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Abstract
A widely acknowledged shortcoming of WordNet is that it lacks a distinction between word meanings which are systematically
related (polysemy), and those which are coincidental (homonymy). Several previous works have attempted to fill this gap,
by inferring this information using computational methods. We revisit this task, and exploit recent advances in language
modelling to synthesise homonymy annotation for Princeton WordNet. Previous approaches treat the problem using clustering
methods; by contrast, our method works by linking WordNet to the Oxford English Dictionary, which contains the information
we need. To perform this alignment, we pair definitions based on their proximity in an embedding space produced by a
Transformer model. Despite the simplicity of this approach, our best model attains an F1 of .97 on an evaluation set that we
annotate. The outcome of our work is a high-quality homonymy annotation layer for Princeton WordNet, which we release.
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1. Introduction
Words have multiple meanings that are related to each
other in different ways. Meanings which are system-
atically related are said to exhibit polysemy. One ex-
ample of polysemy is the use of the same wordform to
refer to a product or its producer (Pustejovsky, 1995):

(1) a. John spilled coffee on the newspaper.
b. The newspaper fired its editor.

Aside from such highly productive alternation patterns,
polysemy also includes semi-productive metaphorical
extensions (Lakoff and Johnson, 1980):

(2) a. They adopted a child.
b. The theory was rapidly adopted.

Polysemy exemplifies humans’ ability to flexibly ex-
tend categories to cover new members, which is of
significant interest to researchers in cognitive science
(Lakoff, 1987). These extensions include figurative
uses, like in example (2). The polysemisation of words
also plays a key role in lexical evolution and semantic
drift (e.g. Koch, 2016).
On the other hand, meanings of the same word which
exhibit no systematic relation are described as in-
stances of homonymy.1 These associations are non-
productive, and result instead from language change.
Usually, this occurs when new word senses are bor-
rowed from other languages, and can involve vow-
elshifts and similar transformations. For example, con-
sider the English word bank:

(3) a. I need to get money out from the bank.
b. Let’s sit by the river on the bank.

1This is sometimes called ‘incidental polysemy’, which
is contrasted with ‘systematic polysemy’ (e.g. Pustejovsky,
1995).

The financial sense has its origin in the romance lan-
guages, and the river-edge sense comes from Old
Norse. Another example of homonymy happens when
acronyms become conventionalised, and are ultimately
lower cased (e.g. Personal Identification Number):

(4) a. Put a pin in the hem of the fabric.
b. Never share your credit card’s pin.

Although homonymous meanings are not semantically
related, their presence in a particular language is not
random, and instead may serve a communicative func-
tion (Piantadosi et al., 2012).
WordNet (Miller, 1995) is a popular computational
lexicon. In WordNet, concepts are represented as an
equivalence class of wordforms associated with that
concept, called synsets. WordNet makes no distinction
between polysemy and homonymy. If it did, WordNet
would have the potential to be an ideal repository for
research into these phenomena.
Several researchers have acknowledged this shortcom-
ing of WordNet, and have attempted to produce com-
putational models to synthesise homonymy annotation
for it (e.g. Utt and Padó, 2011; Veale, 2004; Freihat
et al., 2013). We revisit this task using contemporary
methods. By exploiting large language models, we syn-
thesise a high-quality annotation layer for distinguish-
ing between polysemy and homonymy in the English
Princeton WordNet.
More specifically, to identify homonyms in WordNet,
we align it with the Oxford English Dictionary, a his-
torical dictionary of English. In this dictionary, as a
general principle in lexicography, a lemma is defined as
a wordform plus all its polysemous senses. Homony-
mous wordforms are associated with multiple lemmas.
By aligning the senses in WordNet with correspond-
ing senses in the Oxford English Dictionary, we can
work out which lemma they belong to, and thus distin-
guish between senses which are related by polysemy
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  Oxford English Dictionary   

  real1   

1.1 A royal person; a noble person of royal blood. 
1.2 Philosophy. An adherent or advocate of Realism. Frequently
in plural. Obsolete. 
1.3 A real thing; something having (or conceived as having) a real
existence. Frequently in plural. 
1.4 With the. That which actually exists (contrasted with
something abstract, imaginary, counterfeit, or otherwise
insubstantial, or with something ideal). 
1.5 A piece of real property. Obsolete. rare. 
1.6 Mathematics. A real number. Usually in plural. 

  real2   

2.1 In Spain and Spanish-speaking countries: a small silver coin
and money of account (no longer in general use). 
2.2 A former Portuguese coin and monetary unit. 
2.3 The principal monetary unit of Brazil since 1994, equal to 100
centavos; a coin or note of this value.

  Princeton WordNet   

  real   

1 any rational or irrational number 
2 an old small silver Spanish coin 
3 the basic unit of money in Brazil;
 equal to 100 centavos 

Figure 1: Noun definitions of the word real from the PWN (left) and the OED (right)

(same lemma), and those related by homonymy (dif-
ferent lemmas). Previous works that attempted to iden-
tify homonymy in WordNet did so by clustering senses.
An advantage of our linking approach is that figurative
senses can be correctly identified as instances of poly-
semy, even though their meaning might differ radically
from the literal sense they extend.
To align the dictionaries, we compute the sentence em-
beddings of each definition using various Transformer
models (Vaswani et al., 2017), and find the definition in
the Oxford English Dictionary which is closest in em-
bedding space to each WordNet definition. To evaluate
the quality of the model, we annotate a small evaluation
set of 196 words (554 senses). Despite the simplicity of
our unsupervised method, it attains an F1-score of .97
on our evaluation set, indicating that our synthesised
data is high quality.

2. Background
The Princeton WordNet (PWN) is an English compu-
tational lexicon, which maps wordforms to concepts,
which are called synsets (Miller, 1995). Synsets are
associated with a definition and often some example
sentences, and are also linked to each other in a se-
mantic network (consisting primarily of is a and has a
relations). Since its creation, several works have added
additional annotation layers to the PWN (e.g. Mendes
and Chaves, 2001, Puşcaşu and Mititelu, 2008, Amaro
et al., 2006). In research on polysemy and homonymy,
we often want to build rich representations of each
sense, and the PWN is associated with useful resources
for that. One set of resources links synsets with tex-
tual examples, e.g. SemCor (Miller et al., 1994) and

the NTU-MC (Tan and Bond, 2011). Other resources
link synsets to images depicting the synset, e.g. Ima-
geNet (Deng et al., 2009) and BabelPic (Calabrese et
al., 2020).
What the PWN lacks, however, is information which
distinguishes homonymy from polysemy. Consider the
word real, the noun senses of which are shown in Fig-
ure 1. In the PWN (left), the senses appear in a sin-
gle group. In the Oxford English Dictionary (OED),
however, the senses are divided into two separate lem-
mas, real1 and real2 (right).2 The OED is an author-
itative English historical dictionary: unlike the PWN,
which is a contemporary lexicon that shows a snapshot
of current English usage, the OED maps each word-
form to all known senses that it has ever had. Senses
in the same lemma have the same etymology and pro-
nunciation, and are likely derived from each other, i.e.
they are polysemous. Senses in different lemmas likely
bare no systematic relation, i.e. they are homonymous.
The word real exhibits homonymy, but the PWN does
not encode this information.
The problem of separating homonymy from polysemy
in the PWN has been recognised, and several works
have attempted to address it. Because manually anno-
tating this information for all of the PWN would be
expensive, previous approaches have synthesised the
data using computational methods (e.g. Utt and Padó,
2011, Veale, 2004, Freihat et al., 2013). These previ-
ous works all adopt a similarity-driven clustering ap-

2These are the lemmas that result following our
homonymy identification procedure, which is detailed in
§3.1.
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proach to separate homonymy from polysemy. The
problem with this approach is that some polysemous
senses appear “further apart” in semantic space than
homonyms. For example, two polysemous senses con-
nected by metaphor are often extremely different on the
surface (e.g. the body of a human v. the body of a gui-
tar), and so are easily confused with homonymy even
though they are related.
To ensure that instances figurative polysemy are not in-
correctly labelled as homonymy, we use etymological
information for the identification of homonyms. More
specifically, we align WordNet with the OED (red lines
in Figure 1). Our work is most similar to Navigli
(2006), who also aligned the PWN with the OED to
cluster PWN senses. However, while their clustering
was produced for the purpose of Word Sense Disam-
biguation (WSD), we do so for the purpose of research
into polysemy and homonymy; because of these re-
search aims, we coarsen the OED lemmas, as outlined
in §3.1.
The data synthesised by Navigli (2006), originally re-
leased for a 2007 shared task (Navigli et al., 2007),
clusters WordNet 2.1 senses. Since the early time
of this work, many new methodologies for dictionary
alignment have emerged. Several works have aligned
WordNet with other resources, for example Wiktionary
and Wikipedia (Miller and Gurevych, 2014; Meyer and
Gurevych, 2011; McCrae et al., 2012; Navigli et al.,
2021). Recently, a shared task was held on super-
vised monolingual dictionary alignment (Kernerman et
al., 2020); in the English subtask, models were tasked
with aligning the PWN with a publicly accessible ver-
sion of the Webster’s dictionary from 1913 (Ahmadi
et al., 2020). All models participating in the subtask
use a Transformer model (Vaswani et al., 2017) in
some form. Transformer models are sentence encoders,
which produce embeddings for each input token. In our
work, we revisit Navigli (2006), and use Transformer
models to produce a high quality alignment for Word-
Net 3.1.
Finally, we note that while a resource called ‘Etymo-
logical Wordnet’ already exists (de Melo, 2014), this
resource is in fact unrelated to the WordNet project
(Miller, 1995): it is an automatically extracted database
of wordform derivations from Wiktionary.

3. Processing the OED
In this section, we describe how we extract homonymy
data from the OED (§3.1), and then how we collect data
to evaluate model performance (§3.2).

3.1. Extracting Homonyms from the OED
For every wordform with multiple senses in the PWN,
we retrieve the corresponding lemmas from the OED.3

Lemmas in the OED have etymology data associated
with them, in the form of the language family of ori-
gin. Depending on the records available, some lemmas

3Content provided by OED Researcher API, 2022.

are annotated with more broad family information (e.g.
Italic), while others have more fine grained information
(e.g. French). Some have unknown origin. Because of
this, sometimes it is ambiguous as to whether two lem-
mas are in fact related.
In these cases, we have to make a decision. We could
either divide PWN senses into the lemmas as they are
presented in the OED (and risk splitting polysemous
senses into different lemmas), or we could merge lem-
mas together (and risk putting hymonymous senses into
the same lemma). We choose to do that latter, because
for research in these areas it is preferable to overesti-
mate polysemy and underestimate hymonymy: if two
polysemous senses were wrongly separated into differ-
ent lemmas, this would provide a wrong gold standard
for any model of polysemisation.
Our procedure for merging OED lemmas is as follows.
Some lemmas are marked as being derived from oth-
ers; in this case, we merge them with the lemma they
are derived from. If there are multiple lemmas which
have the same etymological derivation, we merge them.
If one lemma’s derivation is a subclass of another’s (as
with French v. Italic), we merge them. The exception
to these merges is when a derivation is labelled as being
the conventionalisation of an acronym; we leave these
in their own lemma. Finally, if a lemma for a particu-
lar wordform has unknown etymology, we exclude that
wordform (and thus assume that all its senses are poly-
semous).

3.2. Annotating an Evaluation Set
Sampling Data We sample wordform–part-of-
speech combinations, which meet the following
criteria:

• have at least two senses in the PWN;

• have at least two lemmas in the OED (following
our coarsening procedure, §3.1), and further, that
at least two of these lemmas have at least two
senses (to avoid severely imbalanced lemmas);

• have a maximum of 15 senses overall in the OED
(to reduce the cognitive load on annotators)

Following the above procedure, we sample 100
wordform–part-of-speech combinations. These combi-
nations had an average of 2.18 lemma options in the
OED, and yielded 286 PWN senses.

Annotation Procedure We need to collect a map-
ping of PWN senses to OED lemmas. However, as
we will see in §4, the models we study work by align-
ing PWN senses to OED senses. Although this is not
our primary concern, it would be interesting to also
evaluate how well models perform at this finer gran-
ularity of analysis. Because of this, we decide to
ask annotators to assign each PWN sense to a single
OED sense, from which we can trivially recover the
sense-to-lemma mapping which is our main interest.
More specifically, we ask annotators to go through each
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word, and assign each PWN senses to a single OED
sense. If there are multiple OED senses which would
work, we ask them to select the best one. If there is
no OED sense to align a PWN sense to, but there is an
OED sense which is more broad and would include that
PWN sense, we ask them to select that OED sense. If
there is still not an appropriate OED sense, annotators
have a choice. If they think the PWN sense is closely
related to OED senses in a particular lemma, they as-
sign the PWN sense to that lemma. Otherwise, if they
think that the PWN sense is a different lemma, not con-
tained in the OED, they leave it unassigned.

Recovering Lemma Assignments With the fine-
grained sense-to-sense alignment which our annotators
produce, we can reconstruct the sense-to-lemma map-
ping trivially. For each PWN sense that is aligned with
an OED sense, we simply take the lemma that that OED
sense is contained within in the OED.

Statistics and Agreement Two native British En-
glish speakers performed our annotation task. It is
however not possible to report agreement in terms of
chance-corrected Inter-Annotator Agreement (IAA) for
a dictionary alignment task, because the number of
possible categories that an item is assigned to varies
depending on the wordform; we therefore report raw
agreement. Both annotators gave the same lemma as-
signment 97.6% of the time, and the same sense as-
signment 80.4% of the time. 1.0% of the time, at least
one annotator judged that no lemma existed for a PWN
sense. 9.1% of the time, at least one annotator judged
that none of the fine-grained senses was appropriate,
but that an appropriate lemma existed. For compara-
bility to similar tasks, we follow Ahmadi et al. (2020),
and also compute IAA in terms of κ. Ahmadi et al. do
this by treating each possible pair of senses (one from
each dictionary) as a binary datapoint, which could be
labelled 0 if they were not aligned, or 1 if they were .
(However, we note that this method is problematic, as
it overestimates agreement. This is because computa-
tions of κ assume that each datapoint is independent,
and under this formulation many of the datapoints are
counted as agreement although they are simply a con-
sequence of other decisions.) Under these conditions,
we find κ=0.96 (N=909, k=2, n=2) for the lemma
assignments, and κ=0.79 (N=3,396, k=2, n=2) for
the sense assignments. The high agreement is in line
with previous work; Navigli (2006) found κ = 0.85 for
sense-level alignment between the PWN and the OED
(although it is unclear how they performed this compu-
tation).

Evaluation Data Having shown that our annotation
procedure yielded high agreement, one annotator con-
tinued the annotation task for more examples, and la-
belled 96 more wordforms which met the above cri-
teria. This yields a final annotated set consisting of
196 wordform–part-of-speech combinations covering
544 PWN senses, which we will use to evaluate model

  Princeton WordNet with homonymy   

  real1   

1.1 any rational or irrational number 

  real2   

2.1 an old small silver Spanish coin 
2.2 the basic unit of money in Brazil;
 equal to 100 centavos 

Figure 2: Our output annotation for the word real

performance, §5. In this final evaluation data, 1.3% of
PWN senses are not assigned to an OED lemma.

4. Method
Our goal is to split homonymous PWN senses into sep-
arate lemmas (Figure 2). To achieve this, we align the
PWN with the OED, in which senses are grouped ac-
cording to their etymological derivation. Our method is
a simple unsupervised approach, which pairs each def-
inition from the PWN with the definition in the OED
that it is closest to it in embedding space.
Let S be a set of all senses, which we take as string
definitions. Let Sw

OED ⊆ S denote the set of sense defi-
nitions associated with a wordform w in the OED, and
Sw

PWN ⊆ S denote its senses in the PWN. Each sense
in the OED is part of a lemma, l ∈ L, which can be
recovered trivially; we denote the function for doing so
lemmawOED : Sw

OED 7→ L. Our goal is to also map each
sense from the PWN to a one of these lemmas, i.e. to
construct a function, lemmawPWN : Sw

PWN 7→ L.
No training data for this task exists, so we experiment
with simple unsupervised methods. Let sim be a func-
tion which takes a pair of definitions, one from each
dictionary, and returns a measure of their similarity,
sim : Sw

PWN ×Sw
OED 7→ R. For a particular PWN sense,

s ∈ Sw
PWN, these unsupervised models assign the sense

to the lemma of the most similar OED sense:

lemmawPWN(s) = lemmawOED

(
argmax
s′∈Sw

OED

sim(s, s′)

)
(1)

Our methods vary, then, in how they define sim.
We experiment with very simple approaches, which
compute similarity by comparing two definition
embeddings. Let emb be a function that pro-
duces a d-dimensional sentence embedding of a
given definition, emb : S 7→ Nd. Additionally, let
proximity be a function which compares two def-
inition embeddings and returns a similarity rating,
proximity : Nd × Nd 7→ R. We can then express sim
in terms of these functions:

sim(s, s′) = proximity(emb(s), emb(s′)) (2)
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This formulation allows us to experiment with a variety
of different implementations of each of these functions,
which we detail in §5.1.

5. Evaluation
All of our models are unsupervised, and parameter-
free. Each model makes a prediction for each PWN
sense in the evaluation data in terms of which lemma
in the OED it belongs to. In this section, we evaluate
how well they do so.

5.1. Experimental Setup
Data To evaluate our models, we use the data we
collected in §3.2, which consists of 196 word–part-
of-speech combinations, covering 554 PWN senses.
When we evaluate the lemma assignments, we analyse
all 554 senses, for an accurate idea of how the model
will perform on the real data (and therefore include
senses which were not assigned to a lemma, which the
models will necessarily label incorrectly). When we
evaluate the sense assignments, however, we filter out
all the senses which were not assigned to a sense, leav-
ing 497 senses.

Models Our model formulation centres around a sim-
ilarity function, eq. (2), which has two main compo-
nents, emb and proximity. For emb, we experiment
with four different sentence embedding models. GloVe
(Pennington et al., 2014) is a static embedding tech-
nique, which learns to approximate a collocation ma-
trix. RoBERTa (Liu et al., 2019) is a variant of BERT
(Devlin et al., 2019), a Transformer model (Vaswani
et al., 2017) which was trained on a masked language
modelling objective. For both of these embedding
spaces, the sentence embedding is taken as the mean
of all the token embeddings. The next two models,
MPNet (Song et al., 2020) and Sentence-T5 (Ni et al.,
2021), however, were designed explicitly to produce
quality sentence representations. MPNet was trained
on a variety of tasks for all-round performance, while
Sentence-T5 was trained on sentence similarity tasks
in particular. For all of these sentence embedding mod-
els, we use the implementations in the Sentence Trans-
formers Python library (Reimers and Gurevych, 2019);
where multiple versions are present, we use the largest
available. The dimensionalities (d) of these model’s
representations are detailed in Table 1. Each of these
embedding spaces might suit different similarity met-
rics, so for proximity, we experiment with dot prod-
uct, cosine similarity, and Euclidean distance.4 Results
presented are from whichever similarity metric attained
the highest results (in all cases it was dot product).

Baselines We experiment with three baselines. As a
lower bound for the task, the random baseline assigns
each sense to a random lemma for a particular word
with uniform probability. Because some lemmas have

4Since Euclidean distance is highest for two senses which
are the least similar, we take its negation.

Name d

GloVe 300
RoBERTa 1,024
MPNet 768
Sentence-T5 768

Table 1: Sentence embedding dimensionalities

more senses than others in the OED, we compute an-
other baseline which assigns each sense to whichever
lemma for the word has the most OED senses. Finally,
following Navigli (2006), we reimplement the LESK
algorithm (Lesk, 1986). The LESK baseline calculates
the similarity between two definitions, s and s′, as the
fraction of the shortest definition’s lemmas which are
in both string definitions:

sim(s, s′) =
|bow(s) ∩ bow(s′)|

min(|bow(s)|, |bow(s′)|)
(3)

where bow (bag-of-words) returns the set of lemmas
in a given definition. This implementation of sim is
used to find lemma assignments using the same algo-
rithm as the other models, eq. (1). To tokenise the def-
initions and to lemmatise the tokens, we use the word
tokeniser and WordNet lemmatiser from NLTK (Bird
et al., 2009). We additionally filter out stop words and
punctuation, also using the NLTK list for stop words.

Metrics To evaluate the quality of the lemma assign-
ments, we compute accuracy and the F1-score (macro-
averaged over the lemmas). Finding the system that
performs best at this level is the core interest in this
paper. What is important is that a system maps each
PWN sense to the correct lemma, which it can do
successfully by mapping it to any OED sense of that
lemma; even if it managed to additionally guess the
finer-grained OED sense, this would only be of sec-
ondary interest to us. However, we are in a situa-
tion where we can report performance at a finer gran-
ularity because each model internally predicts a fine-
grained OED sense. We therefore additionally re-
port F1-score and accuracy of these sense assignments
(macro-averaged over OED senses).

Significance Testing We use a two-tailed Monte
Carlo permutation test at significance level α = 0.01,
with r = 10,000 permutations.

5.2. Results
Table 2 shows our results. Two of the baselines, ran-
dom and majority, only make lemma assignments, and
so we cannot evaluate them at the sense level.
The best performing model overall used the Sentence-
T5 embedding space. Despite the simplicity of this ap-
proach, it attained an F1-score of 0.97 in the lemma
assignment task, the main focus of this work. This was
significantly better than all the baselines, and also sig-
nificantly better than GloVe, the only non-Transformer
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Model Lemma Assignments Sense Assignments
Accuracy F1-score Accuracy F1-Score

GloVe .94 .93 .71 .70
MPNet .94 .95 .76 .75
RoBERTa .95 .95 .72 .71
Sentence-T5 .97 .97 .84 .84

LESK .88 .88 .65 .63
most .73 .68 N/A N/A
random .47 .50 N/A N/A

Table 2: Results

embedding space. Numerically, the difference in the
lemma scores was small: GloVe embeddings achieved
.93 F1, only .04 less than Sentence-T5.
In the evaluation data we collected, 1.3% of senses
were not assigned to a lemma (see §3.2). Our model
necessarily gets all of these wrong (it has no way of
leaving senses unassigned), meaning the highest accu-
racy it could theoretically attain would be .98—only
.01 higher than it achieves. For our purposes, that it er-
roneously assigns these senses is not an issue: as men-
tioned above (§3.1), because we are interested in re-
search into polysemy and homonymy, we opt to overes-
timate polysemy and underestimate homonymy, rather
than vice versa. This is the effect which this will have.
The best model at predicting the sense-to-sense map-
ping also used the Sentence-T5 embedding space, but
the quality of the mapping was not as high as its sense-
to-lemma mapping, attaining an F1 of .84. This result
is significantly better than not only GloVe, but also both
other Transformer models. The numerical difference
between the models is also more pronounced. GloVe
attained .70 F1, which is .14 behind the best Trans-
former model, and only .07 above the LESK approach.

6. Final Annotation Layer
Having performed an evaluation of our approach on a
small testset, we now present details for the entirety of
the PWN. We use the highest-performing model from
our evaluation, which was based on the Sentence-T5
(Ni et al., 2021) embedding space, and used the dot
product to compare embeddings.

6.1. Between-POS v. Within-POS
We compute two distinct annotation layer variants,
which we term between-POS and within-POS.
The OED is an etymological lexicon, and as such it can
identify when two lemmas of the same wordform, but
with different parts-of-speech, are derived from each
other (this process is called zero-derivation). For exam-
ple, as a verb, to tango is to perform a particular dance,
and as a noun, a tango is that dance. In the between-
POS homonymy annotation layer, we preserve this in-
formation, by applying our homonymy identification
procedure (§3.1) to all the senses of a word at the same
time, regardless of their part-of-speech.

This approach has one drawback. As mentioned above,
the OED does not have complete information about all
senses’ etymologies. Sometimes, a sense might be la-
belled with less specific information than another, or
might have unknown etymology. When a wordform
had a sense with unknown etymology, we assumed
that no homonymy was present, i.e. that all the word-
form’s senses were polysemous. This is to reduce the
chance of erroneously labelling instances of polysemy
as homonymy. However, in cases where a sense has
unknown etymology, there is a chance that we incor-
rectly treat instances of homonymy as polysemy, an er-
ror which we would also like to minimise.
The more senses a wordform has, the more likely it is
to have a sense with missing information, which may
mean that it is incorrectly treated. In the within-POS
layer, when applying our homonymy identification pro-
cedure, we treat the senses of each part-of-speech indi-
vidually. This reduces the chance that a sense will be
included which lacks etymology information, and so
lowers the chance of missing instances of homonymy.
However, this comes at the price of losing the align-
ment between different parts-of-speech.
In both the between-POS and within-POS variants, we
exclude OED senses which were not part of the align-
ment. In other words, we first compute the alignment
between the PWN and the OED, and then apply our
homonymy identification procedure to only the OED
senses which are part of the alignment. This is to min-
imise the unwanted effects of senses with unknown et-
ymology as much as possible, for both variants.

6.2. Analysis
Statistics for the two variants of our annotation layer
are presented in Table 3. We additionally report counts
using out-of-the-box lemmas from the OED, without
any of the processing in §3.1; reported as raw. This
should give an idea of the number of exclusions result-
ing from our homonymy identification process.
There are a total of 21,740 words which have multi-
ple senses in the PWN.5 Of those, 20,169 (93%) have
corresponding entries in the OED.

5We exclude all wordforms which are not lower case or
which include spaces; this removes proper nouns and com-
pound nouns, because these are not included in the OED.
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POS # Words
in PWN

# Also in
OED

# Homonymous in the OED # Homonymous in the PWN
between-POS within-POS raw between-POS within-POS raw

noun 15,019 14,228 806 849 2,830 237 244 794
verb 6,226 5,886 237 310 1,218 50 56 244
adj 6,661 6,115 75 88 303 17 17 54
adv 1,037 934 3 4 19 0 0 2

any 21,740 20,169 969 1,091 3,420 284 297 961

Table 3: Final annotation layer statistics

Using the within-POS variant, 1,091 wordforms are
found to exhibit homonymy.6 As expected, fewer were
found using the between-POS variant (969, a reduc-
tion of 11%). These numbers represent the maximum
number of wordforms in the PWN which our method
can identify as exhibiting homonymy. Of these, with
the within-POS variant we identified 297 homonymous
wordforms in the PWN (27% of those in the OED),
which are associated with a total of 2,139 senses in the
PWN (full list of words in App. A). With the between-
POS variant we identified 284 wordforms. The fact that
only a fraction of homonymous wordforms in the OED
were also homoynmous in the PWN is unsurprising.
The OED is an an etymological dictionary, which will
contain senses which are no longer used. On the other
hand, the PWN is a contemporary dictionary, which
will not contain archaic instances of homonymy.
Clear-cut cases of homonymy are less numerable than
we might expect (279 cases; ‘any’ under within-POS
in Table 3). These are the cases where wordforms are
associated with meanings which have distinct origins
and are semantically unrelated. But then again, this
number represents a lower-bound for the total amount
of homonymy in the PWN, as a consequence of our
decision to combine lemmas in ambiguous cases. An
upper-bound (i.e. an overestimation of homonymy) is
represented by the raw results (961 wordforms). This
indicates that between 1.5% and 4.8% of wordforms in
the PWN are homonymous (estimated using the word-
forms that are in both dictionaries).

6.3. Release
We release our code and both variants of our
homonymy annotation layer online.7 We additionally
release a version based on the raw lemma assignments,
which will be useful if overestimation of homonymy
and underestimation of polysemy is preferred, but we
caution that the quality of this data was not investigated
in our annotation study.

6Note that for the within-POS variant, the ‘any’ part-of-
speech row in Table 3 does not correspond to a simple sum-
mation of the statistics for each part-of-speech, because this
would count any wordform which is homonymous in two or
more different parts-of-speech multiple times.

7https://github.com/rowanhm/
wordnet-homonymy

7. Conclusion
We present a new annotation layer for the Prince-
ton WordNet, which splits senses into lemmas, mak-
ing it possible to distinguish between polysemy and
homonymy. We use a method which is conservative
with respect to homonymy identification (we would
rather erroneously label two homonymous senses as
polysemous than vice versa, §3.1). Additionally, in
contrast to previous work, we use an alignment-based
method which will be able to correctly treat figurative
polysemy. We create this annotation layer using a sim-
ple method that exploits recent advances in language
modelling; although the annotation layer we produce
is synthetic, the F1-score that our model attained on a
small evaluation set that we produced was .97, indicat-
ing that it is of high quality.
In future work, we hope to enhance WordNet with more
information. Lemmas in the OED are annotated with
phonetic information; this could be used to infer ho-
mophony, which occurs which two unrelated mean-
ings use the same phonetic form (even if they do not
necessarily use the same orthographic form). An ex-
ample is the word base, which is homophonous with
the word bass. Additionally, if more complex models
could be developed to produce a high quality sense-
to-sense mapping to the OED, then we could leverage
information the fine-grained senses in the OED contain
about the dates of sense emergence, to make WordNet
diachronic. This would be very useful in the study of
language change.
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A. List of Homonyms in WordNet
The list below contains the 297 wordforms which are
identified as exhibiting homonymy in the PWN. The
13 wordforms which appear in the within-POS variant
but not the between-POS variant are marked with an
asterisk:

adder, agora, alum, angle, apostrophe, armed, ass,
ball, bank, bard, bark, bar, bath, batter, bat, beat,
bill, birr, boil, bole, bongo, boom*, boss*, bowl,
boxer, boxing, box, bracer, buffer, buff, bumble, bust,
butter, bye, calf, canon, caper, carbonado, castor,
cheese, chela, chess, clove, coma, compact, compound,
content, con, copper, corn, corona, cosmos, courser,
cover, cramp*, croup, cube, curry, dam, deuce, dick,
diet, ding, distemper, dock, don, dory, down, drill*,
dub, excise, fag*, fan, fawn, feller, fen, file, filicide, fil-
ing, filler, flag*, flat, flicker, flop*, flounce, forte, fossa,
full, fuse, gall, game, gauntlet, genial, gill, gin, gnarl,
gnome, gobbler, gobble, go, grad, grate, grave, gray,
gum, gutter, gyro, ha-ha, hack, hakim, hash, hatched,
hatching, hatch, hawker, hobby, homer, hood, house,
hypo, impress, indent, iridic, jack, jar*, jumper, junk,
key, khan, kip, kit, krona, lame, launch, laver, letter,
lien, limb, lime, ling, lister, lithic, lumber, lunger, man-
akin, mandarin, mangle, mare, mark, match, matted,
matting, mat, mean, meter, metric, mew, mil, miss,
mogul, molar, mole, monstrance, mood, mould, mow,
mummy, mush, must, nag, nanny, nap, net, nit, ore,
paddle, pall, para, pass, patter, peewee, periwinkle,
permit, phone, pile, pink, pipe, piping, pix, plantain,
plash, plight, plonk, plump, poacher, poach, poise,
poker, poke, poll, pom-pom, pool, pop, port, pot, psi,
punch, punter, pyrene, pyrrhic, python, quack, quark,
quid, quint, quiver, race, racy, rad, raft, raised, ramp,
real, reef, rent, rest, retort, rip*, roach, rocket, rocky,
rock, rook, root, round, router, rout, rue, rush, sack*,
sake, salve, samba, sampler, sardine, scale, school,
sconce, scope, scourer, scruple, scuffle, seal, seamy,
secrete, set, sewer, shock, skipper, slug*, snarl, sod,
sol, soma, sort, sound, spade, spanker, spell*, spike,
stall*, stater, stay, stereo, still, stinger, stoop, strain,
tack, talus, tanka, telluric, temple, test, tiller, timber,
toot, topi, tower, tribune, tuck, tuna, unionized, verse,
viola, yen, zip
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