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Abstract

Reliable methods for automatic readability as-
sessment have the potential to impact a vari-
ety of fields, ranging from machine translation
to self-informed learning. Recently, large lan-
guage models for the German language (such
as GBERT and GPT-2-Wechsel) have become
available, allowing to develop Deep Learning
based approaches that promise to further im-
prove automatic readability assessment. In this
contribution, we studied the ability of ensem-
bles of fine-tuned GBERT and GPT-2-Wechsel
models to reliably predict the readability of
German sentences. We combined these mod-
els with linguistic features and investigated
the dependence of prediction performance on
ensemble size and composition. Mixed en-
sembles of GBERT and GPT-2-Wechsel per-
formed better than ensembles of the same size
consisting of only GBERT or GPT-2-Wechsel
models. Our models were evaluated in the
GermEval 2022 Shared Task on Text Com-
plexity Assessment on data of German sen-
tences. On out-of-sample data, our best en-
semble achieved a root mean squared error of
0.435.

1 Introduction

Automatic Readability Assessment (ARA) is a
well-known challenge in natural language process-
ing (NLP) research (Martinc et al., 2021; Vajjala,
2021; Collins-Thompson, 2014). Systems for re-
liable readability assessment have the potential to
support readers with learning disabilities, inform
self-directed learning, or help control the reading
level of automatically generated text translations
(Vajjala, 2021).

The development of methods for text readability
assessment may be described in three phases. (i)
Traditional text readability formulas were based on

statistical measures of lexical and syntactic features
(such as word difficulty and length). Techniques
from NLP further improved upon traditional for-
mulas by incorporating high-level textual features
such as semantic and discursive text characteristics
(Martinc et al., 2021). (ii) In the early 21st century,
engineered linguistic features were used to train
shallow classifiers and regressors from machine
learning (such as support vector machines and de-
cision trees) which further improved prediction ac-
curacy (Collins-Thompson, 2014). (iii) The latest
phase has been characterized by the advent of large
language models (LLMs) developed in the Deep
Learning community. Such neural networks learn
features (vector representations of text) automati-
cally from large text corpora during self-supervised
pretraining. Successful network architectures such
as BERT (Devlin et al., 2019; Rogers et al., 2020)
or GPT (Radford and Narasimhan, 2018; Radford
et al., 2019; Brown et al., 2020) closely follow the
influential transformer model (Vaswani et al., 2017)
that allows for efficient modeling of long-range cor-
relations in texts. By combining representations
derived from BERT with linguistic features, recent
studies observed increased accuracy in assessing
the readability of English texts (Lee et al., 2021;
Imperial, 2021).

Training large language models requires large
text corpora, a prerequisite that is difficult to meet
in languages with fewer resources (compared to
English) such as German. Thus, most approaches
to assess the readability of German texts have been
based on linguistic features and traditional mod-
els from statistical learning such as polynomial
regression, support vector machines, or random
forests (Hancke et al., 2012; Weil} and Meurers,
2018; Naderi et al., 2019b; Weil et al., 2021).



Only recently, large language models have be-
come available for German, most notably GBERT
(Chan et al., 2020), which is based on BERT, and
GPT-2-Wechsel (Minixhofer et al., 2021) which
was derived from the English GPT-2 model (Rad-
ford et al., 2019). It is largely unknown to which
extent these German language models can improve
the automatic readability assessment of German
texts.

In this contribution, we investigate the ability of
ensembles of GBERT and GPT-2-Wechsel models
to assess the readability of German sentences. We
combine these models with traditional linguistic
features and evaluate our approach on a recently
published dataset of German sentences (Naderi
et al., 2019a). Inspired by previous work on en-
sembling large language models (Risch and Krestel,
2020; Bornheim et al., 2021), we studied the depen-
dence of model accuracy on the number of ensem-
ble members and ensemble composition. Finally,
we describe the models that were evaluated in the
GermEval 2022 Shared Task on Text Complexity
Assessment (Mohtaj et al., 2022). The implementa-
tion details of our experiments (Team “AComplex-
ity”) are available online'.

2 Data and tasks

The dataset consisted of 1000 labeled sentences
(Naderi et al., 2019a) and was provided by the or-
ganizers of the GermEval 2022 Shared Task on Text
Complexity Assessment (Mohtaj et al., 2022). The
sentences were drawn from 23 Wikipedia articles.
250 of these sentences were manually simplified
by native German speakers (Naderi et al., 2019a).

The scores (labels) were obtained via an online
survey system. Participants were asked to rate the
complexity, understandability, and lexical difficulty
of the sentences on a 7-point Likert scale. On this
scale, 1 denotes the lowest and 7 the highest pos-
sible value (Naderi et al., 2019a). In total, 10650
valid sentence ratings were collected, distributed
among the 1000 sentences.

Following a data screening procedure, 5 to 18
ratings per sentence were deemed valid and then
used to calculate the arithmetic mean, called the
Mean Opinion Score (MOS), of each metric (Naderi
etal., 2019a).

The shared task was to predict the MOS of the
text complexity of German sentences. Since the
MOS was defined as a decimal value (see figure
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Figure 1: Histogram of Mean Opinion Scores (MOS)
for the sentences in the dataset.

Bei der Tour de France liegt die hochste Durchschnitts-
geschwindigkeit eines Fahrers bei 41 km/h. (MOS: 1.5)

Fiir die Union resultiert daraus sowohl ein Akzep-
tanzproblem bei den EU-Biirgern, denen “Briissel”
immer undurchsichtiger erscheint, als auch die mit
dem Mitgliederwachstum verbundene Schwierigkeit,
im bestehenden Institutionengefiige die Arbeits-
und Handlungsfihigkeit der einzelnen Organe zu
gewihrleisten. (MOS: 6.33)

Figure 2: Samples (German sentences) from the dataset
of the GermEval 2022 Shared Task on Text Complexity
Assessment. Numbers in parentheses denote text com-
plexity scores.

2), we approached this task as a regression prob-
lem. The distribution of complexity scores (see
figure 1) suggests that complex sentences are much
less common within the dataset than simpler ones.
Following previous work, we considered text com-
plexity as a proxy of text readability (Wray and
Janan, 2013).

3 Methods

3.1 Preprocessing and data splits

Preprocessing. All datasets (training, validation,
and test data) were preprocessed in the same way.
First, we cleaned up all sentences by removing
the leading and trailing quotation marks that were
added by the CSV format to mask sentences con-
taining comma separators. In the next step, all
sentences were tokenized with model-specific to-
kenizers and padded to a uniform length of 128
tokens.

Data splits. During the model exploration phase,
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models were evaluated with a 5-fold cross valida-
tion scheme (each of the five folds contained 20%
of the randomly shuffled training data). Addition-
ally, we randomly selected 10% of the data in the
training folds (i.e., 8% of the whole training data)
as an early stopping set (see section 3.4). Thus, all
models in the model exploration phase were trained
on 72% of the training data.

To optimize model fitting, the final models that
were submitted to the GermEval 2022 Shared
Task on Text Complexity Assessment were retrained
on all available training data, aside from a small
dataset that was used for early stopping. The early
stopping set consisted of 7.5% of the training data
and consequently, all final models were trained on
92.5% of the training data.

3.2 Readability Features

We incorporated various traditional features in the
training of our models that are commonly used in
text readability and complexity assessment tasks.
The features were generated using two publicly
available libraries (van Cranenburgh, 2019; Proisl,
2022) and include simple sentence-based measures
such as sentence length and punctuation as well as
more complex measures such as word rarity. Fur-
thermore, we included some customized features
based on the number of words in a sentence that
exceed a given amount of characters. To increase
the amount and variety of the available features,
we translated all sentences to English and calcu-
lated the features for the original German sentences
as well as the English translations. In total, 154
features were created for each sentence.

3.3 Models

We studied two German language models. The
GBERT model (Chan et al., 2020) is based on
the BERT architecture (Devlin et al., 2019). We
used model weights of the pretrained gbert-large?
variant, which includes a tokenizer with a vocab-
ulary size of 31000 case-sensitive tokens, has ap-
proximately 336 million parameters and a hidden
state size of 1024. Each tokenized sentence was
prepended with a classification token that was used
for the next sentence prediction task during pre-
training (Devlin et al., 2019).

The second model is a German GPT-2-Wechsel
model (Minixhofer et al., 2021) based on the GPT-2

https://huggingface.co/deepset/
gbert-large

architecture (Radford et al., 2019). We used model
weights of a pretrained gpt2-xI-wechsel-german®
variant that was derived from the GPT-2-XL*
model (Radford et al., 2019) using the WECHSEL
method (Minixhofer et al., 2021). The tokenizer
has a vocabulary size of 50000 case-sensitive to-
kens, while the model has roughly 1.5 billion pa-
rameters and a hidden state size of 1600. Since
GPT-like models are usually not used for regres-
sion tasks, we needed to adjust the tokenizer as
follows. First, we introduced a padding token that
was used to pad all sentences to a uniform length
of 128 tokens (see section 3.1). Second, we put a
beginning of sequence token in front and added an
end of sequence token to the end of every tokenized
sentence.

For each transformer model, we employed two
different multi-layer perceptron models (MLP) as
regression heads. The first MLP was used to fine-
tune the transformer models on the given training
data and did not use the manually created readabil-
ity features (see section 3.2). The second MLP
was used after finetuning to incorporate the read-
ability features and consisted of a fully connected
layer, followed by ReLu activations and an output
layer with one neuron and a linear activation for
regression. The input vector for the second MLP
consisted of the output of the last hidden state of the
respective transformer model and 154 readability
features calculated for each sentence.

3.4 Training

Evaluation score. To assess the prediction perfor-
mance of each model, we calculated the root mean
squared error (RMSE),

RMSE = \/ﬁ S (@ — )2,

where y; denotes the true readability score, ¢; the
predicted readability scores, and N the number of
samples in the dataset. During model exploration,
the RMSE was determined for each validation fold
of the 5-fold cross validation scheme. We con-
sidered the average of these RMSE values as an
indicator of model performance.

Training scheme. The training was carried out
in two phases. In the first phase, we added a re-
gression head to each model, used an AdamW op-
timizer (Loshchilov and Hutter, 2019) with a batch

*https://huggingface.co/malteos/
gpt2-xl-wechsel—-german
*https://huggingface.co/gpt2-x1
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size of 16 and a learning rate of = 5 - 1075 with a
linear warmup on the first 30% of the training steps
from 0 to 1. About every half training epoch (every
23 gradient updates during model exploration or
every 28 gradient updates when training the sub-
mitted models), the models were evaluated on the
early stopping set. If the training lasted for 100
epochs or the RMSE did not decrease for five con-
secutive evaluations, the training was stopped and
the model with the lowest RMSE on the early stop-
ping set was returned. This stopping mechanism
was not used during the first 300 gradient updates
of the training to prevent underfitting.

In the second phase of the training, the regres-
sion heads were discarded and the output of the last
hidden state for each sentence of the dataset was ex-
tracted as follows. For GBERT, we used the output
of the classification token. For GPT-2-Wechsel, we
extracted the output of the end of sequence token.
To create a feature vector for each sentence, we
combined the output of the respective transformer
model with the readability features calculated for
each sentence. We trained a multi-layer perceptron
(MLP) with two layers (see 3.3) with the RMSprop
optimizer, a batch size of 16, and a constant learn-
ing rate of 7 = 10~3. The MLPs were evaluated on
the early stopping set after each training epoch. Af-
ter 5000 epochs or if the RMSE did not decrease for
100 consecutive epochs, the training was stopped
and the model with the lowest RMSE on the early
stopping set was returned.

During inference, to predict a score for a given
sentence, a feature vector was created by combin-
ing readability features with the output of the fine-
tuned transformer model. The feature vector served
as an input to the trained MLP which calculated
the readability score.

Loss functions. We used the mean squared error
loss for training all transformer models and MLPs.

3.5 Ensembling

To counteract the effects of overfitting that of-
ten occur when training large models on small
datasets, we combined our trained models in en-
sembles (Risch and Krestel, 2020; Bornheim et al.,
2021). Ensemble members differed in the initial
model weights of the regression heads and the ran-
domly selected early stopping set. We determined
the predictions of an ensemble by averaging the
predicted scores of the ensemble members.
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Figure 3: Dependence of the mean of the average root
mean squared error (lines) on ensemble size for differ-
ent ensemble compositions. Standard deviations are
shown as shaded areas.

3.6 Postprocessing

When evaluating our ensembles on the provided
test set during the final phase of the competition,
we found that some trained models predicted read-
ability scores smaller than 1.0 for a few sentences
in the test set. Since the 7-point Likert scale used
by the human annotators to score text readability
started at a value of 1.0 (see section 2), we deemed
all predicted values smaller than 1.0 as invalid and
removed them in the ensembling process. Thus,
the predictions of an ensemble were created by av-
eraging only the predicted scores larger than 1.0.
We hypothesize that the scores smaller than 1.0 on
the test data were caused by a distribution shift in
the generated readability features.

4 Results

Model exploration. During model exploration we
investigated the performance (measured by the av-
erage RMSE) of ensembles with different ensem-
ble sizes and compositions. The ensembles con-
sisted of 1 to 60 models in three different composi-
tions: (i) GBERT models only, (ii) GPT-2-Wechsel
models only, (iii) a combination of GBERT and
GPT-2-Wechsel models. In (iii), we combined both
model types equally, so that an ensemble of 60 mod-
els consisted of 30 GBERT and 30 GPT-2-Wechsel
models.

To investigate the dependence of prediction per-
formance on ensemble size, we applied a bootstrap-
ping scheme following (Risch and Krestel, 2020;
Bornheim et al., 2021). In total, we trained 100
models each of GBERT and GPT-2-Wechsel on



each cross-validation split. Given a specific en-
semble size, we then randomly sampled with re-
placement 1000 ensembles from the set of trained
models and measured the RMSE of each ensemble
on each validation fold. The attained RMSE scores
were then averaged over the 5 validation folds, so
that we obtained 1000 averaged RMSE scores for
each ensemble size.

Figure 3 shows the mean and standard devia-
tion of the averaged RMSE scores for different
ensemble sizes and compositions. Each ensem-
ble composition benefited from increasing ensem-
ble size, as the mean RMSE decreased consider-
ably up to an ensemble size of 20 models, beyond
which the RMSE decreased only slowly. Increasing
the ensemble size also affected the stability of the
ensembles’ predictions, as can be observed from
the decreasing standard deviation of all three en-
semble compositions. Our findings are consistent
with previous work (Risch and Krestel, 2020; Born-
heim et al., 2021) which reported improvements in
predictive performance when increasing ensemble
sizes.

Furthermore, figure 3 shows large differences in
the performance of the three ensemble composi-
tions. The ensemble that consisted of only GBERT
models performed the worst with a mean RMSE of
0.589 at ensemble size 60. Using GPT-2-Wechsel
models instead of GBERT models reduced the
mean RMSE to 0.572, and combining both model
types in a mixed ensemble of 30 GPT-2-Wechsel
and 30 GBERT models further improved the scores
to 0.565.

Submitted models. Based on our results in the
model exploration phase, we decided to submit two
different ensembles in the final phase of the com-
petition: (i) an ensemble of 340 GPT-2-Wechsel
models and (ii) an ensemble of 100 GPT-2-Wechsel
and 100 GBERT models. We chose not to submit
an ensemble of only GBERT models due to the
subpar performance observed during model explo-
ration. All models were fine-tuned using all avail-
able training data, aside from a small dataset (7.5%
of the training data) used for early stopping (see
section 3).

On the test data of the shared task, ensem-
bles (i) and (ii) achieved RMSE values of 0.461
(mapped RMSE: 0.454°) and 0.442 (mapped
RMSE: 0.435°), respectively (Mohtaj et al., 2022).

3 A linear mapping function was used by the competition

organizers; see section 7.3 of the recommendation ITU-T
P.1401.

Ensemble (ii) ranked 2nd in the competition.

5 Conclusion

We studied the ability of ensembles of fine-tuned
German language models to reliably predict the
readability of German sentences. All proposed
models also used traditional linguistic features that
slightly increased prediction performance (data not
shown), consistent with previous reports on text
readability assessment of English texts (Imperial,
2021; Lee et al., 2021). We observed mixed ensem-
bles of GBERT and GPT-2-Wechsel to better pre-
dict readability scores than ensembles of the same
size consisting of only GBERT or GPT-2-Wechsel
models. Furthermore, prediction accuracy as quan-
tified by the root mean squared error decreased
with increasing ensemble size, which resembled
findings for hate speech classification reported pre-
viously (Risch and Krestel, 2020; Bornheim et al.,
2021).
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