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Abstract

Recent language modeling performance has
been greatly improved by the use of external
memory. This memory encodes the context
so that similar contexts can be recalled dur-
ing decoding. This similarity depends on how
the model learns to encode context, which can
be altered to include other attributes, such as
style. We construct and evaluate an architec-
ture for this purpose, using corpora annotated
for politeness, formality, and toxicity. Through
extensive experiments and human evaluation
we demonstrate the potential of our method to
generate text while controlling style. We find
that style-specific datastores improve genera-
tion performance, though results vary greatly
across styles, and the effect of pretraining data
and specific styles should be explored in future
work.

1 Introduction

Language models with external memory, like Khan-
delwal et al. (2020b)’s recent k-nearest neigbour
language model (kNN-LM), have demonstrated
impressive predictive performance. Great reduc-
tions in perplexity are achieved through storing
the encoding of contexts from the training data. A
sequence of tokens is encoded by the model and
stored as a key, which is paired with a value rep-
resenting the next token in the sequence. During
decoding, similar contexts are recalled based on
their key similarity, and values are interpolated
with the base language model’s predictions.

In this work, we augment the encoding with
stylistic attributes, such that the keys are more heav-
ily influenced by the style of the encoded text. By
explicitly encoding the style, the similarity is more
strongly affected by the stylistic attributes than pre-
vious models. When decoding, we can then pro-
vide a style (e.g. polite or formal) and the most
similar contexts are both relevant in content and
more likely to conform to the provided style. The

Baseline:
You install the name

as <command>?

kNN Polite Style:
Would you please

have a look?

Continuations

Prompt: Did you read my comments?

Figure 1: Example prompt continuations of the baseline
kNN language model and our model, which continues
generation in a specified style (e.g. polite). This exam-
ple is based on a real example from our human evalua-
tion but shortened for brevity and clarity. Full examples
are provided in Appendix A.

example in Figure 1 shows a prompt and two con-
tinuations, one with the baseline kNN language
model and one with our model given a polite style
value as input, signaling that it should continue the
prompt in a polite style.

Through our architecture implementation, we
show that we not only improve language modeling
performance over previous models, but that we can
control generation to produce text of a particular
style. We provide human evaluation of our stylistic
outputs and an analysis of the performance of our
approach and modeling decisions that affect how
style attributes are represented in memory. To the
best of our knowledge, this is the first work to
modify a language model’s external memory in
order to control generated style.

2 Related Work

Recent approaches to controllable generation have
included fine-tuning large models, such as Keskar
et al. (2019), who condition on 50 control codes
during training, which represent different styles,
topics, and languages. Other approaches avoid
retraining by modifying the predictions only at
decoding time. The FUDGE model predicts for
a sequence, the likelihood that possible genera-
tion steps will result in a sequence that satisfies
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a given constraint (Yang and Klein, 2021). The
DExperts model alters the probability distribution
of a language model (LM) based on the predictions
of other LMs that are fine-tuned on specific desired
or undesired attributes (Liu et al., 2021). Dathathri
et al. (2020) and others similarly modify gradients
directly during prediction.

Khandelwal et al.’s k-nearest neigbour language
model is based on the groundwork laid by previ-
ous work that augmented language models with a
cache memory of recent observations. Grave et al.
(2017b) captured local context of up to a few thou-
sands tokens to improve predictions. Grave et al.
(2017a) expanded upon this idea by storing all past
hidden activations in a memory. Khandelwal et al.
then replaced the recurrent network with a trans-
former to better model long-term dependencies.
Aspects of kNN-LMs have been improved upon,
in terms of performance, efficiency, and additional
functionality.

Even though kNN-LMs achieve state-of-the-art
predictive performance, the retrieval operation is
very computationally expensive. He et al. (2021)
and Alon et al. (2022) explored techniques to im-
prove inference speed, such as compressing em-
beddings, or training an additional model to dy-
namically disable retrieval for predictions where
the datastore is unlikely to improve the result. Wu
et al. (2022) implemented a similar model and fo-
cused on improving scalability. Yogatama et al.
(2021) extended the model with a gating mecha-
nism that learns to combine short and long term
memory with local context. Xu et al. (2021) im-
proved performance by leveraging structural local-
ity features such as topic clusters in text or project
hierarchies in source code repositories. Khandel-
wal et al. (2020b) also extended their model for use
in machine translation (Khandelwal et al., 2020a),
which has also received efficiency improvements
(Meng et al., 2021; Wang et al., 2021).

3 Methodology

The main goal of our work is to expand kNN-LM
functionality and we build off of Khandelwal et al.
(2020b), which we will refer to as the baseline ar-
chitecture. We modified this architecture to accept
additional style attributes as input, and concatenate
these to the input text encoding. This has the ef-
fect of modifying the embedding space such that
it encodes both semantic and stylistic properties
(see Appendix B). We will refer to this as the style

architecture.
After the input style and context are encoded,

they are stored in the datastore. We experimented
with separating datastores based on the distribution
of style values in the dataset. For this part we
take subsets with specific style values (e.g. only
toxic or only polite) from the datasets and construct
datastores containing only data from those subsets.
We refer to this as separate datastores. Datastores
containing examples of different style are referred
to as mixed datastores.

4 Datasets

We use 4 datasets, 3 of which contain style at-
tributes. Unless stated otherwise, we use the default
splits provided by the original work.

Wikitext-103 Wikitext-103 (WT103) is a col-
lection of Good and Featured Wikipedia articles
(Merity et al., 2017). It is provided in a tokenized
form, with case, punctuation and numbers, totalling
103B tokens. For better compatibility with our to-
kenization of other datasets we modified WT103’s
tokenization by replacing all occurrences of *n 't
(e.g. in “can’t”) with * n't.

Politeness The Stanford Politeness Corpus (SPC)
consists of 11k utterances from StackExchange and
Wikipedia Talk pages, annotated with politeness
scores, which we use as style attributes (Danescu-
Niculescu-Mizil et al., 2013). We created an 85-
7.5-7.5 split for training, validation, and test.

Formality Grammarly’s Yahoo! Answers For-
mality Corpus (GYAFC) is the largest available
corpus for formality style transfer, containing about
110K formal/informal sentence pairs (Rao and
Tetreault, 2018). It is divided into the domains En-
tertainment & Music and Family & Relationships,
which makes it suitable for training and evaluation
with in/out-of-domain data. We do not use the par-
allel nature of the corpus, but assign each sentence
a style attribute (−1 for informal- and 1 for formal
sentences) and re-split the training subset to obtain
an 80-10-10 train/validation/test split.

Toxicity For toxicity we use the Jigsaw Un-
intended Bias in Toxicity Classification dataset,
which contains comments from the Civil Com-
ments platform annotated with several binary toxic-
ity labels representing types of toxicity (e.g. insult,
identity attack, sexually explicit) (Borkan et al.,
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2019). We use only the toxic label as a style at-
tribute. We further use the Real Toxicity Prompts
dataset for human evaluation (Gehman et al., 2020).
This dataset contains the beginning of sentences
and has been used to test if models can continue
generation without toxicity.

4.1 Preprocessing

We largely follow Merity et al. (2017)’s prepro-
cessing of WT103 for all data. Additionally, we
perform the following replacements:

what replacement
inline/block code <code>

usernames <person>
hyperlinks [title](url) 7→ title

URLs <url>

Unlike Merity et al. (2017) we use spaCy.io for
normalization and tokenization, but perform the
same tokenization of infix punctuation and sym-
bols. This serves to differentiate number separator
punctuation from word punctuation, and hyphens
from minus signs or ranges.

5 Experiments

In preliminary experiments we examined the effect
of float precision on model performance. Using
WT103 and the setup of Khandelwal et al. (2020b)
we found that using half precision halves inference
time without hurting perplexity, and reduces infer-
ence time for the kNN-LM with a negligible 0.25
increase in perplexity. In the following sections we
use half-precision to speed up the experimentation
process.

In the main experiments we first examine the im-
pact on perplexity when incorporating style values
into the model. Then we compare our method to
the baseline through human evaluation.

5.1 Language Modeling with Style Attributes

We train the style model, S, using the modified
architecture, and baseline model, B, which uses
the original architecture. To achieve high predictive
performance on text, we first train both on WT103.

For each dataset we then fine-tune a copy of S
and B on the dataset. Using these fine-tuned mod-
els we generate and evaluate a datastore for each a
model, using the dataset the respective model was
fine-tuned on.

We additionally build and evaluate a datastore
on domain and style subsets, to test our model’s

performance on out-of-domain data and across sub-
sets with specific style. The subsets are listed in
Table 3 in the Appendix.

5.2 Setup & parameters

Unless stated otherwise, we use the default parame-
ters used by the transformer_lm_wiki103 archi-
tecture and Khandelwal et al. (2020b).

Vocabulary To avoid a high number of OoV to-
kens, we chose to use a shared vocabulary from
the union of all datasets. Tokens occurring less
than 3 times were mapped to <unk>. The resulting
vocabulary has a size of 375k tokens. Since Merity
et al. (2017) have shown that a large vocabulary
with adaptive input representation can outperform
a smaller BPE vocabulary, we chose the former
over the latter – although this choice has its own
limitations (see limitations section).

Training During pretraining on WT103, we use
random style values normally distributed around
the median, set patience to 5 epochs, and the style
embedding dimension to 96. During fine-tuning
we use Adam instead of the NAG optimizer and set
patience to 10 epochs.

Datastore We use half-precision vectors in the
datastore. Since the context embedding dimension
(1,120) must be divisible by the number of FAISS
index subquantizers, we use 70 instead of 64. For
smaller subsets of data we use 2,048 cluster cen-
troids, rather than the default 4,096.

5.3 Fine-tuning Results

The results of fine-tuning for each style attribute
are shown in Table 1. We find that simply encoding
the style value improves model performance on all
datasets, including the original WT103, though this
is likely due to the small increase in the number
of parameters. Fine-tuning predictably lowers per-
plexity on the style datasets and slightly increases
the WT103 perplexity as the model shifts away
from the corpus it was originally trained on. The
best performance is on formality, followed by po-
liteness, which we expect to more closely resemble
WT103. The addition of the style input allows for
much greater improvement on politeness as com-
pared to toxicity which shows near equal perfor-
mance without it. We also provide perplexity for
the kNN-LM in Appendix C.
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Baseline Style

Dataset PT FT PT FT

Politeness 218 126 164 78
Formality 161 77 148 60

Toxicity 212 125 186 93

WT103 31 35-64 29 32-59

Table 1: Perplexity before (using the pretrained model;
PT) and after fine-tuning (FT). All models were evalu-
ated on the FT dataset and on WT103. The value ranges
in the WT103 row indicate the performance range of
the FT models on the WT103 dataset.

5.4 Human Evaluation

We aimed to answer three questions; (1) do the
style-specific datastores outperform the mixed data-
store, (2) does the kNN-LM outperform the LM,
and (3) does the style architecture outperform the
baseline? To address these questions we asked a
group of 11 students to annotate model outputs.

Generating Output We follow the idea of
Gehman et al. (2020) and generate outputs by sup-
plying prompts of different styles to the models.
We use both non-toxic (toxicity = 0) and neutral
(0 < toxicity < 0.5) and created prompts from
the formality and politeness datasets by cutting off
the second half of randomly sampled sentences.
The prompts are then used as input to the models,
which generate continuations to the prompts. All
combinations of models and inputs are detailed in
Table 4 in the Appendix. For all kNN-LM outputs
we use λ = 0.8 as interpolation parameter.

Survey Setup We asked annotators to select
which of a pair of prompt continuations was more
fluent and which more closely followed one of the
given styles. The pair combinations are based on
the three comparisons listed at the beginning of
this section, but are fully listed in Tables 5-7 in the
Appendix and result in a total of 440 survey ques-
tions. The questions were presented to annotators
in random subsets of 20% of the full set. Each
output pair was rated by 2-4 people.

Results The results in Table 2 show which model
is preferred, in percentage of annotators, in terms
of fluency and style for each pair. We find that
when comparing mixed and specific datastores, the
specific datastores are preferred for style and even
more strongly for fluency. While the kNN-LM is
preferred over the LM in fluency, the style pref-

Fluency (%) Style (%)

Datastore Mixed 45.8 48.2
Specific 54.2 51.8

Model type LM 47.7 50.7
kNN-LM 52.3 49.3

Architecture Baseline 48.8 47.3
Style 51.2 52.7

Table 2: Human evaluation preferences for model pairs.
Column-wise percentage pairs sum to 100.0.

erence is more evenly split. When comparing the
style architecture to the baseline, we find that the
ours is preferred, with style more strongly preferred
to fluency.

These results are an aggregation over the styles,
however the performance on specific styles reveals
more varied results. The specific datastores give
more style control for politeness than for other
styles and for some combinations of the prompt
style and target style, the mixed datastore was pre-
ferred. We see that when we want to generate non-
toxic, polite, or formal text; those that more closely
resemble the pretraining data style, the preference
leans more toward the mixed datastore.

When comparing the LM to the kNN-LM,
we found that the LM style was often preferred
when provided an informal, non-toxic, or impo-
lite prompt, regardless of the target style. We also
found that the fluency of the LM is preferred when
generating polite or impolite text. Lastly, the style
architecture is not always preferred over the base-
line either. The baseline shows stronger fluency for
toxic and impolite prompts. The style architecture
has the best style control when generating formal,
toxic, and impolite text. Overall, there appears to
be a trade-off between style-control and fluency.
The full breakdown by prompt and input type is
shown in Figures 4-6 in the appendix.

6 Conclusion

We examined the use of kNN language models
for controllable stylistic generation using polite-
ness, formality, and toxicity as target styles. Our
findings show that simply encoding style in the
architecture improved perplexity of the language
model. A human evaluation further showed that
specific datastores for target styles outperform the
standard mixed datastore, and that our model gen-
erally outperformed the baseline kNN model in
terms of fluency and style control, though results
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on specific styles varied. Future work is needed
to fully understand the effect of pretraining and
benefits of the model variants for specific styles
and should also consider comparisons to other con-
trollable generation models, such as Keskar et al.
(2019).

Our code is available on Github at https://
github.com/d8xa/style-knnlm.

Limitations

Vocabulary Choice We chose a shared vocab-
ulary to reuse the same baseline model for fine-
tuning on multiple datasets. Since less frequent
tokens are assigned less parameters by the adap-
tive input representation, this could lead to under-
representation of rare, style-specific tokens in gen-
eral, and worse fine-tuning results for smaller
datasets or datasets with many rare tokens. The
same problem applies for single-dataset vocabular-
ies as well, when rare tokens are more prevalent
for a particular style. Byte-pair encoding would
avoid these problems, but make comparability to
the vanilla kNN-LM more difficult.

Sequence Length The original kNN-LM was
trained with sequences of up to 3,072 tokens in
length, which helps model long-term dependencies
in the WT103 dataset. Since all of our datasets with
style attributes contain much shorter sequences,
single-dataset training with shorter input sizes
might be better suited and achieve better perfor-
mance than pre-training on WT103 and fine-tuning
on the style dataset.

Comparability with Khandelwal et al. (2020b)
When training our style architecture, we had to
choose between a combined embedding dimension
of C + Semb = 1,024 (token- and style embedding
dimensions C and Semb), or to use C = 1,024.
In any case the resulting language model would
have a different number of parameters than in the
original kNN-LM . We chose to use C = 1,024 and
Semb = 96. FAISS requires the vector dimension to
be divisible by the number of subquantizers. Since
our combined embedding dimension is different
from 1,024, we had to choose 70 instead of 64
subquantizers.

Another difference is the choice of vocabulary.
The WT103-only vocabulary would make results
more comparable, but also lead to a high number
of UNK tokens for the style datasets, and therefore
reduce performance greatly.

Token to Style Embedding Dimension Ratio
To limit the scope of this work we did not perform
an analysis on the ratio between token- and style
embedding dimension. Other ratios might achieve
better fluency or style control.

Choice of Interpolation Parameter For our hu-
man evaluation we put λ = 0.8 weight on kNN-LM
probabilities. A lower λ, more close to the vanilla
kNN-LM, might achieve better fluency.

Ethics Statement

Work on controllable generation allows models to
generate text in styles such as those presented here,
which include polite/impolite, formal/informal, and
toxic/non-toxic. There may be applications where
each style is appropriate or desirable, but some
styles of text such as impolite and toxic, may be
undesired or even harmful. Application of our mod-
els should involve careful consideration of desired
styles and the context in which they are deployed.
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A Generation Examples

Here we include three examples of generation com-
paring the baseline LM to the kNN-LM where hu-
man annotators found our model to be both more
fluent and more closely aligned with the desired
target style.

B Modified Architecture

Our architecture, modified from Khandelwal et al.
(2020b), is shown in Figure 2. The left side of
the figure shows the original model and the right
shows our modification which incorporates style
attributes.

C Fine-tuning Experiment

The fine-tuning experiments in the main paper
summarize the performance of our models pre-
trained on WT103 and fine-tuned on one of the
style datasets each. Here we also include the per-
formance on other subsets of the finetuning dataset,
such as different toxicity levels for the toxicity data,
and domain subsets for the politeness and formality
data. A full list of subsets is given in Table 3.

D Human Evaluation

For the human evaluation task, we generated sen-
tences for different combinations of the model ar-
chitecture, target style, and prompt style. The high-
level summary of combinations is presented in Ta-
ble 4. For the three test conditions in §5.4, we have
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Target Style: Polite

Prompt: <person>: Yes. Did you read my
comments?

Baseline: Also, you install the name as
<unk> (”) <url>??

Our Model: Vote under the changed circum-
stances? Would you please have
a look?

Target Style: Formal

Prompt: ok let me answer u
Baseline: ’m not in pain, and I say ... gra-

ham understand your problem
Our Model: are alike. You should wait a little

longer to enter your full name
and play your live show.

Target Style: Formal

Prompt: THis is one way to keep it out of
your system ...

Baseline: sings u love bio <unk>
Our Model: with the following words com-

ing out of Gardisil ... Peter Pan,
or just those are some favorite
books that I am able to mail.

listed the model and style combinations that we
tested in Tables 5-7. Finally, the full breakdown
of the human evaluation for fluency and style pref-
erences are shown in Figures 4-6. The heatmaps
show the tendency of annotator choices, where ten-
dency is the mean model choice per question (−1
and 1 encode the choices), aggregated across all
questions in the survey and normalized to −100
and 100.

Tokens

AdaptiveInputEmbedding
Positionalencoding

MultiheadAttention
Layernorm

FeedForward
Layernorm

Linear

AdaptiveSoftmax

Probabilities

Tokens

AdaptiveInputEmbedding

Style attributes

Linear

Positionalencoding
Concat

MultiheadAttention
Layernorm

Feed Forward
Layernorm

Linear

AdaptiveSoftmax

Probabilities

Figure 2: Changes made to the LM architecture (left:
unmodified, right: our version).
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dataset subset size comment

samples (%) samples

WT103 all 100 1.8M

Formality

all 100 214 k
formal 49.8 106.7 k

informal 50.2 107.3 k
family & relationships 49.7 106.3 k
entertainment & music 50.3 107.7 k

Toxicity

all 1.4M Only used for evaluation; due to imbal-
ance not suited for training or Datastores
(DSes).

non-toxic 75.6 1M Toxicity score = 0 .
non-toxic-sample 11.8 159.8 k Sample from non-toxic.

toxic-gte-0.5 11.8 159.8 k Toxicity score ≥ 0.5.
toxic-gte-0.8 2.5 34.1 k Toxicity score ≥ 0.8.
toxic-gte-0.9 0.8 10.2 k Toxicity score ≥ 0.9.

all-sample 23.5 319.6 k Combination of toxic-gte-0.5 and non-
toxic-sample.

Politeness

all 100 11.1 k
neutral 30.3 3.4 k Center 30% of politeness scores.
polite 36.9 4.1 k Upper 36.9% of politeness scores.

impolite 32.8 3.6 k Lower 32.8% of politeness scores.
stackexchange 60.8 6.8 k

wikipedia 39.2 4.4 k

Table 3: List of dataset subsets. Note: Proportions of subsets within splits are subject to variations due to random
sampling. Not all subsets are presented in the results of the main paper. Some subsets are only shown in Figure 3.

Figure 3: Overview of test perplexity in the fine-tuning experiment across data subsets listed in Table 3.
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dataset source style target style LM datastore styles

Formality formal formal style none, formal, mixed
informal style none, informal, mixed
n.a. baseline none, informal, formal

informal formal style none, formal, mixed
informal style none, informal, mixed
n.a. baseline none, formal, informal

Toxicity neutral n.a. baseline none, non-toxic, toxic, mixed
non-toxic style none, non-toxic, mixed
toxic style none, toxic, mixed

non-toxic n.a. baseline none, non-toxic, toxic, mixed
non-toxic style non-toxic, none, mixed
toxic style none, toxic, mixed

Politeness impolite impolite style none, impolite, mixed
n.a. baseline none, polite, impolite, mixed
polite style none, polite, mixed

polite impolite style none, impolite, mixed
n.a. baseline none, polite, impolite, mixed
polite style none, polite, mixed

Table 4: Combinations of models and inputs used for generating the outputs for human evaluation. n.a. in the target
style column refers to the baseline LM architecture, since it has no style input.

dataset source style target style specific datastore style

Formality formal formal formal
informal informal

informal formal formal
informal informal

Toxicity neutral non-toxic non-toxic
toxic toxic

non-toxic non-toxic non-toxic
toxic toxic

Politeness impolite impolite impolite
polite polite

polite impolite impolite
polite polite

Table 5: Model combinations for the human evaluation to address whether the style-specific datastores outperform
the mixed datastores.

dataset source style target style datastore style

Formality formal formal formal
informal informal

informal formal formal
informal informal

Toxicity neutral non-toxic non-toxic
toxic toxic

non-toxic non-toxic non-toxic
toxic toxic

Politeness impolite impolite impolite
polite polite

polite impolite impolite
polite polite

Table 6: Model combinations for the human evaluation to address whether the kNN-LM outperforms the baseline
LM. Both models being compared use the style architecture.
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dataset source style datastore target style

Formality formal formal formal
informal informal

informal formal formal
informal informal

Toxicity neutral mixed non-toxic, toxic
non-toxic non-toxic
toxic toxic

non-toxic mixed non-toxic, toxic
non-toxic non-toxic
toxic toxic

Politeness impolite impolite impolite
mixed impolite, polite
polite polite

polite impolite impolite
mixed impolite, polite
polite polite

Table 7: Model combinations for human evaluation to address whether the style architecture outperforms the
baseline kNN-LM.
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Figure 4: Survey results: Comparison of kNN-LM with mixed DS and style-specific DS. A tendency < 0 corresponds
to the mixed DS being preferred by annotators.
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Figure 5: Survey results: Comparison of LM to kNN-LM for both architectures. A tendency < 0 corresponds to the
LM being preferred by annotators.
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Figure 6: Survey results: Comparison of kNN-LM with baseline architecture vs. style architecture. Style input on
the x-axis refers only to the style LM, since the baseline LM has no style input. A tendency < 0 corresponds to the
the baseline architecture being preferred by annotators.
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