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Abstract

Recent pre-trained language models have
shown promising capabilities in generating flu-
ent and realistic natural language text. How-
ever, generating multi-sentence text with global
content planning has been a long-existing re-
search question. Current approaches for con-
trolled text generation can hardly address this
issue, as they usually condition on single
known control attributes. In this study, we pro-
pose a low-cost yet effective framework which
explicitly models the global content plan of
the generated text. Specifically, it optimizes
the joint distribution of the natural language
sequence and the global content plan in a plug-
and-play manner. We conduct extensive ex-
periments on the well-established Recipe1M+
benchmark. Both automatic and human evalua-
tions verify that our model achieves the state-
of-the-art performance on the task of recipe
generation.1

1 Introduction

Recent progress in large-scale language model pre-
training has facilitated significant improvement in
generating increasingly realistic natural language
text. Although this has been achieved on the
surface-level fluency, it has been pointed that gen-
erating multi-sentence text with global constraints,
or long-term planning is still far from being solved.
Typical examples of such task include story con-
tinuation with logical coherency (Nye et al., 2021;
Sinha et al., 2019), and recipe generation with step-
by-step planning (Marin et al., 2019).

As suggested by LeCun (2022), the aforemen-
tioned issues cannot be ameliorated by simply in-
creasing the size of model parameters or the scale
of pre-training data. Adding to this, current ap-
proaches for controlled text generation cannot di-
rectly tackle those issues either. For example,

1Our code and other related resources are publicly
available at https://github.com/williamLyh/
RecipeWithPlans.

CTRL (Keskar et al., 2019), which trains a class-
conditional language model, and PPLM (Dathathri
et al., 2019), which re-ranks the language model
predictions by an attribute model. They usually
share a common setup of optimizing conditional
distributions P (y|a), where y is the text sequence
and a is the desired single control attribute. Exam-
ples of control attribute include sentiment (Ghosh
et al., 2017), topic (Tang et al., 2019) and formality
(Wang et al., 2019). However, content planning
requires controlling with consideration of global
context, which is more sophisticated than the sin-
gle control attributes. Therefore, we identify the
research gap for the current controlled text gener-
ation models to generate multi-sentence text with
long-term content planning.

Motivated by previous research in cognitive sci-
ence (Evans, 2003), Nye et al. (2021) pointed out
that the reasoning of a neural-based model should
consist of two systems, i.e. the system 1 makes
intuitive and associative responses, and the system
2 makes deliberative and logical decisions. With
greatly increased capabilities, large language mod-
els have become sufficiently competent to act as
the system 1. However, we argue that, to address
the aforementioned research gap, it is vital to em-
power the language models with the ability to make
logical decisions, i.e. predict content plans.

In contrast to the existing methods that optimize
the conditional distributions, we propose a novel
framework which explicitly models the content
plan c and optimizes the joint distribution P (y, c)
in a plug-and-play manner. Figure 1 depicts an
overview of our approach. Specifically, our pro-
posed framework consists of (i) a content planner
which predicts the global content plan of the output
text; and (ii) a sequence generator, based on pre-
trained language models, that generates the output
following the content plan. The predicted content
plan steers the generation of the sequence generator
through a lightweight and plug-and-play style plan

223

https://github.com/williamLyh/RecipeWithPlans
https://github.com/williamLyh/RecipeWithPlans


classifier. It worth emphasizing that the sequence
generator does not need to be trained with plan-
specific data, which means adapting our framework
to other Natural Language Generation (NLG) tasks
is cheap and efficient.

We comprehensively evaluate our approach on
the recipe generation task using the widely-used
Recipe1M+ benchmark (Marin et al., 2019). The
experimental results demonstrate that our approach
significantly outperforms previous state-of-the-art
(SOTA) as judged by both automatic and human
evaluations. In particular, the results show that the
recipes generated by our model are more accurate
and highly controllable.

In summary, we conclude our contributions as
two-fold: Firstly, we identify the current research
gap and propose a novel framework that generates
text with content plans in a plug-and-play man-
ner. Secondly, we conduct extensive experiments
to show that our framework achieves SOTA perfor-
mance on the widely-used Recipe1M+ benchmark.

2 Background and Related Works

2.1 Controlled Text Generation

Controlled Text Generation (CTG) refers to tasks
of generating natural text conditioned on given
controlled attributes. CTG approaches that
leverage transformer-based Pre-trained Language
Model (PLM) could be classified into three cat-
egories according to their required computation
resources (Zhang et al., 2022). We provide a brief
overview of these three categories.

Retraining. These methods usually modify the
original architecture of PLMs and retrain them for
a specific downstream task. For example, CTRL,
proposed by Keskar et al. (2019), is a representa-
tive that trains a language model with task-specific
control codes for each type of text corpus. Another
work is POINTER, proposed by Zhang et al. (2020),
which stacks the architecture of insertion-based
transformer (Chan et al., 2019) in a hierarchical
manner to enforce hard lexical constrains during
text generation. This type of methods could control
the generated text effectively, but may negatively
affect generalization of the PLM. They also usually
have high computational footprint, and large-scale
task-specific annotated data.

Fine-tuning. These methods require partial or
full fine-tuning of a PLM for each individual target

attribute. For example, Bostrom et al. (2021) pro-
posed ParaPattern which fine-tunes BART-based
models (Lewis et al., 2020a) to generate text via
applying different logical operations to premise
inputs. Ribeiro et al. (2021) fine-tunes PLMs to
control the generation from different types of graph-
ical data. The prefix-tuning, proposed by Li and
Liang (2021), only optimizes a task-specific vector
(prefix), while freezing the rest of PLM, to con-
trol the domain of generation. Fine-tuning PLMs
based on a small amount of labelled data for the
specific downstream task has achieved competitive
performance. However, fine-tuning based methods
usually steer the PLM from the side of input, which
means it could be hard to enforce hard constrains
on the outputs directly.

Post-processing. These methods usually do not
require task-specific data to fine-tune the PLM, but
require decoding algorithms to re-rank the gener-
ated text in a post-processing manner. As a repre-
sentative work, PPLM, proposed by Dathathri et al.
(2019), uses gradients from an attribute discrimi-
nant model to steer the text generation. FUDGE,
proposed by Yang and Klein (2021), weights the
decoding probabilities with an attribute predictor
which takes partial sequence as input. Su et al.
(2022b); Su and Collier (2022) proposed Con-
trastive Search decoding, which encourages diver-
sity by penalizing repetitive tokens. Lu et al. (2021)
proposed NeuroLogic Decoding, which enforces
the generation to satisfy a set of pre-defined hard
lexical constrains. MAGIC, proposed by Su et al.
(2022a), applies an image relevance discriminator
to guide the generation process with visual infor-
mation. This type of methods are usually compu-
tationally cheap and flexible, because they have a
separate guiding module. The increasing number
of parameters of the PLM would not affect the com-
plexities of the methods. Our approach falls into
this category of methods.

2.2 Generation with Plan

From the perspective of CTG tasks, attributes
to control during generation include sentiment,
topic, style, formality, story structure, content plan,
among others. For example, Ghosh et al. (2017)
proposed Affect-LM, which extend an LSTM lan-
guage model by conditioning on pre-defined affect
categories and strength. Fu et al. (2018) investi-
gated the task of learning paper-news title style
transfer from non-parallel data. Li et al. (2020)
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proposed the framework of SongNet which studies
rigid format control to generate poems or songs
that obey pre-defined rhyming schemes.

Previous works in controlling the generation
with content planning are mainly focusing on the
task of data-to-text generation and always taking
schema selection and ordering as content plans.2

For example, Moryossef et al. (2019) separates
planning from neural text realization and takes
the most probable traversal of RDF graph trees
as content plan. Zhao et al. (2020) employs a GCN
encoder to order the nodes of input RDF data as
content plan. Su et al. (2021) proposed Plan-then-
Generate, which treats orders of tabular schema as
plans and then plans are encoded along with lin-
earized data as inputs to a generative model. How-
ever, those methods require graphical or tabular
input data and can only model content planning
based on the data schema, which limits their do-
main of application. Yao et al. (2019) proposed a
hierarchical generation framework that first plans a
keyword storyline and then generate a story based
on the storyline. However, the generated keywords
do not capture any global relation between each
other.

2.3 Recipe Generation
Recipe generation refers to the task of generating
recipe instructions from food images or textual
ingredients and food title. Because recipes have the
natural step-by-step sequence flow, sentence-level
content planning is desired in order to generate
high quality recipes.

Previous works tackled this issue in many direc-
tions. Chandu et al. (2019) treated this problem
as a Visual Story Telling task and built a dataset
containing images and text for each intermediate
step. The recipe instructions are generated from
the sequential images. Kiddon et al. (2016) models
global coherence of the recipes by maintaing an
ingredient checklist dynamically. During genera-
tion, a language model is encouraged to refer to
the checklist item. Bosselut et al. (2018) tracks
ingredient entity with a recurrent memory module
and explicitly models actions as a set of per-defined
state transforming operations. The recipes are then
interpreted as structured collections of ingredient
entities executed upon by cooking actions. (Ma-
jumder et al., 2019) investigated the task of person-

2Schema selection and ordering depend on input data struc-
ture, e.g. selecting and re-ordering the cells of tabular data or
the nodes of graphical data.

alized recipe generation. The user’s previously con-
sumed recipes are encoded and attended by recipe
name and ingredients to generate complete instruc-
tions. However, they require complicated input
data format, and sophisticated planning templates.

Recipe1M+, introduced by Marin et al. (2019),
is an extension of Recipe1M (Salvador et al., 2017)
and contains over 1M textual recipes and ingre-
dients and 13M corresponding food images. The
dataset has been used for versatile tasks, such as
image-recipe retrieval (Chen et al., 2017), multi-
modal embedding learning (Min et al., 2017), and
recipe generation (Salvador et al., 2019). The
RecipeGPT, proposed by H. Lee et al. (2020), fine-
tuned a GPT-2 as a backbone generation model,
taking only recipe titles and ingredients as input
and recipe instructions as output. The NeuroLogic
Decoding (Lu et al., 2021) takes the same setup,
while enforcing hard lexical constrains on the oc-
currence of the ingredients. We follow the setup of
these works and only consider the textual compo-
nents of the Recipe1M+.

To the best of our knowledge, for the task of
CTG with content planning, there has been no pre-
vious attempt neither on dataset with more flexible
format such as recipe, nor with a plug-and-play
post-process method.

3 Methodology

3.1 Overview

Figure 1 depicts our proposed framework. Given
the recipe title and ingredients, the content plan-
ner (§3.2) first predicts the most probable content
plan. The predicted content plan then guides the
generation of the sequence generator (§3.3) via a
lightweight and plug-and-play operation. Below,
we elaborate the details of the proposed approach.

3.2 Content Planner

A carefully designed plan schema is vital for sys-
tems that require sophisticated controls. By ex-
amining recipe instructions, we observe the fact
that they share a common structure of sequence of
step-by-step stages and there are natural patterns
behind those stage sequences. Therefore, we treat
a content plan as a sequence of stages, where some
stages could be of the same type. Specifically, we
define 7 types of instruction stage based on the
processing step of the food, including:

• Pre-processing means the preparations of in-
gredients or cooker.
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Sequence 
Generator

Content  
planner

Stage plan

 Pre-processing,Pre-processing,  
Mixing, Cooking, ... 

<TITLE_START> BBQ Bacon Mushrooms
<TITLE_END> <INGR_START> 1 lb pepper
bacon <INGR_NEXT> button mushrooms...
<INGR_END>

Title & ingredients

 
Recipe instructions

 <INSTR_START> remove stems from mushrooms.
<INSTR_NEXT>cut each mushroom into 4 pieces...
<INSTR_END>

<INSTR_NEXT>
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P(yi|y<i-1;x)
mix
toss
...

0.23

0.10

0.08

...
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toss+Title &
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Plan-aware Decoding

Figure 1: Model overview. The upper half demonstrates our framework. Firstly, the title and ingredients are used to
predict the stage plan by the content planner module. Then, the sequence generator module, guided by the stage
plan, generates the recipe instructions. The bottom half illustrates one step of the plan-aware decoding. In the given
example, the current stage is ‘cooking’. The language model (blue) outputs unconditional probabilities based on all
previous context and inputs. The stage classifier (red) computes the probabilities of the current partial sentences
belonging to the current stage ‘cooking’.

• Mixing includes actions of combining one or
more ingredients together.

• Transferring is for the actions of moving or
transferring food or intermediate food to a
specific place.

• Cooking represents the actual cooking ac-
tions, which could vary drastically across dif-
ferent recipes.

• Post-processing usually refers to the follow-
ing up actions after the ‘cooking’ stage, such
as ‘cooling down’, ‘garnish’.

• Final refers to the last few actions before serv-
ing the food or the serving action itself.

• General includes the rest of actions which
cannot be classified into the above categories.

As recipe instructions are usually sentences led
by action verbs, an assumption is made that the
stage types of the instructions are decided by their
main action verbs. For each type of stage, we as-
sign a set of exclusive stage-specific action verbs,
as shown in Table 1. For example, the ‘cooking’
stage includes actions such as ‘fry’, ‘bake’, ‘boil’,

Stage Types Keywords
Pre-processing Peel, beat, rinse, prepare ...
Mixing Mix, add, combine, blend ...
Transferring Move, put, pour, place ...
Cooking Fry, bake, cook, boil, grill ...
Post-processing Cool, shake, garnish, cover ...
Final Serve, yield, wrap, enjoy ...
General Uncovered or ambiguous verbs

Table 1: Seven stage types and example keywords for
each stage type.

etc. Then, we built a rule-based system that auto-
matically tags recipe instructions with stage labels
according to the pre-defined verb sets. We tag the
instructions from train set of Recipe1M+, which
contains around 710K recipes, with the stage labels
and refer to them as silver labels. 3 By this way,
we can obtain the content plan of a recipe, i.e. the

3In Appendix A.3, we elaborate more implementation de-
tails of the rule-based stage tagging system. In §4.2, we evalu-
ate the quality of the silver labels with human annotations on
an evaluation subset.
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sequence of the stage labels.
After acquiring the content plan c =

{c1, c2, ..., c|c|} using our rule-based system, the
distribution of c is then modelled by the content
planner as P (c|x), where x is the given recipe title
as well as ingredients, and cj belongs to one of
the seven stage types shown in Table 1. Specifi-
cally, given the recipe title and ingredients, we use
a Seq2seq model, i.e. BART (Lewis et al., 2020b),
to model the content plan as

P (c|x) =
|c|∏

j=1

pθc(cj |c<j ;x), (1)

where θc is the parameters of the content planner.
The main assumption of our modelling choice is
that the content plan, i.e. cooking procedure, could
be mostly determined once the target food and in-
gredients are known.

3.3 Plan-Aware Decoding

Given the recipe title and ingredients x, and the
content plan c, we formulate the conditional dis-
tribution of recipe y by following the Bayes rule
as

P (y|x, c) =
|y|∏

i=1

p(yi|y<i;x, c)

∝
|y|∏

i=1

pθg(yi|y<i;x) · pθf (cj |yk:i),

(2)

where cj refers to the stage that the current partial
sequence yk:i belongs to. The θf is an off-the-shelf
stage classifier which predicts the probability dis-
tribution over 7 stage classes by taking the partial
sequence yk:i as input. It should be noted that we
assume the probability of the current stage label
should only depend on the partial sequence that
belongs to the current stage.

During inference, based on Equation 2, the se-
lection of the output token ŷi at step i follows

ŷi = argmax
yi∈VS

pθg(yi|y<i;x)
(1−α) · pθf (cj |yk:i)

α,

(3)
where α is a hyper-parameter that regulates the
importance of two terms. VS is the set of top-S
predictions from the sequence generator’s probabil-
ity pθg(·|y<i;x) and S is set as 5 by default. We

use the sequence generator’s predictions on sub-
set VS to approximate the predictions over the total
vocabulary. With this approximation, the stage clas-
sifier only needs to be applied upon S candidates,
therefore assuring the computational efficiency.

In this work, we fine-tune a GPT-2 model (Rad-
ford et al.) on the training set of the Recipe1M+
benchmark to make it the sequence generator.
To acquire the stage classifier, we fine-tune a
lightweight DistilBERT (Sanh et al., 2019) on the
partial recipe instructions with the silver stage la-
bels that we obtain as described in §3.2.

Intuitively, our approach can be deemed as uti-
lizing the stage classifier as a re-ranking step on
the top S candidates predicted by the sequence gen-
erator. Figure 1 illustrates an example, in which
the sequence generator first predicts probabilities
across all the vocabulary and the word ‘barbeque’
has the highest likelihood. Then, the stage classifier
re-ranks the predictions based on the current stage
label ‘cooking’ and assigns the highest probability
to ‘toss’.

We note that using a partial sequence stage clas-
sifier to guide the decoding shares a similar idea
with the previous study, i.e. FUDGE (Yang and
Klein, 2021). However, in contrast to FUDGE, our
approach works on discriminating 7-class planning
stages rather than only supporting binary attributes.
In addition, to ensure the structural fluency of the
generated recipe, we also control the generation
from the perspective of global content planning,
rather than focusing on one single control attribute.

3.4 Advantages and Limitations

In this section, we discuss the theoretical advan-
tages and limitations of our proposed approach.

We highlight the advantages that: (i) We control
the generation process in the plug-and-play manner,
without the need of fine-tuning the language model,
i.e. sequence generator module, with plan-specific
data. In other words, given an off-the-shelf stage
classifier and content planner, our framework is
training-free. (ii) The stage classifier and content
planner are both lightweight models compared to
the sequence generator and can be fine-tuned with
non-parallel data. (iii) Because the content plan
schema is designed by humans, our framework can
effectively inject human knowledge of the constrain
patterns explicitly into the generation process.

We also point out the limitations of our frame-
work: (i) The overall performance of our model
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depends on the manually designed plan schema,
which cannot be perfect, as it is based on heuris-
tic experience. There are many cases where the
stage of the instructions could be ambiguous. For
example, in a real recipe, it is possible for ‘slice
the steak’ to be both type of ‘pre-processing’ or
‘post-processing’. It is hard for humans to de-
cide whether ‘add salt and pepper’ is a special
case of ‘seasoning’, which belongs to the stage
‘pre-processing’ or ‘mixing’. Another example is
‘pour milk and mix well’, which contains two verbs
from two stages. (ii) As pointed out by Zhang
et al. (2022), guided re-ranking algorithm, as a
method of controlled text generation based on post-
processing, suffers the problem of relatively low
control strength, compared with the methods based
on fine-tuning or retraining.

4 Experiments

In this section, we evaluate our method from three
aspects: (i) The performance of planner module;
(ii) the performance of the stage classifier; and
(iii) the performance of the recipe generation. The
implementation details on these three parts are ex-
plained in §4.1, §4.2, and §4.3, respectively. In
Appendix A.5, we provide examples that compare
the generated results from our model and the base-
lines.

We pre-processed the Recipe1M+ dataset by
firstly filtering out instructions that contain less
than 3 words, e.g. ’combine all’, as they are usu-
ally trivial. We also truncate recipes with too many
instructions at the length of 15, because recipes
with too many instructions usually include irrele-
vant information due to data scraping errors. By
this way, about 9% of the original Recipe1M+ are
filtered out and the resulting dataset are used in our
experiments.

4.1 Planner Evaluation

As described in §3.2, the content planner predicts
the sequence of stage plans from the given recipe
title and ingredients. We took the sequences of the
silver stage labels as reference plans and finetuned
a seq2seq model, i.e. BART base version (Lewis
et al., 2020b). The silver labels are generated
through the automatic tagging system described
in §3.2. We evaluate the content planner module
on the test set of the Recipe 1M+.

Table 2 presents the evaluation results on the
content planner, where the exact match rate is the

Metrics Planner
Uni-gram 69.4
Bi-gram 42.3
Tri-gram 16.9
Exact match 39.0

Table 2: Planner module evaluation results. Match rate
accuracy (in percentage) for uni-gram, bi-gram, tri-gram
and exact match, between predicted and reference plans
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Figure 2: Histograms of the length of the predicted and
the corresponding reference plans.

percentage of matched stages in their exact posi-
tions of the reference plan. From the results, we
see that our planner module achieves 39% accuracy.
Additional to this, because we are comparing two
plan sequences, n-gram match rates are also im-
portant indicators to measure how good underlying
patterns are learnt. We show that for uni-gram and
bi-gram we achieved relatively high match rates at
69.4% and 42.3%, respectively; For tri-gram, we
got 16.9% accuracy. This performance drop shows
that our planner can learn the patterns between two
successive instructions to an acceptable level, but
the patterns among three successive instructions
become hard to predict.

To further illustrate the performance of the con-
tent planner module, we also compare the distri-
bution of lengths of the predicted and reference
stage plans. As shown in Figure 2, their histograms
show similar bell-shape and the percentage of their
mismatching is around 29.1%, which we consider
as acceptably low. The main source of this, we
believe, is due to the heavy tail of the distribution
at length of 15. As explained in Appendix A.1, this
is caused by the truncation of recipe instructions
during the pre-processing steps.
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Model Accuracy
Stage classifier 56.3
Silver label 62.7

Table 3: Stage classifier evaluation results. The accuracy
(in percentage) of the predictions of our stage classifier
and automatically tagged silver stage labels, compared
with manually labeled gold annotations.

4.2 Stage Classifier Evaluation

As described in §3.3, the stage classifier predicts
the stage label for the given full or partial recipe
instruction. In our experiments, we implement the
stage classifier by fine-tuning a DistilBERT with
partial instructions along with the corresponding
silver stage labels. The partial instructions can be
obtained by truncating the instructions from the
training set of the Recipe1M+ at random positions.
The size of the resulting partial instructions train-
ing set is around 4.9M. Below, we evaluate the
performance of our stage classifier.

We construct a evaluation set by randomly sam-
pling 300 examples from the recipes instructions
in the test set of Recipe1M+. Then, we ask three
human annotators proficient in English to anno-
tate the instructions with stage labels following our
provided guidelines. The human annotations are
referred as gold labels. In Table 3, we evaluate the
stage classifier and the rule-based tagging system
with the gold labelled evaluation set. The stage
classifier achieves accuracy of 56.3%, while its up-
per bound, the silver labels, has accuracy of 62%.
We consider this is an acceptable performance, be-
cause this is a 7-class classification problem and
there is subjective understanding of the imperfect
plan schema, as explained in §3.4.

4.3 Recipe Generation

In this section, we evaluate our plan-aware decod-
ing method with both automatic and human eval-
uations, and compare the performance with two
strong baseline methods. The sequence generator
of our model is a base version of GPT-2, finetuned
on the training set of the Recipe1M+ dataset. We
pre-processed the recipe data with special separa-
tion tokens, as shown in the example in Figure 1,
and more details are provided in Appendix A.1.
Both our sequence generator as well as the com-
pared baselines are fine-tuned on the same pro-
cessed data.

4.3.1 Baselines
RecipeGPT, proposed by H. Lee et al. (2020), fine-
tuned a base version of GPT-2 with the training
set of the Recipe1M+ dataset. During generation,
it employs two types of decoding methods, top-k
sampling and beam search. We re-implement the
RecipeGPT as a representative of finetune-based
methods and set the sampling candidate number
and the beam size as 5.

NeuroLogic decoding, proposed by Lu et al.
(2021), is a post-processing method which can be
applied to different generative models. It tries to
search for optimal output sequences that satisfy a
set of pre-defined lexical constrains. The constrains
enforce certain words to appear or not appear in the
generated sequences. In this work, we choose the
base version of GPT-2 as the underlying generative
model and set the constrains such that all ingredi-
ents from the inputs should appear in the generated
sequences. The beam size is set as 5.

4.3.2 Metrics
Automatic Metrics. We use two widely-used met-
rics to assess the surface-level accuracy of the
generated result, including BLEU (Papineni et al.,
2002) and ROUGE-L (Lin and Hovy, 2002). To
measure the controlling ability of different mod-
els, we measure the plan match rate, which is the
average percentage of the stage plan of the gener-
ated recipes that agree with the input stage plan.
The stage plans of the generated recipes are also
labelled by the rule-based stage tagging system de-
scribed in §3.2. In Table 4, we refer the plan match
rate as Plan Match.

We also explicitly measures the average percent-
age of coverage of the given ingredients and the
percentage of hallucinated ingredients. In Table
4, we refer to them as coverage and extra, respec-
tively. . The details of how they are calculated are
provided in Appendix A.2

Human evaluations. To make a similar compar-
ison, we follow the same human evaluation setup as
previous studies such as FUDGE and PPLM (Yang
and Klein, 2021; Dathathri et al., 2019). Specifi-
cally, we run A/B test style human evaluations to
compare our model with the two baselines on the
aspects of fluency and quality in a manner of one-
to-one pairwise comparison. For each comparison,
the two compared models both generate recipes
based on 100 randomly selected recipe title and
ingredients. The evaluators were asked to rate the
fluency, in Likert scale from 1 to 5, and the quality

229



Model BLEU↑ ROUGE-L↑ Plan Match↑ Coverage↑ Extra↓
RecipeGPT, top-k 11.5 34.8 26.0 59.0 24.0
RecipeGPT, beam 12.2 37.1 24.0 63.1 21.9
NeuroLogic 11.8 38.2 21.8 67.1 22.5
Our model 13.9 39.1 40.6 65.4 20.7
Our model, oracle 14.3 40.6 39.2 65.8 22.0

Table 4: Experimental results for our models and the baselines. Oracle version of our model represents the
plan-aware decoding is guided by the reference plan. All models are evaluated on the same evaluation subset. ↑
means the higher the better, and ↓ means the lower the better.

Method Fluency Quality
RecipeGPT, beam 4.07 0.68
Our model 4.34 0.88
NeuroLogic 3.87 0.59
Our model 4.27 0.85
Our model, oracle 4.31 0.81
Our model 4.28 0.76

Table 5: Human evaluations on the generated recipes.
A/B test style pairwise comparisons.

of the generated recipes. For the quality, the evalua-
tors need to decide which recipe can reproduce the
food described by the given title (recipe A, recipe
B, neither or both). In Table 5, we report quality
as the percentage of the recipes that are labelled
as able to reproduce the food. The details of the
human evaluators are described in Appendix A.4.

4.3.3 Results
We create an evaluation subset by randomly sam-
pling 4000 examples from the test set of the
Recipe1M+. All experiments are conducted on
this same subset. Table 4 presents the results of dif-
ferent methods averaged over 5 runs with different
random seeds.

Apart from the the aforementioned baselines, we
also evaluate the oracle version of our model, which
takes the reference stage plans as the guidance. The
experimental results show that our model outper-
forms all compared baselines on all metrics except
for the ingredient coverage. The differences are sta-
tistically significant for BLEU, ROUGE-L and Plan
Match as judged by Sign Test with p < 0.01. For
the percentage of hallucination ingredients, the dif-
ference is weakly significant (p < 0.1). The perfor-
mance gains of our model on BLEU and ROUGE-
L suggests that it can produce recipes with better
surface-level similarities by injecting the knowl-
edge of content plans. On the metric of ingredient
coverage, NeuroLogic decoding achieves the best

results as it explicitly priorities the hard constrain
of occurrence of the ingredients over surface-level
fluency. It is worth noting that our models, includ-
ing the oracle version, generally achieve signifi-
cantly higher plan match rate than all the compared
baselines. This verifies that our model can effec-
tively control the generation process of the recipe
by following the given content plans.

For the human evaluation, our model is com-
pared with the RecipeGPT and NeuroLogic base-
lines in pair and outperforms them on both fluency
and recipe quality. In addition, we observe that,
with the help of the stage plan, our model can
produce much less repeated, irrelevant or redun-
dant instructions. Furthermore, by explicitly con-
ditioning on stage plans, the recipes generated by
our model are considered of better quality, which
means they are easier for human readers to fol-
low successfully.4 Lastly, the oracle version of
our model achieves further improved performances,
suggesting that better stage plans can effectively
provide human readers with better reading experi-
ence and more helpful guidance.

5 Conclusion

In this work, we first identify the research gap of the
current controlled text generation models to gener-
ate text with sentence-level content planning. Then
we propose a framework that optimizes the joint
distribution of the natural language sequence and
the content plans in a lightweight as well as plug-
and-play manner. Extensive automatic and human
evaluations demonstrate that our model achieves a
new state of the art on the recipe generation task
and outperforms previous studies by significant
margins. Lastly, we show that our model can gener-
ate recipes that are more accurate and controllable
by following the guidance of explicit content plans.

4In Appendix A.5, we provide detailed examples to com-
pare the generated results from different methods.
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A Appendix

A.1 Details of preprocessing
We then further processed the recipes by adding
special separation tokens, as shown in the exam-
ple in Figure 1. The separation tokens include <
TITLE_START > and < TITLE_END >
to wrap the recipe title, < INGR_START >,
< INGR_END > and < INGR_NEXT >
to wrap and split the recipe ingredients. Similarly,
< INSTR_START >, < INSTR_END >
and < INSTR_NEXT > are used to wrap and
split the recipe instructions. There is no leaking
of the stage label information from the separation
tokens.

A.2 Details of metrics computing
To identify the ingredients in the generated recipes,
we first create a list of total input ingredients in
the Recipe1M+ dataset and then identify the ingre-
dients in the recipes by string match. The hallu-
cination percentage is the number of hallucinated
ingredients over the total number of ingredients in
the input. Ingredients that are not included in the
input, but included in the total ingredient list, are
considered as hallucinated. It is worth noting that
because of the limitations of string match, which
cannot deal with plural, quantifier, synonym and
etc, the coverage and hallucination percentages are
not perfect. Therefore, they are better interpreted
as rough indicators and used to compare between
models parallelly.

A.3 Rule-based stage label tagging system
In this section, we elaborate how we implement the
rule-based tagging system. To process on instruc-
tion, firstly we use the tokenizer from Python pack-
age Spacy (Honnibal and Montani, 2017) to iden-
tify all the verbs by checking the Part-Of-Speech
(POS) tag of each token. Then we remove the verbs
that are in the clauses by identifying punctuation

and conjunction words. If, by this point, there are
more than one verbs left, we always keep the first
verb as the main verb and tag the instruction base
on this verb. We tag the stage label by looking
up which stage type the main verb belongs to, as
shown in the example keywords in Table 1.

A.4 Details of Human evaluators
For the tasks of human annotator in Section 4.2 and
evaluation in Section 4.3.2, we ask three voluntary
university students whose first language are English
to conduct each task. They are paid with rate of 10
GBP per hour, which is above the minimum hourly
wage in UK.

A.5 Case study: Recipe Generation Example
In Table 6, we show generation examples of three
recipes. Instructions labeled in red show undesired
characteristics.

In the first example, the ‘Eggs Barbados’, the
recipes generated by baselines, RecipeGPT and
NeuroLogic, both have the instruction ‘Preheat
oven to 350 degrees f.’. We consider this instruc-
tion is irrelevant because the oven is never used in
the rest of the recipes.

In the second example, the ‘Our Favourite Wheat
Bread’, the recipe generated by RecipeGPT shows
undesired repetitive patterns on the instructions
‘Punch down and let rise again.’.

In the third example, the ‘Pomegranate Ice Tea’,
the recipe generated by RecipeGPT is inaccurate
by ‘Serve immediately’, because it lacks the step
of ‘Pour over ice’ or ‘add ice’.
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Recipe Title Ingredients Model Generated Results

Eggs Barbados

1 bunch green onions;
1 package cream cheese;
1 tablespoon butter;
12 whole eggs;
1 tablespoon milk;
salt and pepper to taste

RecipeGPT

Preheat oven to 350 degrees f. Slice the green onions in half
lengthwise. Slice the cream cheese in half lengthwise. Melt
the butter in a large skillet over medium heat. Add the green
onions and saute until tender. Add the cream cheese, eggs,
milk and salt and pepper to taste. Cook until the eggs are set.
Serve immediately.

NeuroLogic

Preheat oven to 350 degrees f. Slice the green onions and the
cream cheese in half lengthwise. Melt the butter in the pan
over medium heat. Add the green onions and saute until tender.
Add the cream cheese, eggs, milk and salt and pepper to taste.
Cook until the eggs are completely cooked.

Ours

Slice the green onions into 1/4 inch slices. Melt the butter in
a frying pan. Add the chopped onions and saute until they are
soft. Add the cream cheese and mix well. In a separate bowl,
beat the eggs and milk. Add the eggs to the cream cheese mixture
and mix well. Add the green onions and salt and pepper to taste.
Drop by spoonfuls onto a greased baking sheet. Bake at 350
degrees for 20 minutes.

Reference

Chop your green onions and break up the cream cheese into
little chunks. Melt the butter in your frying pan on medium-low
heat. While the butter melts, beat the eggs with the milk until
combined. Add your salt and pepper. pour the egg mixture
into the pan. Dont stir up the eggs too much, just occasionally
scrape the bottom to mix up the cooked egg with the runny stuff.
Once the eggs are mostly cooked but still look a little wet, turn
off the heat. You dont want overcooked eggs, theyre rubbery and
icky! As soon as you turn off the heat, mix the cream cheese
chunks and chopped green onions into the eggs. Let it sit for just
a few seconds, so that the heat of the pan melts the cream cheese.

Our Favourite
Wheat Bread

1 tablespoon dry yeast;
2 cups warm water;
14 cup soft butter;
18 cup molasses;
14 cup honey;
1 teaspoon salt;
3 cups whole wheat flour;
2 cups white flour.

RecipeGPT

Dissolve yeast in warm water. Add butter, molasses, honey, and
salt. Mix well. Add whole wheat flour and white flour. Knead
until smooth and elastic. Cover and let rise in a warm place for
1 hour. Punch down and let rise again. Punch down again and
let rise again. Punch down again and let rise again. Punch down
again and let rise again. Punch down again and let rise again.
Punch down again and let rise again. Punch down again and
let rise again. Punch down again and let rise again

NeuroLogic

Dissolve yeast in warm water. Add water, butter, molasses, honey,
and salt. Mix well. Add whole wheat flour and white flour. Mix
well. Knead until smooth and elastic. Cover and let rise in a warm
place for 1 hour. Bake for 1 hour.

Ours

Dissolve yeast in warm water. Add butter, molasses, honey, and
salt. Add whole wheat flour and white flour. Mix until smooth.
Cover and allow to rise in a warm place until doubled in size.
Punch down and let rise again. Pre-heat oven to 350 degrees.
Grease a loaf pan. Pour in batter. Bake for 1 hour.

Reference

Dissolve yeast in warm water. Combine butter, molasses, honey,
and salt. Add yeast mixture. Gradually add flour. Turn onto
floured surface and knead until smooth. Place in greased bowl
and let rise until double. Let dough rest a few minutes. Shape into
2 loaves. Place in greased bread pans. Let rise about 1 hour. Bake
at 375 for 35-40 minutes.

Pomegranate Iced Tea

2 ounces freshly squeezed
pomegranate juice or
2 ounces store-bought
pomegranate juice;
5 ounces tea;
1 ounce simple syrup;
lemon wedge.

RecipeGPT Combine the pomegranate juice, tea, simple syrup, and lemon
wedge in a pitcher. Serve immediately.

NeuroLogic Combine the pomegranate juice, tea, simple syrup, and lemon
wedge in a pitcher. Add ice and stir well.

Ours
Combine the pomegranate juice, tea, simple syrup and lemon
wedge in a pitcher. Add ice and stir well. Pour into a chilled
glass and garnish with a lemon wedge.

Reference Prepare tea and cool. Mix the rest of the ingredients. Pour over
ice in an iced tea glass. Garnish with lemon wedge.

Table 6: Case Study. Generation examples of 3 recipes by our model and baselines. Instructions labeled in red are
considered problematic.
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