository.
However, there are other types of mappings that do
not fulfil this criterion. As mentioned in Section 3,
WordNet Domains maps the synset for amethyst to the
domains of “chemistry”, “geology”, and “jewellery”.
Similarly, the Coarse Sense Inventory (CSI) (Lacerra
et al., 2020) maps the synset for abbatoir to “craft, en-
gineering, and technology”, “art, architecture, and ar-
chaeology”, and “food, drink, and taste”.
We argue that enforcing the uniqueness criterion pro-
vides several benefits:

1. Repositories in S would form a partial preorder,
which would roughly correspond to the notion of
granularity. Since mappings are total and cannot
be multivalued, the range (or image) of the map-
ping must have cardinality less than or equal to
that of the domain. The cardinality thus reflects
a notion of granularity that is measured numeri-

cally.3

2. There would be more consistency when convert-
ing between labels. For example, Izquierdo et al.
(2007) mapped each WordNet synset to one Base
Level Concept (BLC), so one could consistently
convert from the former to the latter. A WSD
tool or downstream application that uses BLC-
annotated corpora can automatically make use of a
WordNet-annotated corpus such as SemCor (Lan-
des et al., 1998), because the labels can be directly
converted into BLCs.

3. In a similar vein, evaluation metrics that depend
on converted labels would be more reliable. A
WSD classifier using BLCs can easily be evalu-
ated according to SemCor, because there is only
one correct BLC that each word is mapped to. On
the other hand, if WordNet synsets are mapped to
multiple BLCs, it is not clear how the classifier
should be evaluated. The BLCs might all be con-
sidered correct, resulting in inflated scores; or if
a random one is chosen, the scores may not accu-
rately reflect the classifier’s performance.

4. In conjunction with function composition (see
Section 3), the uniqueness criterion would also
enforce transitivity. Consider WordNet synsets,
WordNet topics, and WordNet Domains in Figure
1: if the mappings between these repositories ful-
fil the uniqueness criterion, there would only be at
most one mapping between each repository, as in
Figure 3. Under function composition, n ◦m = p
(where n, m, and p correspond to mappings in
Figure 3).

One might argue that the domain labels for amethyst
and abbatoir should not be interpreted as separate la-
bels, but instead as a set containing all relevant do-
mains; so one would map WordNet synsets to the
power set of CSI or Domain labels. However, adapt-
ing classifier models (for WSD or otherwise) to handle
multiple labels instead of one is not always straightfor-
ward, so ideally a sense system should only contain sets
of senses, not sets of sets of senses.
Another practical solution is to designate one main CSI
or Domain label for each WordNet synset, so that all
conversions and comparisons will be made according
to one label. This main label could be chosen based on
inter-annotator agreement or frequency or another met-
ric, as long as it is consistent across all synsets. Other
non-designated labels can still be made available for
classifiers that can handle multiple labels.

3This correspondence of course only applies to the range,
but not the whole co-domain. In practice, mappings are usu-
ally surjective (so the co-domain is the range) — exceptions
are limited to newer or more specialised vocabulary. For ex-
ample, English WordNet (https://en-word.net/)
contains the definition of dab that refers to the dance move,
which is not in Princeton WordNet 3.1.

https://en-word.net/
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In either case, formalising the uniqueness criterion ex-
plicitly provides a better understanding of the potential
problems and associated tradeoffs when the criterion is
not met. It also allows researchers to evaluate current
and future repositories according to specific needs and
resources.

4.1.4. Connectivity
Previous work on WSD have focused on building map-
pings between repositories rather than a complete sense
system, so connectivity is rarely assumed. However, in
the few cases where more than two repositories were
mapped (Gella et al., 2014; Palmer et al., 2004), the
resulting sense systems do fulfil the connectivity crite-
rion.
The connectivity criterion on its own is not very in-
formative, but it enables other criteria by extending
their benefits to the rest of the sense system. After all,
an unconnected sense system technically fulfils all the
other criteria in this paper, but is not very useful. As
mentioned above, the previous three criteria each had
their own practical and theoretical benefits: 1) correct-
ness preservation allowing cross-checking; 2) candi-
dacy preservation allowing comparison of grain level;
and 3) uniqueness allowing consistent label conversion.
If the connectivity criterion is fulfilled, these benefits
can be extended to any two repositories in Ob(S).
With a sufficient number of repositories in Ob(S), one
can leverage these benefits on a larger scale, opening
up new opportunities for WSD research. For example,
ensemble classifiers based on different sense reposito-
ries can be built: if there are three WSD classifiers that
use senses from R, R′, and R′′ respectively, their out-
puts can be aggregated and cross-checked, as long as
R, R′, and R′′ are connected to each other in a single
graph.

5. Guiding criteria for sense systems
While all criteria listed in this paper are desirable for
various reasons, the basic criteria are ones which can
be fulfilled both in theory and in practice, while the
guiding criteria may be impossible to fulfil in certain
situations, and should be considered more as approxi-
mate guidelines than strict criteria.
In addition to the 4 basic criteria, we propose two addi-
tional guiding criteria:

1. Non-contradiction: Mappings cannot exist be-
tween senses that semantically contradict each
other.

The non-contradiction criterion forbids mappings
between senses whose (strict) implications contra-
dict each other. Examples of such contradictions
can easily be found in the literature: the word
monograph has (at least) two fine-grained senses,
one referring to the physical printed volume by an
author, another referring to the abstract piece of
work instantiated by such a volume. These two

senses might be mapped to one coarse-grained
sense in a different repository, where it is cate-
gorised as a physical object. Thus arises a con-
tradiction where the fine-grained sense referring
to the abstract work is mapped to a coarse-grained
sense referring to a physical object.

We formalise the non-contradiction criterion as
follows:

∀R,R′ ∈ Ob(S)

∀m ∈ HomS(R,R′)

∀s ∈ R

s ⊨ P ⇒ ¬(m(s) ⊨ ¬P )

(4)

where ⊨ indicates strict entailment and P is any
proposition.

Note that the correctness criterion does not en-
tail the non-contradiction criterion. In the mono-
graph example, the mapping fulfils the correct-
ness preservation because a WSD oracle would
consider the coarse-grained sense to be correct,
despite the contradiction.

2. Inter-annotator agreement: Mappings should
correspond to a partial preorder of inter-
annotator agreement levels.

It has been observed that, when annotating cor-
pora with senses from a given sense repository,
inter-annotator agreement tends to drop when the
repository is more fine-grained (Ng et al., 1999;
Navigli, 2009). Therefore, if R is coarser-grained
than R′, one can expect agreement levels to be
higher when annotating corpora with senses in R,
compared to R′.

We formalise this criterion as follows:

∀R,R′ ∈ Ob(S)

(∃m ∈ HomS(R,R′)) ⇒ (a(R) ≤ a(R′))
(5)

where a refers to the inter-annotator agreement,
defined by a : Ob(S) → R. ∃m ∈
HomS(R,R′) means that there is at least one
mapping from R to R′.

5.1. Motivation
5.1.1. Non-contradiction
Non-contradiction is considered a guiding criterion be-
cause, while it is desirable, it is also a difficult crite-
rion to meet. Firstly, some sense representations (such
as embeddings) do not come with explicit semantics,
so it would be impossible to determine if their im-
plications contradict one another. Secondly, semantic
implications are often subtle and difficult to identify:
even WordNet, a repository known for its fine-grained
senses, does not distinguish the two senses in the mono-
graph example above.
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However, mappings that do meet the non-contradiction
criterion can be useful in downstream tasks that require
natural language inference, such as question answering
or information extraction. For example, with the cor-
rect sense labels, an information extraction tool could
eliminate the possibility of an abstract book having the
same referent as a physical monograph. Alternatively,
mappings that do not meet the criterion might cause
errors in these downstream applications. For the ques-
tion “When was this monograph created?”, a question-
answering system might incorrectly assume the physi-
cality of the object in question, and describe the time
when the monograph was printed instead of when the
text was written.
Some sense repositories that are formed through clus-
tering techniques do not contain any semantic content.
For example, clustering WordNet synsets based on con-
fusion matrices (Agirre and Lacalle, 2003) would cre-
ate clusters that are not explicitly associated with a la-
bel or definition. These mappings trivially fulfil the
non-contradiction criterion. However, there are also
clustering techniques where this criterion does apply:
for example, Navigli (2006) makes use of the hierar-
chical semantic structures in the Oxford Dictionary of
English to cluster WordNet synsets. As a result, the
clusters produced are associated with a textual defini-
tion and other semantic information.

5.1.2. Inter-annotator agreement
We previously demonstrated that mapped repositories
in a posetal sense system (fulfilling the uniqueness cri-
terion) form a partial preorder of granularity. If the
inter-annotator agreement criterion is fulfilled, mapped
repositories would also form a partial preorder of inter-
annotator agreement levels.
This criterion is considered a guiding criterion because,
unlike basic criteria, it cannot be directly enforced
— researchers have no reason to artificially inflate or
lower inter-annotator agreement. Additionally, this cri-
terion cannot be applied to sense representations that
are not used for human annotation, such as word em-
beddings. Nevertheless, this criterion not only reflects
existing expectations for a sense system, but strong vio-
lations suggest that the sense distinctions of the coarse-
grained sense repository are unnatural, i.e. not in ac-
cordance with human linguistic intuitions, since the an-
notators appear to struggle more despite a reduction in
labels.

6. Conclusion
This paper develops a representation of sense systems
as categories, and proposes a list of criteria that serve
as guidelines for future sense repositories and map-
pings. The list is by no means exhaustive, as there are
other properties that may be desirable depending on the
downstream application.
A sense system that fulfils our list of criteria brings
multiple benefits and opportunities to the WSD task:
not only does it provide theoretical grounding for sense

mappings, it also opens up other opportunities to im-
prove existing WSD tools, such as extending them
to ensemble classifiers that can crosscheck annotation
from multiple sense repositories.
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