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Abstract

In this paper, we describe our submission to the
GermEval 2022 Shared Task on Text Complex-
ity Assessment of German Text. It addresses
the problem of predicting the complexity of
German sentences on a continuous scale. While
many related works still rely on handcrafted sta-
tistical features, neural networks have emerged
as state-of-the-art in other natural language pro-
cessing tasks. Therefore, we investigate how
both can complement each other and which
features are most relevant for text complexity
prediction in German. We propose a fine-tuned
German DistilBERT model enriched with sta-
tistical text features that achieved fourth place
in the shared task with a RMSE of 0.481 on the
competition’s test data.

1 Introduction

Text readability describes how easy a given text
is understood by a specific reader (Hancke et al.,
2012). Factors that influence the readability are,
for example, the number of technical terms in the
text or the length and convolution of the sentences.
Assessing a text’s readability can be used to select
the proper texts for a specific user group or provide
authors feedback about their texts. Moreover, it can
be integrated into an automatic text simplification
system. On the one hand, it helps to decide whether
and, if so, how much a text should be simplified.
On the other hand, readability assessment is a mea-
sure to evaluate a simplification system by check-
ing if the output has a higher readability (Garbacea
et al., 2021; Martinc et al., 2021). Text complex-
ity is inversely related to text readability; thus, in
this work, the terms text complexity prediction and
readability assessment are used interchangeably.
This paper is a contribution to the GermEval
2022 Shared Task on Text Complexity Assessment
of German Text that aims to predict the complex-
ity of a German text on a continuous scale (Mo-
htaj et al., 2022). We propose a model based on
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fine-tuned German DistilBERT (Sanh et al., 2019)
combined with traditional readability formulas and
statistical text features. This model achieved fourth
place in the competition. Moreover, we used SHAP
(Lundberg and Lee, 2017) to explain our model’s
predictions and discuss which features contribute
to higher complexity. By knowing the feature rele-
vance, authors and machine learning engineers can
pay attention to them when generating new texts.
Our code is released on Github for further research
and development.'

This paper is structured as follows: Section 2
gives an overview of existing readability formulas
and prediction models. In section 3, we present
the organization of the shared task and introduce
its dataset. Then, section 4 walks through our pro-
posed approaches and entails their performance.
Finally, in section 5, we apply explainability meth-
ods to discuss text features relevant to complexity
prediction.

2 Related work

We investigated two approaches for readability as-
sessment, traditional readability formulas, and deep
learning. Therefore, this section gives an overview
of existing formulas and models. Moreover, we
analyze which text features yielded promising pre-
diction results in previous work.

2.1 Traditional complexity measures

Multiple formulas exist to calculate the readability
of a text based on statistical values such as word
counts or average word length. Flesch (1948) pro-
posed the Flesh reading ease (FRE) score that cal-
culates a value between 0 — 100, where a higher
value indicates a lower complexity. Similarly, the
readability index (LIX) (Bjornsson, 1983) returns
a readability estimate ranging from 20 to 60. How-
ever, with this score, an easier text gets a lower
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value. As German words tend to be longer than
English words on average, Amstad (1978) adapted
the FRE measure to the German language by adapt-
ing the weight of the average word length measure.
Kincaid et al. (1975) used the FRE score as a ba-
sis for a new measure, the Flesch-Kincaid-Grade-
Level (FKGL). In contrast to the previous scores,
this returns the U.S. school grade in which the text
can be understood. Other complexity scores re-
turning the number of years in education needed
to grasp the content of a text are SMOG (Laugh-
lin, 1969) and Gunning fog index (Gunning et al.,
1952). The Wiener Sachtext formulas are four
slightly varying formulas returning the required
grade adapted to the German school system and
specificities of the German language (Bamberger
and Vanacek, 1984).

These formulas are based on an analysis of tex-
tual features. In the literature, different text proper-
ties are distinguished (Santucci et al., 2020; vor der
Briick et al., 2008; Hancke et al., 2012): Statisti-
cal features analyze the number of sentences or
the number of words in a sentence, while syn-
tactic features investigate the sentence structure,
e.g., the depth of the dependency tree. Other cate-
gories are lexical features, such as the number of
unique words, or semantic features, i.e., the length
of causal chains. As indicated by Solnyshkina et al.
(2017), using the plain text properties as features
can outperform the complexity estimation of read-
ability formulas.

2.2 Learning complexity prediction models

Syntactic, semantic, or lexical text features have
been exploited for readability prediction in differ-
ent languages such as Italian (Santucci et al., 2020)
or English (Stajner and Hulpus, 2020). Other ap-
proaches use neural language models like BERT for
their predictions (Martinc et al., 2021). For the Ger-
man language, Weifl and Meurers (2018) proposed
a binary prediction model based on linguistic fea-
tures, such as lexical or morphological complexity,
and psycholinguistic features, i.e., cognitive com-
plexity and language use. Their work was based on
the binary prediction model by Hancke et al. (2012).
In a very recent work (Anonymous, 2021), the neu-
ral approaches by Martinc et al. (2021) were trans-
ferred to German, yielding promising results in a
language-level prediction task. These approaches
focus on a classification task, while vor der Briick
et al. (2008) worked on a seven-point Likert scale,

similar to the Shared Task data. They used syntac-
tic and semantic features together with a nearest
neighbor model for their predictions.

2.3 Feature relevance analysis

To understand why a model deems a sentence com-
plex, but also to use the complexity scores for fur-
ther tasks such as text simplification (Garbacea
et al., 2021), the features that contributed to the pre-
dictions are of interest. Santucci et al. (2020) used
the Gini measure and permutation importance to
inspect which text property was important for their
predictions. They reported that the most relevant
features were the syntactic and morphosyntactic
ones. Similarly, Hancke et al. (2012) discovered
the essential features for their classification were
the average word length or the number of complex
nominals in the sentences.

3 Shared task and Dataset

This paper explains our submission to the Ger-
mEval 2022 Shared Task on Text Complexity As-
sessment of German Text (Mohtaj et al., 2022).
The shared task was split into two different phases,
a development and a final phase. During develop-
ment, participants were provided a labeled training
and an unlabeled validation dataset. Predictions
on this validation data could be uploaded to the
competition page with immediate evaluation feed-
back. In contrast, during the final phase, the results
on the final test dataset were only published at
the end of the competition. The two evaluation
datasets, the validation and the final test data, con-
sist of 100 sentences each. The training dataset for
this shared task originates in work by Naderi et al.
(2019). It contains 1000 sentences from the Ger-
man Wikipedia together with a complexity score
ranging from 1 to 7. Naderi et al. (2019) used
crowdsourcing to let non-native speakers of a B
level annotate the respective sentences by their per-
ceived readability and averaged the scores among
the participants. The mean complexity value is
3.016 with a standard deviation of 1.181. There
are 76 sentences with an observed complexity of
1.0, but only two samples with a complexity higher
than six, making the dataset unbalanced towards
the easier sentences. To counteract this imbalance,
we replicated sentences with a complexity higher
than 5.5 multiple times, yielding a dataset with
1054 samples.

The rooted mean squared error (RMSE) between



predicted and correct complexity scores was used
to evaluate a model’s performance. In addition, a
third-order polynomial function was fitted between
the predicted and correct scores to counteract the
bias by subjective annotation of text complexity.
Then, the predicted scores were projected using
this function, and the error was calculated on the
mapped predictions as well (Mohtaj et al., 2022).

4 Approaches

In this section, we explain the three approaches
we explored to predict the complexity score of a
sentence. We did not apply any preprocessing to
the data, i.e., fed the sentences into the model’s
tokenizer directly.

4.1 Learning from text statistics

We analyzed different textual features and read-
ability scores calculated based on them. Table 1
shows which statistics were calculated. On the
one hand, statistics on a sentence level were in-
vestigated, such as the average sentence length or
the maximal depth of the dependency tree. We
assumed that a more complex sentence holds sub-
clauses or multi-word expressions that show in a
high dependency tree depth. For our data, the av-
erage sentence length is similar to the number of
words in a sentence, as our data samples contain
only one sentence. On the other hand, we examined
the characteristics of the words in a sentence, e.g.,
the average number of syllables among all words.
Moreover, the percentage of words consisting of
only one syllable was calculated. These are very
short and easy-to-understand words, i.e., a high
percentage can indicate a simple sentence.

Feature Description

asl Average sentence length

mtd Maximal dependency tree depth

pwob Percentage of words with at least six
letters

asc Average number of syllables

psl Percentage of words with only one
syllable

ps3 Percentage of words with at least

three syllables

Table 1: Statistical features calculated from sentences.

These statistics are part of different readability for-
mulas. Equations 1 to 6 show the formulas for the

scores used in this work. We propose calculating
the Flesh reading easy (FRE) by Amstad (Amstad,
1978), the four Wiener Sachtext formulas (Bam-
berger and Vanacek, 1984) and the SMOG score
(Laughlin, 1969). The FRE formula uses the av-
erage sentence length and the average number of
syllables among all words and returns a value be-
tween 0 and 100, where a higher score indicates bet-
ter readability. The Wiener Sachtext formulas are
a collection of four formulas that slightly vary the
statistics they use and their weights. The formulas
calculate for which school grade between four and
15 the text is suited. Similarly, the SMOG score
returns how many years of education the reader
needs to understand the text. Thus, a lower value
is desirable for the Wiener Sachtext formulas and
the SMOG score. In contrast to the other formulas,
the SMOG score only uses the number of words
with at least three syllables (ns3) as a statistical
measure.

fre_amstad = 180 —asl — (58.5-asc) (1)
wstfl = 0.1935 - ps3 + 0.1672 - asl (2)
+ 0.1297 - pw6 — 0.875
—0.0327 - psl
wstf2 = 0.2007 - ps3 4 0.1682 - asl (3)
+0.1373 - pw6 — 2.779
wstf3 = 0.2963 - ps3 4 0.1905 - asl (4)
—1.1144
wstfd = 0.2744 - ps3 + 0.2656 - asl (5)
— 1.6930
SMOG = 1.0430-vns3 4+ 3.1291  (6)

We computed the statistics in Table 1 and scores
in Equations 1 to 6 for all samples in our data.
Then, we fitted a support vector regression based on
these statistical vectors as a prediction baseline. For
this, we used the implementation by sklearn and its
default hyperparameters parameters.” The model
achieved a RMSE of 0.657 and mapped RMSE of
0.647 on the training data.

4.2 Fine-tuning a transformer model

To investigate the complexity prediction quality
of neural networks, we fine-tuned a German Dis-
tiIBERT model. We utilized Huggingface (Wolf
et al., 2020) to load and fine-tune the distilbert-
base-german-cased (von Platen, 2020) model. We

https://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVR.html


https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

trained the model on the shared tasks’ training
data with the default setup of Huggingface’s trainer
API for two epochs. Table 2 shows the promising
results achieved by this model on the training, vali-
dation, and final test data. The model outperformed
the statistics-only SVR baseline model by far.

Dataset RMSE RMSE_mapped

training 0.402 0.399
validation  0.405 0.404

final test  0.481 0.460

Table 2: Complexity prediction results by fine-tuned
DistilBERT model.

4.3 Combining DistilBERT embedding with
textual features

The pure text statistics model and the fine-tuned
DistilBERT model yielded promising results. To
take advantage of both their handcrafted features
and deep textual understanding, we combined both
models. We used the last hidden state of the Distil-
BERT model as an embedding of size 768. Then,
we concatenated the embedding with the vector of
statistical measures and readability scores. Finally,
we trained a support vector regression model on
these representations with the same setup as the
statistical SVR. Table 3 highlights the performance
on the three different datasets. With this model,
we achieved fourth place in both the competition’s
development and final evaluation phase.

Dataset RMSE RMSE_mapped

training 0.404 0.403
validation  0.395 0.390

final test  0.466 0.449

Table 3: Complexity prediction results by SVR with
DistilBERT embedding and statistical features.

5 Explaining the predictions

To evaluate which of the suggested statistics and
formulas help to predict the complexity of German
texts, we calculated the SHapley Additive exPla-
nations (SHAP) values (Lundberg and Lee, 2017)

*https://huggingface.co/docs/
transformers/main_classes/trainer#
transformers.TrainingArguments

for each of our models. SHAP measures each fea-
ture’s contribution by masking their different com-
binations and rerunning the predictions with these
masks. Features for which the masked predictions
deviate strongly from the initial prediction have a
substantial impact and are, thus, the most relevant
ones. The SHAP values are calculated per sam-
ple and averaged among them. Figure 1 shows the
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Figure 1: SHAP values for statistical text features in our
support vector regression model, sorted in descending
order.

mean SHAP values for each feature in the statistical
SVR model (Section 4.1). The most relevant statis-
tic is the average sentence length, i.e., the longer a
sentence is, the more likely it is complex. The FRE
score uses this statistic; thus, it is reasonable that
it has high importance. Even though the Wiener
Sachtext formulas also include this statistic, their
contribution to the predicted score is smaller. They
incorporate more advanced measures like the per-
centage of words with more than three syllables.
As indicated by the small SHAP values, these ad-
ditional statistics are not helping our complexity
prediction model. The third most relevant feature
is the maximum tree depth, indicating how convo-
luted a sentence is.

For a neural network, it is unknown what func-
tionality a specific neuron models. Therefore, a
feature-relevance analysis is not beneficial for inter-
preting a neural network. Instead, we selected the
example sentence ‘“Dieser Vorgang wird Gletscher-
schwund oder Gletscherschmelze genannt.” (“This
process is called glacier recession or glacier
melt.”) and investigated which words have an im-
pact on the prediction. The correct complexity for
this sentence is 2.266667, and our model (Section
4.2) predicts a complexity of 2.373029. Figure 2
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Figure 2: DistilBERT prediction on an example sentence (English translation: “This process is called glacier
recession or glacier melt.”): contribution of each word and word chunk to the prediction result.
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Figure 3: Feature relevance analysis for combined
model: the ten features with highest SHAP values.
“distil_2” indicates the ith index in the DistilBERT em-
bedding.

shows which words and parts of words increase or
decrease the predicted score compared to a base
value. Words like “wird” (“is”) and “oder” (“or”
have a negative contribution, i.e., they indicate
an easier sentence. Contrary, the word “Vorgang”
(“process”) has the highest positive impact. The
word itself is not very difficult, but it is often used
to describe complex procedures and, thus, can be
seen as a signal for a complex sentence. In Ger-
man, compound nouns such as “Gletscherschwund”
(“glacier recession”) are very common. However,
the DistilBERT tokenizer splits them into multiple
tokens. Therefore, different parts of these com-
pound words have different contributions to the
prediction, making it harder to identify their over-
all contribution.

Finally, Figure 3 depicts another feature rele-
vance analysis, but for the SVR model that com-
bined our neural embedding with statistical text fea-
tures (Section 4.3). The scores were calculated on a
subset of the data, and we only highlight the values
for the ten highest ranking features. The strongest
impact on the prediction comes from the embed-
ding value at index 149, but text statistics like the
average sentence length and Amstad’s FRE score
are also relevant. This implies that both learned
neural features and traditional text statistics im-
pact text complexity prediction. Moreover, they

complement each other to yield the most accurate
predictions. Therefore, we have shown that neural
models have not yet outperformed handcrafted fea-
tures regarding German text complexity prediction.

6 Discussion

Readability is a subjective measure that depends
on the reader’s background knowledge and reading
ability (Crossley et al., 2017). Our work is based on
the shared task’s dataset labeled with a crowdsourc-
ing approach among non-native speakers. There-
fore, the findings in this paper should be tested
for transferability to other datasets and groups of
readers. In addition, the dataset is unbalanced with
an overrepresentation of simple sentences and con-
tains some noise. For example, the sentence “Mar-
tin Luther King Jr (* 15 Januar 1929 in Atlanta als
Michael King Jr; T 4 April 1968 in Memphis) war
ein US-amerikanischer Baptistenpastor und Biirg-
errechtler.” (“Martin Luther King Jr (born January
15, 1929 in Atlanta as Michael King Jr; 1 April 4,
1968 in Memphis) was a U.S. Baptist pastor and
civil rights activist.”’) has a complexity of 1.0, in-
dicating it was a very easy sentence. This shows
that some samples have lower complexity than they
would have when relabeling the dataset.

7 Conclusion

In this paper, we have demonstrated three ap-
proaches for text complexity prediction in German,
one model that relies on handcrafted statistical fea-
tures only, one fine-tuned transformer network, and
a combination of both. In addition, we found that
the feature most indicative of a complex sentence
is the sentence length and that the FRE formula
by Amstad (1978) gives a good indication of text
complexity. Modern transformer architectures with
deep textual understanding can build accurate com-
plexity prediction pipelines. However, they can
still be improved with handcrafted statistical fea-
tures, showing that they have not yet superseded
traditional approaches. In future work, these find-
ings will be extended to a paragraph and full-text
level instead of a sentence-wise prediction.
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