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Abstract

Text generation has long been a popular re-
search topic in NLP. However, the task of gen-
erating recruitment emails from recruiters to
candidates in the job recommendation scenario
has received little attention by the research com-
munity. This work aims at defining the topic of
automatic email generation for job recommen-
dation, identifying the challenges, and provid-
ing a baseline template-based solution for Dan-
ish jobs. Evaluation by human experts shows
that our method is effective. We wrap up by dis-
cussing the future research directions for better
solving this task.

1 Introduction and Prior Work

Recruitment email generation is a crucial step in the
overall job recruitment process. When recruiters
find suitable candidates for a job, they need to write
emails to contact the candidates, explaining why
they are fit for the job and inviting them to apply.
The job market produces a huge number of job post-
ings on a daily basis, which results in a significant
amount of human labor required to write recruit-
ment emails. The recruiters are in urgent need of
an automatic approach to compose these emails, to
reduce their efforts and increase productivity.

The core challenges facing the task are two-fold:
persuasiveness and personalization. First, the
emails should contain sufficient reasons to con-
vince the candidate that their qualifications match
the requirements of the position, and illustrate
that the position meets the candidate’s expecta-
tions. Second, personalized emails should let the
job seekers feel that the recruiters pay special at-
tention to them and in turn motivate them to ap-
ply. In an interview of recruiters of varying re-
cruitment experience, recruiters believe that proper
personalization on the recruitment emails could
boost candidate positive response rate, and admit
that the current emails, largely composed based on

fixed templates, are not personalized and persua-
sive enough (Bogers and Kaya, 2021).

Recruitment email generation can be seen as a
task-oriented text generation problem. One needs
to extract information from the input job descrip-
tion and candidate profile, and generate the recruit-
ment email accordingly. A large body of research
on emails focuses on the analysis side, typically au-
tomatic detection of phishing emails by extracting
features (Basnet et al., 2008; Verma and El Aassal,
2017; Yu et al., 2009). In the realm of email synthe-
sis, email subject line generation (Xue et al., 2020;
Zhang and Tetreault, 2019) has been studied. For
generation of the main email body, attempts have
been made on fake email generation for malicious
purposes (Das and Verma, 2019; Baki et al., 2017)
based on a two-step pipeline (Chen and Rudnicky,
2014a,b) for email synthesis. As far as we know,
generating recruitment emails in job recruitment is
an unexplored task in literature, despite its practical
significance and challenging nature.

We therefore formally formulate the task of re-
cruitment email generation and provide a baseline
template-based system for it by extending Chen
and Rudnicky (2014a)’s approach. In particular,
we randomly generate an email from a library of
different pre-defined components, and fill the moti-
vational sentence with certain slots by combining
matched skills and occupations extracted from the
job and candidate in question. We conduct a user
study to evaluate the quality of the generated text
and examine if it can save recruiters’ time in writ-
ing emails. The results show that recruiters under
test are overall satisfied with the generated emails,
and the time spent on writing emails for each can-
didate is significantly reduced.

The rest of the paper is organized as follows. We
define the problem formally in Section 2. We run a
pilot study to examine the simple end-to-end neural
generation algorithm in Section 3 and elicit the
need for a fine-grained synthesizing approach. Our
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template-based approach is described in Section 4,
and the user evaluation is reported and discussed
in Section 5. We conclude and point out future
directions in Section 6.

2 Task Definition and Notations

Recruitment email generation calls for generating
an email based on an input the job and a candidate
. It requires us to extract the matched information
from different job and candidate fields, and con-
vert it to natural language expressions in the email.
Typically, a job posting contains its title, company
name and a textual description. A candidate profile
has a headline, a list of keywords, a list of preferred
job titles, the candidate’s work experience and ed-
ucational experience, and the candidate’s resume
text.

The data we work with comes from Jobindex1,
one of Scandinavia’s largest job portals and recruit-
ment agencies. In the Jobindex system, the above-
mentioned fields are the main source of information
for jobs and candidates. The majority of the jobs
and candidate profiles are in Danish. Please refer
to Fig. 1 for an example of a pair of job and can-
didate, and the real recruitment email written by
a human recruiter. The personal information has
been removed from the example and all texts are
translated to English.

3 Pilot Study: end-to-end neural
generation

The most intuitive way to handle the recruitment
email generation task is to generate the whole email
in a fully end-to-end fashion by concatenating the
job and company text. We conduct a pilot study to
examine whether this setting works in practice.

Model. We build a Transformer encoder-
decoder, the state-of-the-art architecture for nat-
ural language generation, to support a sequence-
to-sequence generation of recruitment email. The
job and candidate texts are fed to the encoder side,
and the recruitment email is generated in a token-
by-token auto-regressive manner. The Transformer
structure enables us to load the weights of the pre-
trained Danish language model, Danish-BERT 2.
Rothe et al. (2020) conducted a comprehensive
comparison of different strategies to use the pre-
trained BERT weights for sequence-to-sequence
generation, and found that the bert2bert setting can

1https://www.jobindex.dk/
2https://huggingface.co/Maltehb/danish-bert-botxo

yield robust performance across different text gen-
eration tasks. Therefore, we follow this setting and
initialize the weights for both encoder and decoder
with the Danish-BERT checkpoint. Please refer
to Rothe et al. (2020) for further details. We claim
that this model may not be the state-of-the-art for
Danish text generation, since Danish GPT is pub-
licly available 3. However, it is a strong-performing
model due to its Transformer architecture, and its
generated text is representative of the state-of-the-
art neural generation models.

Data Preprocessing. We focus on generating
Danish emails from Danish jobs and candidate pro-
files. We mine (job, candidate, email) triplets from
the Jobindex database. We filter out samples with
non-Danish text, too short job descriptions and
empty job titles. A total number of 317566 sam-
ples are obtained. Due to the limitation on input
length by the model, we concatenate the summary
of job description and the headline, job titles, educa-
tion experience and work experience of candidate.
Different fields are split by the periods. For recruit-
ment emails, we only take their main bodies. We
replace specific job title and company name with
special tokens “[job]” and “[cpy]” respectively.

Training and Evaluation. Our Transformer
encoder-decoder has 12 layers and 12 attention
heads and a maximum length of 512 tokens on
both encoder and decoder sides. The embedding
dimension and hidden dimension are set to 768
and 3072, respectively. We split all samples into
training, validation and test set at a 7:2:1 ratio. We
perform mini-batch learning to train the model with
a batch size of 32. The average cross-entropy loss
over all tokens at the decoder side is used as the
loss function. We train the model on the training
set for a maximum number of 5 epochs with Adam
optimizer, and stop training when the validation
loss stops dropping.

We use bilingual evaluation understudy (BLEU)
as the quantitative metric for the generated mes-
sage. The BLEU scores are calculated for individ-
ual translated segments, by comparing them with a
set of good quality reference translations. The aver-
age scores over the whole test corpus are computed
as an estimation of the overall quality.

Result. We obtained a BLEU score of 23.2 on
test samples for the generated texts, which is far
from the SOTA neural text generation system for
Danish (32.5 - 33.8) (Fan and Gardent, 2020). This

3https://huggingface.co/flax-community/dansk-gpt-wiki
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Figure 1: Example of a real recruitment email for the given job and candidate pair. The texts are translated from
Danish to English.

reveals that the generated emails have a limited
overall quality.

Additionally, manual inspection shows that the
auto-generated emails have low extent of person-
alization and persuasiveness. The generated moti-
vational sentences usually do not contain specific
reasons of match and are prone to grammatical er-
rors. See Fig. 2 for concrete examples. We posit
that it is because the motivational sentences are usu-
ally located in the middle of email body, embedded
in texts primarily generated from templates. Also,
over 80% of the motivational sentences are devoid
of case-specific information such as the matched
skills or occupations. Therefore, an end-to-end
generation system is capable of learning these re-
curring template-based texts quite well, but poor at
learning case-specific motivational sentences.

4 Proposed Methodology

The evaluation result of end-to-end neural gener-
ation indicates the need for a finer-grained gener-
ation system. Instead of generating the email as
a whole, a special module should be developed
to generate case-specific information, such as the
motivational sentence, from the input job and can-
didate texts. We are inspired by the two-step email
synthesis (Chen and Rudnicky, 2014a) to generate

recruitment emails: email structure generation and
slot filling. Specifically, we randomly generate an
email template from a pre-constructed library of
email components. The slots of the template in-
dicate case-specific fields, and are then filled by
extracting information from the matched job and
candidate. The overall process of the system is
shown in Fig. 3.

Potentially, our approach is superior to end-to-
end generation in three aspects: 1) recruiters follow
a similar process to write emails in a real-case sce-
nario, so the generated emails are more likely to
be accepted by and benefit recruiters; 2) the algo-
rithm has a better control of the generated content,
and ensures a certain extent of grammatical correct-
ness and readability; 3) by explicitly composing
case-specific information, the algorithm enhances
personalization and persuasiveness of the generated
recruitment emails.

In the following text, we introduce the imple-
mentation details of our template-based generation
system.

4.1 Template Parsing

Template data cleaning. We get a total number
of 553 raw templates from Jobindex system. We
remove the non-Danish templates and templates for
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Figure 2: Examples of generated emails by the end-to-end neural model. The generated motivational sentences are
translated in English and colored in red.

other purposes from the collection, and the remain-
ing ones are classified into company-specific and
general templates. Company-specific templates
are provided by some companies to the recruiters
with the request that these templates are strictly
used when generating recruitment emails for these
specific companies. General templates are used for
all other cases. Eventually, 270 general templates
and 81 specific templates remain in the database.

Manual annotation. We define a list of email
components (or fields) according to their functions
based on manual inspection. They are mainly cate-
gorized into functional, case-specific and auto-fill
fields. Functional fields are indicative of email
structure, and do not entail case-specific informa-
tion. Case-specific fields contain information spe-
cific to the matched pair of job and candidate, such
as the job title, company name, motivational sen-
tences expressing why the candidate is fit for the
job, and so on. Some case-specific fields are auto-
matically filled by the Jobindex system, and they
are referred to as auto-fill fields instead. A total
number of 54 email components are defined.

For each template in the database, we manually
annotate the text by inserting HTML tags before
and after a certain text segment to indicate its func-
tion in the email.

Parsing. We parse the annotated templates to
construct the email component library, essentially
a dictionary of (component_name, content list)
pairs. The annotated templates are each parsed in
a recursive fashion by an HTML parser. Starting
from the root element of the whole template, the

parser performs the same operations for each
element: identify its child elements, process each
the child element, append the processed child
element content to the dictionary, and replace
the child element with the marker “[% f %]”.
As such, the parser navigates all HTML tags
in the template and adds their contents to the
corresponding component content list. In the text
content of each component, its child components
are all masked with “[% f %]” tags as desired.
The output of the algorithm is the top-level
structure of the email templates, which are stored
in the dictionary as values of “skeleton_follower”
and “skeleton_non_follower” for followers and
for non-followers, respectively. Followers are
candidates who follow a company in their profile,
and non-followers are candidates who do not
follow a company. After parsing all templates,
we obtain a list of contents for each pre-defined
email component. Examples of extracted email
components are shown in Fig. 4. It is worth noting
that nested structures universally appear among
functional components, i.e. the textual content of
one component may contain other components.

4.2 Baseline Template-based Email
Generation Algorithm

We build an email generation system based on
the constructed email component library. The
algorithm randomly generates a template from
the constructed library, based on whether the
database contains the company name and whether
the candidate is a follower of the company. Then,

192



Figure 3: Diagram of the email generation system. The final generated messages are the main body of a real
recruitment email, translated to English for this example.

Figure 4: The HTML tag, description and example of email components, extracted from the template database.

we extract the matched skills and occupations from
the input job and candidate, and convert them to a
coherent expression for the motivational sentence
explaining why the candidate fits the job.

Random template generation. Two issues should
be accounted for when generating a proper tem-
plate for a matched (job, candidate) pair. First,
some companies prefer writing recruitment emails
based on company-specific templates, so the sys-
tem should always use a company template where
possible. Second, followers should be contacted
with slightly different emails to stress that the can-
didate follows the company.

The algorithm works as follows. First, we search

for templates with the company name of the job
posting. If company-specific templates can be
found, then we randomly choose a template from
the matched company templates. If it returns an
empty list, then we randomly generate a template
from the email component library. We start with
a randomly selected follower skeleton or a non-
follower skeleton according to whether the com-
pany is in the candidate’s following list. Then, we
navigate through all unfilled slots in an iterative
fashion. For each slot, we randomly pick a text
content from all its respective candidates in the li-
brary. Since the text expression may contain other
unfilled slots, this process goes in an iterative fash-
ion until no functional component tags appear in
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the templates.
To this end, we have obtained a template for

the recruitment email. An example can be seen in
Fig. 5.

Figure 5: A randomly generated template for non-
followers.

Template filling. We compose the motivational
sentence based on the matched qualifications of
the candidate, including skills and occupations.
For this purpose, we construct a dictionary of
skills and occupations from the ESCO (European
Skills, Competences, Qualifications and Occupa-
tions) database4. ESCO has a 4-level category an-
notation for skills and occupations in different lan-
guages. We include both skills and occupations as
dictionary keys in English and Danish. We also add
the list of IT-related skills from Microsoft Skills
library5 into the dictionary. A total number of
129474 skills and 46060 occupations are collected.

Based on the dictionary, we extract skills and
occupations from the matched pair of job and can-
didate texts and obtain their intersections. We first
use a built-in name entity recognition (NER) al-
gorithm in the spaCy6 package to identify text
spans that may contain skills and occupations, and
check whether each is a skill or an occupation. The
matched skills and occupations are obtained by
taking the set intersections. We further split the
language skills from the matched skills set.

Simple rules are then applied to convert the
matched skills, occupations and language skills
to a coherent expression as explanations of why the
candidate fits the job. The skills and occupations
are respectively concatenated with the “{}, {} og
{}” pattern, and conjunctive expressions are added
to combine the expressions for skill and occupation

4https://esco.ec.europa.eu/
5https://learn.microsoft.com/en-us/
6https://spacy.io/

match. It is further appended by the language skill
match expression, if non-Danish skills are detected
in both the job and candidate. The whole expres-
sion is inserted to the motivation sentence template
with modifications of the pre-slot expressions to
ensure coherence. When multiple slots appear in
a motivational sentence template, they are inserted
with matched skills and matched occupations, re-
spectively. As a back-up, a general text expression
will be randomly chosen from a list of contents in
case of no matched qualifications.

Please see Fig. 6 for a visual illustration of how
the matched qualifications are converted to a moti-
vational expression.

Figure 6: An example of composed motivational sen-
tence from matched skills, occupations and language
skills.

Text post-processing. We automatically post-
process the generated email in the final step. Specif-
ically, if multiple punctuations appear in a row, we
keep only the last punctuation. We also make sure
the first letter of a sentence is upper-cased. Finally,
we correct the spacing errors between words in a
sentence, between sentences, and between para-
graphs. This gives the final output message pro-
duced by the template-based recruitment email gen-
eration algorithm.

5 Evaluation

We conduct an offline evaluation with real expert re-
cruiters to evaluate the performance of the template-
based email generation algorithm. The quantita-
tive measures for natural language generation are
not employed, since the template-based approach
may produce significantly different structures from
the real recruitment emails and still be reasonably
good. Indeed, it remains an open question to design
quantitative measures for evaluating the generated
recruitment emails, as the judgments on the persua-
siveness or personalization of the email vary from
person to person.

We randomly sample a collection of truly
matched (job, candidate) pairs from the Jobindex
database. They are randomly assigned to each of a
group of 10 recruiters. The pairs are randomly split
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(a) Unhelped case. (b) Helped case.

Figure 7: Screenshots of the interface in (a) “unhelped” and (b) “helped” case.

into 5 sessions of 10 pairs each. Each recruiter is
randomly assigned with “helped” tasks (with gen-
erated texts) and “unhelped” tasks (with generated
templates). Each task is “helped” for half of the
recruiters and “unhelped” for the other half. The
interface contained pairs of matched job postings
and candidate profiles, and an interface is provided
to the recruiter with either pre-generated template
(“unhelped”) or the email (“helped”). For the email,
the inserted case-specific information is wrapped
by brackets “{}”. A checkbox is also presented
to the recruiters for providing a 4-level judgment
on the quality of the email or template (4 = Per-
fect, 3 = Minor Revision, 2 = Major Revision, 1 =
Useless). The judgment is on language quality for
templates and on both language quality and infor-
mation correctness for emails. The recruiters are
asked to click a button before and after writing the
recruitment email, so that the difference between
the recorded time stamps are the time spent on it.
The screenshots of the interface are shown in Fig. 7.

Result on text quality. We have collected the re-
sults of 224 helped tasks (with generated emails
by our algorithm) and 241 unhelped tasks (with
our generated templates by our algorithm). The
recruiters’ annotations on the quality of the gener-
ated texts are shown in Fig. 8. In terms of average
ratings, we obtained a value of 2.53 for generated
emails and 2.46 for generated templates for the
evaluation of the new template-based system. Over
50% of the generated texts (53.58% for emails and
51.03% for templates) are satisfactory, requiring

minor or no edits. It is interesting to see that more
recruiters are satisfied with the generated texts than
the templates. This implies that the generated mo-
tivational sentence is exceptionally helpful for re-
cruiters. In the same time, there is still room for
the text quality to improve, and neural method for
generating case-specific information is a feasible
direction.

Figure 8: Bar plots of annotations for the offline-
evaluation in Apr 2022. The red bars are the recruiters’
judgments on the quality of generated templates, and
blue bars are the recruiters on the quality of generated
messages.

Result on time cost. We computed the average
time a recruiter spent on writing the message in the
unhelped and helped case, respectively. The time
difference between the two scenarios is the reduc-
tion of recruiters’ time by our template-based au-
tomatic text generation system. As a consequence,
recruiters spent an average of 178.99s on each

195



matched pair in the helped case, and an average
of 235.63s on each matched pair in the unhelped
case. On average, a recruiter spends 56.64s shorter
on writing an email with automatically generated
messages than merely on top of the provided tem-
plates. In order to remove the discrepancy across
individual recruiters, we zero-averaged the time
for each recruiter and recalculated the time differ-
ence. A closer but still remarkable gap between the
times (51.31s) is observed. It shows that this sim-
ple template-based system can significantly save
recruiters time on writing recruitment emails.

6 Conclusion

We have proposed recruitment email generation
for job recruitment, a novel task in text generation.
We demonstrate its challenge and significance in
the pilot study and a user study of our template-
based approach. The challenge mainly resides in
constructing case-specific components of the email
from the input job and candidate to enhance person-
alization and persuasiveness. Quite often, the rea-
sons of a good match are semantically non-explicit
and cannot be extracted by common word or phrase
matching. At the same time, we have observed that
a simple approach can remarkably benefit recruiters
by saving around 1/4 of their time.

Future work could contribute to this task in the
following aspects:

• End-to-end neural generation of motivational
sentences. Rather than the simple rule-based
algorithm for composing the motivational sen-
tences, we may learn a neural generation sys-
tem from the real emails in a data-driven man-
ner.

• Robust intrinsic evaluation metrics. The n-
gram matching-based metrics, such as BLEU
or ROUGE, are not suitable for this task.
Beyond the real-user evaluation, it remains
an open challenge to propose robust metrics
that objectively evaluate the generated text,
in terms of both language quality and task-
related aspects.

• Deep representations of job and candidate to
better extract reasons of match. Deep neural
models should be constructed to perform deep
understanding of jobs and candidates in or-
der to support extraction of below-the-surface
matched qualifications.

• Generating explanation of recommendations.
Currently, the email generation is a separate
process from job recommendation. It would
be interesting to view recruitment emails in-
stead as explanations of the recommendation
systems, and propose recommendation mod-
els that supports interpretations of the recom-
mendations. The authentic explanations of
recommendation will be then be incorporated
in the recruitment email.
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